Skip to main content

Evolution of the Skin Microstructural Organization During a Mechanical Assay

  • Conference paper
  • First Online:
Mechanics of Biological Systems and Materials, Volume 6

Abstract

Skin is a complex multi-layered tissue, consisting of three main parts: the epidermis, the dermis and the hypodermis. The dermis is responsible for most of the complex mechanical properties of skin, such as viscoelasticity, non-linearity and anisotropy. At the microscopic level the dermis consists for the greater part of extracellular matrix, compounded mainly of collagen fibers forming an orderless network. The mechanical properties of skin have been studied in the past, but their exact link with the microscopic organization is still an open question. The goal of our study is to measure the evolution of the microstructure during a mechanical assay and to improve existing mechanical models of skin with relevant parameters identified at the microscopic level.

We perform uniaxial tensile test on ex vivo mouse skin. The mechanical tests are performed in situ under a second harmonic generation microscope. This allows us to determine quantitatively and simultaneously the mechanical response and the microstructural reorganization of the tissue. This technique can be used to better understand the link between pathological alterations of collagen synthesis, fibers organization, and alteration of the biomechanical properties of skin, as in the Ehlers-Danlos syndrome (EDS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ricard-Blum, S., Ruggiero, F.: The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol. Biol. 53(7), 430–442 (2005)

    Article  Google Scholar 

  2. Veronda, D.R., Westmann, R.A.: Mechanical characterization of skin finite deformations. J. Biomech. 3(1), 111–124 (1970)

    Article  Google Scholar 

  3. Fung, Y.: Biomechanics. Mechanical Properties of Living Tissues. Springer, New York (1993)

    Book  MATH  Google Scholar 

  4. Xu, F., Lu, T.J., Seffen, K.A.: Biothermomechanical behavior of skin tissue. Acta Mech. Sinica 24(1), 1–23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sokolis, D.P., Kefaloyannis, E.M., Kouloukoussa, M., Marinos, E., Boudoulas, H., Karayannacos, P.E.: A structural basis for the aortic stress strain relation in uniaxial tension. J. Biomech. 39(9), 1651–1662 (2006)

    Article  Google Scholar 

  6. Zeinali-Davarani, S., Chow, M.-J., Turcotte, R., Zhang, Y.: Characterization of biaxial mechanical behavior of porcine aorta under gradual elastin degradation. Ann. Biomed. Eng. 41(7), 1528–1538 (2013)

    Article  Google Scholar 

  7. Abrahams, M.: Mechanical behaviour of tendon in vitro. Med. Biol. Eng. 5(5), 433–443 (1967)

    Article  Google Scholar 

  8. Screen, H., Toorani, S., Shelton, J.: Microstructural stress relaxation mechanics in functionally different tendons. Med. Eng. Phys. 35(1), 96–102 (2013)

    Article  Google Scholar 

  9. Houssen, Y.G., Gusachenko, I., Schanne-Klein, M.-C., Allain, J.-M.: Monitoring micrometer-scale collagen organization in rat-tail tendon upon mechanical strain using second harmonic microscopy. J. Biomech. 44(11), 2047–2052 (2011)

    Article  Google Scholar 

  10. Boyce, B., Jones R., Nguyen T., Grazier, J.: Stress-controlled viscoelastic tensile response of bovine cornea. J. Biomech. 40(11), 2367–2376 (2007)

    Article  Google Scholar 

  11. Benoit, A, Latour, G., Schanne-Klein, M.-C., Allain, J.-M.: Simultaneous microstructural and mechanical characterization of human corneas at increasing pressure. J. Mech. Behav. Biomed. Mater. 60, 93–105 (2016)

    Google Scholar 

  12. Franchi, M., Fini, M., Quaranta, M., De Pasquale, V., Raspanti, M., Giavaresi, G., Ottani, V., Ruggeri, A.: Crimp morphology in relaxed and stretched rat Achilles tendon. J. Anat. 210(1), 1–7 (2007)

    Article  Google Scholar 

  13. Hansen, K.A., Weiss, J.A., Barton, J.K.: Recruitment of tendon crimp with applied tensile strain. J. Biomech. Eng. 124(1), 72 (2002)

    Article  Google Scholar 

  14. Gusachenko, I., Tran, V., Houssen, Y., Allain, J.-M., Schanne-Klein, M.-C.: Polarization-resolved second-harmonic generation in tendon upon mechanical stretching. Biophys. J. 102(9), 2220–2229 (2012)

    Article  Google Scholar 

  15. Cheng, V.W.T., Screen, H.R.C.: The micro-structural strain response of tendon. J. Mater. Sci. 42(21), 8957–8965 (2007)

    Article  Google Scholar 

  16. Puxkandl, R., Zizak, I., Paris, O., Keckes, J., Tesch, W., Bernstorff, S., Purslow, P., Fratzl, P.: Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philos. Trans. R. Soc. B 357(1418), 191–197 (2002)

    Article  Google Scholar 

  17. Gupta, H., Seto, J., Krauss, S., Boesecke, P., Screen, H.: In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen. J. Struct. Biol. 169(2), 183–191 (2010)

    Article  Google Scholar 

  18. Brown, I.A.: Scanning electron-microscope study of effects of uniaxial tension on human skin. Br. J. Dermatol. 89(4), 383–393 (1973)

    Article  Google Scholar 

  19. Belkoff, S.M., Haut, R.C.: A structural model used to evaluate the changing microstructure of maturing rat skin. J. Biomech. 24(8), 711–720 (1991)

    Article  Google Scholar 

  20. Lanir, Y., Lokshin, O.: Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization. J. Biomech. Eng. 131(3), 031009 (2009)

    Article  Google Scholar 

  21. Jor, J.W.Y., Nash, M.P., Nielsen, P.M.F., Hunter, P.J.: Estimating material parameters of a structurally based constitutive relation for skin mechanics. Biomech. Model. Mechanobiol. 10(5), 767–778 (2010)

    Article  Google Scholar 

  22. Groves, R.B., Coulman, S.A., Birchall, J.C., Evans, S.L.: An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J. Mech. Behav. Biomed. Mater. 18, 167–180 (2013)

    Article  Google Scholar 

  23. Tonge, T.K., Voo, L.M., Nguyen, T.D.: Full-field bulge test for planar anisotropic tissues: Part II A thin shell method for determining material parameters and comparison of two distributed fiber modeling approaches. Acta Biomater. 9(4), 5926–5942 (2013)

    Article  Google Scholar 

  24. Bancelin, S., Lynch, B., Bonod-Bidaud, C., Ducourthial, G., Psilodimitrakopoulos, S., Dokladal, P., Allain, J.-M., Schanne-Klein, M.-C., Ruggiero, F.: Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy. Sci. Rep. 5, 17635 (2015)

    Article  Google Scholar 

  25. Pena, A.-M., Strupler, M., Boulesteix, T., Godeau G., Schanne-Klein, M.-C.: Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy. Opt. Express 13(16), 6268–6274; Erratum: 13(17), 6667 (2005)

    Google Scholar 

  26. Zipfel, W.R., Williams, R.M., Webb, W.W.: Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21(11), 1369–1377 (2003)

    Article  Google Scholar 

  27. Strupler, M., Pena, A.-M., Hernest, M., Tharaux, P.-L., Martin, J.-L., Beaurepaire, E., Schanne-Klein, M.-C.: Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt. Express 15(7), 4054–4065 (2007)

    Article  Google Scholar 

  28. Keyes, J.T., Haskett, D.G., Utzinger, U., Azhar, M., Geest, J.P.V.: Adaptation of a planar microbiaxial optomechanical device for the tubular biaxial microstructural and macroscopic characterization of small vascular tissues. J. Biomech. Eng. 133(7), 075001 (2011)

    Article  Google Scholar 

  29. Keyes, J.T., Lockwood, D.R., Simon, B.R., Vande Geest, J.P.: Deformationally dependent fluid transport properties of porcine coronary arteries based on location in the coronary vasculature. J. Mech. Behav. Biomed. Mater. 17, 296–306 (2013)

    Article  Google Scholar 

  30. Mauri, A., Perrini, M., Mateos, J., Maake, C., Ochsenbein-Koelble, N., Zimmermann, R., Ehrbar, M., Mazza, E.: Second harmonic generation microscopy of fetal membranes under deformation: normal and altered morphology. Placenta 34(11), 1020–1026 (2013)

    Article  Google Scholar 

  31. Mauri, A., Ehret, A.E., Perrini, M., Maake, C., Ochsenbein-Koelble, N., Ehrbar, M., Oyen, M.L., Mazza E.: Deformation mechanisms of human amnion: quantitative studies based on second harmonic generation microscopy. J. Biomech. 48, 1606–1613 (2015)

    Google Scholar 

  32. Nesbitt, S., Scott, W., Macione, J., Kotha, S.: Collagen fibrils in skin orient in the direction of applied uniaxial load in proportion to stress while exhibiting differential strains around hair follicles. Materials 8(4), 1841–1857 (2015)

    Article  Google Scholar 

  33. Fan, R., Sacks, M.S.: Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J. Biomech. 47(9), 2043–2054 (2014)

    Article  Google Scholar 

  34. Langer, K.: Anatomy and physiology of skin 2. skin tension. Br. J. Plast. Surg. 31, 93–106 (1978)

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Ecole Polytechnique (interdisciplinary project), from Agence Nationale de la Recherche (\( ANR-13-BS09-0004-02 \)) and from Association du Syndrome Ehlers-Danlos (AFSED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Allain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Lynch, B., Bancelin, S., Bonod-Bidaud, C., Ruggiero, F., Schanne-Klein, MC., Allain, JM. (2017). Evolution of the Skin Microstructural Organization During a Mechanical Assay. In: Korach, C., Tekalur, S., Zavattieri, P. (eds) Mechanics of Biological Systems and Materials, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41351-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41351-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41350-1

  • Online ISBN: 978-3-319-41351-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics