Skip to main content

Eukaryotic Selenoproteomes

  • Chapter
  • First Online:
Selenium

Abstract

Progress in high-throughput sequencing and development of computational tools for identification of SECIS elements, selenoprotein genes and selenocysteine machinery allows recognition of organisms that are dependent, or not dependent, on selenium (Se) and identification of selenoproteins responsible for this trait. Full sets of selenoproteins in organisms, designated selenoproteomes, have been characterized for humans, which have 25 selenoprotein genes, as well as for most other organisms with sequenced genomes. This chapter offers an overview of eukaryotic selenoproteins at the level of individual proteins, protein families and entire selenoproteomes. Comparative genomic and ionomic analyses offer exciting avenues for studying selenoprotein function and evolution, provide insights into the biological functions of the trace element, Se, and allow addressing other important biological questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MD Wolfe et al 2004 J Biol Chem 279:1801

    Article  CAS  PubMed  Google Scholar 

  2. GL Dilworth 1982 Arch Biochem Biophys 219:30

    Google Scholar 

  3. VN Gladyshev et al 1994 Proc Natl Acad Sci USA 91:232

    Google Scholar 

  4. WT Self, TC Stadtman 2000 Proc Natl Acad Sci USA 97:7208

    Google Scholar 

  5. VM Labunskyy et al 2014 Physiol Rev 94:739

    Google Scholar 

  6. DL Hatfield et al 2014 Trends Biochem Sci 39:112

    Google Scholar 

  7. M Mariotti et al 2013 Nucleic Acids Res 41:e149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M Mariotti, R Guigó 2010 Bionformatics 26:2656

    Article  CAS  Google Scholar 

  9. GV Kryukov et al 1999 J Biol Chem 274:33888

    Article  CAS  PubMed  Google Scholar 

  10. A Lescure et al 1999 J Biol Chem 274:38147

    Article  CAS  PubMed  Google Scholar 

  11. VN Gladyshev et al 2004 Annu Rev Nutr 24:579

    Google Scholar 

  12. FJ Martin-Romero et al 2001 J Biol Chem 276:29798

    Article  CAS  PubMed  Google Scholar 

  13. S Castellano et al 2001 EMBO Rep 2:697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. GV Kryukov et al 2003 Science 300:1439

    Google Scholar 

  15. GV Kryukov, VN Gladyshev 2004 EMBO Rep 5:538

    Google Scholar 

  16. Y Zhang et al 2005 Genome Biol 6:R37

    Article  PubMed  PubMed Central  Google Scholar 

  17. JT Rotruck et al 1973 Science 179:588

    Google Scholar 

  18. A Seiler et al 2008 Cell Metab 8:237

    Article  CAS  PubMed  Google Scholar 

  19. F Ursini et al 1999 Science 285:1393

    Article  CAS  PubMed  Google Scholar 

  20. GE Olson et al 2010 Am J Physiol Renal Physiol 298:F1244

    Google Scholar 

  21. S Gromer et al 1998 Biochem J 332:591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. QA Sun et al 2001 Proc Natl Acad Sci USA 98:3673

    Google Scholar 

  23. T Sandalova et al 2001 Proc Natl Acad Sci USA 98:9533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. QA Sun et al 1999 J Biol Chem 274:24522

    Article  CAS  PubMed  Google Scholar 

  25. ES Arner, A Holmgren 2000 Eur J Biochem 267:6102

    Article  CAS  PubMed  Google Scholar 

  26. QA Sun et al 2001 J Biol Chem 276:3106

    Article  CAS  PubMed  Google Scholar 

  27. AK Rundlof et al 2004 Free Radic Biol Med 36:641

    Google Scholar 

  28. D Su, VN Gladyshev 2004 Biochemistry 43:12177

    Google Scholar 

  29. D Su et al 2005 J Biol Chem 280:26491

    Article  CAS  PubMed  Google Scholar 

  30. M Conrad et al 2004 Mol Cell Biol 24:9414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. C Jakupoglu et al 2005 Mol Cell Biol 25:1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. GV Kryukov et al 2002 Proc Natl Acad Sci USA 99:4245

    Google Scholar 

  33. HY Kim, VN Gladyshev 2004 Mol Biol Cell 15:1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DE Fomenko et al 2009 J Biol Chem 284:5986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. BC Lee et al 2013 Mol Cell 51:397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. KV Korotkov et al 2001 J Biol Chem 276:15330

    Article  CAS  PubMed  Google Scholar 

  37. E Kumaraswamy et al 2000 J Biol Chem 275:35540

    Article  CAS  PubMed  Google Scholar 

  38. AD Ferguson et al 2005 J Biol Chem 281:3536

    Article  PubMed  Google Scholar 

  39. MV Kasaikina et al 2011 J Biol Chem 286:33203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. TC Stadtman 1996 Annu Rev Biochem 65:83

    Article  CAS  PubMed  Google Scholar 

  41. XM Xu et al 2007 Biochem J 404:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M Mariotti et al 2015 Genome Res 25:1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. RF Burk, KE Hill 2005 Annu Rev Nutr 25:215

    Google Scholar 

  44. AV Lobanov et al 2008 Genome Biol 9:R62

    Google Scholar 

  45. KE Hill et al 2003 J Biol Chem 278:13640

    Article  CAS  PubMed  Google Scholar 

  46. L Schomburg et al 2003 Biochem J 370:397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. RF Burk, KE Hill 2015 Annu Rev Nutr 35:109

    Google Scholar 

  48. SC Vendeland et al 1995 Proc Natl Acad Sci USA 92:8749

    Google Scholar 

  49. KV Korotkov et al 2002 Mol Cell Biol 22:1402

    Google Scholar 

  50. SJ Han et al 2014 PLoS One 9:e95518

    Google Scholar 

  51. Y Ye et al 2004 Nature 429:841

    Article  CAS  PubMed  Google Scholar 

  52. VA Shchedrina et al 2011 J Biol Chem 286:42937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. AA Turanov et al 2014 Biochem J 462:555

    Google Scholar 

  54. GJ Fredericks et al 2014 Proc Natl Acad Sci USA 111:16478

    Google Scholar 

  55. S Verma et al 2011 J Immunol 186:2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. B Moghadaszadeh et al 2001 Nat Genet 29:17

    Article  CAS  PubMed  Google Scholar 

  57. MJ Jurynec et al 2008 Proc Natl Acad Sci USA 105:12485

    Google Scholar 

  58. SV Novoselov et al 2002 EMBO J 21:3681

    Google Scholar 

  59. T Obata, Y Shiraiwa 2005 J Biol Chem 280:18462

    Article  CAS  PubMed  Google Scholar 

  60. S Castellano et al 2004 EMBO Rep 5:71

    Article  CAS  PubMed  Google Scholar 

  61. S Castellano et al 2005 Proc Natl Acad Sci USA 102:16188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. SV Novoselov et al 2005 Biochem J 394:575

    Google Scholar 

  63. VA Shchedrina et al 2007 Proc Natl Acad Sci USA 104:13919

    Google Scholar 

  64. AV Lobanov et al 2006 Nucl Acids Res 34:496

    Google Scholar 

  65. ES Arnér 2010 Exp Cell Res 316:1296

    Article  PubMed  Google Scholar 

  66. HJ Reich, RJ Hondal 2016 ACS Chem Biol 11:821

    Article  CAS  PubMed  Google Scholar 

  67. AP Lothrop et al 2014 Biochemistry 53:664

    Google Scholar 

  68. AP Lothrop et al 2014 Biochemistry 53:654

    Google Scholar 

  69. BC Lee et al 2011 J Biol Chem 286:18747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. AV Lobanov et al 2009 Biochim Biophys Acta 1790:1424

    Google Scholar 

  71. K Taskov et al 2005 Nucleic Acids Res 33:2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. AV Lobanov et al 2008 Protein Sci 17:176

    Google Scholar 

  73. CE Chapple, R Guigó 2008 PLoS One 3:e2968

    Google Scholar 

  74. CJ Gobler et al 2011 Proc Natl Acad Sci USA 108:4352

    Google Scholar 

  75. CJ Gobler et al 2013 ISME J 7:1333

    Google Scholar 

  76. AV Lobanov et al 2007 Genome Biol 8:R198

    Google Scholar 

  77. S Castellano et al 2009 Mol Biol Evol 26:2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. M Mariotti et al 2012 PLoS One 7:e33066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. AA Turanov et al 2009 Science 323:259

    Google Scholar 

  80. DE Fomenko et al 2007 Science 315:387

    Google Scholar 

  81. M Malinouski et al 2014 Nat Commun 5:3301

    Article  PubMed  Google Scholar 

  82. S Ma et al 2014 Cell Rep 13:1319

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim N. Gladyshev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gladyshev, V.N. (2016). Eukaryotic Selenoproteomes. In: Hatfield, D., Schweizer, U., Tsuji, P., Gladyshev, V. (eds) Selenium. Springer, Cham. https://doi.org/10.1007/978-3-319-41283-2_11

Download citation

Publish with us

Policies and ethics