Skip to main content

Finding the Set of k-additive Dominating Measures Viewed as a Flow Problem

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2016)

Abstract

In this paper we deal with the problem of obtaining the set of k-additive measures dominating a fuzzy measure. This problem extends the problem of deriving the set of probabilities dominating a fuzzy measure, an important problem appearing in Decision Making and Game Theory. The solution proposed in the paper follows the line developed by Chateauneuf and Jaffray for dominating probabilities and continued by Miranda et al. for dominating k-additive belief functions. Here, we address the general case transforming the problem into a similar one such that the involved set functions have non-negative Möbius transform; this simplifies the problem and allows a result similar to the one developed for belief functions. Although the set obtained is very large, we show that the conditions cannot be sharpened. On the other hand, we also show that it is possible to define a more restrictive subset, providing a more natural extension of the result for probabilities, such that it is possible to derive any k-additive dominating measure from it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bondareva, O.: Some applications of linear programming to the theory of cooperative games. Problemy Kibernet 10, 119–139 (1963)

    MathSciNet  MATH  Google Scholar 

  2. Chateauneuf, A., Jaffray, J.-Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math. Soc. Sci. 17, 263–283 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statististics 38, 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. Driessen, T.: Cooperative Games. Kluwer Academic, Dordrecht (1988)

    Book  MATH  Google Scholar 

  6. Gale, D.: The Theory of Linear Economic Models. Mc Graw Hill, New York (1960)

    MATH  Google Scholar 

  7. Grabisch, M.: \(k\)-order additive discrete fuzzy measures. In: Proceedings of 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Granada, Spain, pp. 1345–1350 (1996)

    Google Scholar 

  8. Grabisch, M.: \(k\)-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 92, 167–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grabisch, M.: On lower and upper approximation of fuzzy measures by \(k\)-order additive measures. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L. (eds.) Information, Uncertainty, Fusion, pp. 105–118. Kluwer Sci. Publ. (2000). Selected papers from IPMU’98

    Google Scholar 

  10. Grabisch, M.: The core of games on ordered structures and graphs. Ann. Oper. Res. 204, 33–64 (2013). doi:10.1007/s10479-012-1265-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Grabisch, M., Miranda, P.: On the vertices of the k-additive core. Discrete Math. 308, 5204–5217 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grabisch, M., Miranda, P.: Exact bounds of the Möbius inverse of monotone set functions. Discrete Appl. Math. 186, 7–12 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harsanyi, J.C.: A simplified bargaining model for the \(n\)-person cooperative game. Int. Econ. Rev. 4, 194–220 (1963)

    Article  MATH  Google Scholar 

  14. Ichiishi, T.: Super-modularity: Applications to convex games and to the Greedy algorithm for LP. J. Econ. Theory 25, 283–286 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Miranda, P., Combarro, E.F., Gil, P.: Extreme points of some families of non-additive measures. Eur. J. Oper. Res. 33(10), 3046–3066 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Miranda, P., Grabisch, M.: Optimization issues for fuzzy measures. Int. J. Uncertainty, Fuzziness, Knowl.-Based Syst. 7(6), 545–560 (1999). Selected papers from IPMU’98

    Article  MathSciNet  MATH  Google Scholar 

  17. Miranda, P., Grabisch, M.: \(k\)-balanced games and capacities. Eur. J. Oper. Res. 200, 465–472 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miranda, P., Grabisch, M., Gil, P.: Identification of non-additive measures from sample data. In: Kruse, R., Della Riccia, G., Dubois, D., Lenz, H.-J. (eds.) Planning based on Decision Theory. CISM Courses and Lectures, vol. 472, pp. 43–63. Springer, Vienna (2003)

    Chapter  Google Scholar 

  19. Miranda, P., Grabisch, M., Gil, P.: Axiomatic structure of \(k\)-additive capacities. Mathe. Soc. Sci. 49, 153–178 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miranda, P., Grabisch, M., Gil, P.: Dominance of capacities by \(k\)-additive belief functions. Eur. J. Oper. Res. 175, 912–930 (2006)

    Article  MATH  Google Scholar 

  21. Rota, G.C.: On the foundations of combinatorial theory I. Theory of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete (2), 340–368 (1964)

    Google Scholar 

  22. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  23. Shapley, L.S.: Cores of convex games. Int. J. Game Theory 1, 11–26 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Walley, P.: Coherent lower (and upper) probabilities. Technical report 22, U. of Warwick, Coventry, (UK) (1981)

    Google Scholar 

  25. Walley, P., Fine, T.L.: Towards a frequentist theory of upper and lower probability. Ann. Stat. 10, 741–761 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wolfenson, M., Fine, T.L.: Bayes-like decision making with upper and lower probabilities. J. Amer. Statis. Assoc. 77, 80–88 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by Spanish Grant MTM2012-33740 and MTM-2015-67057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Miranda, P., Grabisch, M. (2016). Finding the Set of k-additive Dominating Measures Viewed as a Flow Problem. In: Carvalho, J., Lesot, MJ., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, vol 610. Springer, Cham. https://doi.org/10.1007/978-3-319-40596-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40596-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40595-7

  • Online ISBN: 978-3-319-40596-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics