Skip to main content

Role of Omega-3 Fatty Acids in Metabolic Syndrome

  • Chapter
  • First Online:
Omega-3 Fatty Acids

Abstract

Obesity leads to several chronic morbidities including type 2 diabetes, dyslipidemia, atherosclerosis, and hypertension, which are major components of the metabolic syndrome (MetS). Low-grade inflammation has been identified as a key factor in the development of MetS features affecting obese subjects. Several studies have proposed beneficial effects of the omega-3 polyunsaturated fatty acids (n-3 PUFAs) for the prevention and amelioration of MetS features. In this chapter, we will focus on reviewing randomized, controlled trials that evaluate the effects of supplementation with marine-derived EPA and DHA on weight loss, insulin sensitivity, lipid metabolism, blood pressure, and inflammation in overweight/obese subjects with MetS characteristics. Supplementation with n-3 PUFAs may be an interesting therapy to reduce hypertriglyceridemia and hypertension, while the ability of n-3 PUFAs to promote weight loss, insulin sensitivity, and changes in cholesterol metabolism in patients with MetS remains controversial. The role of n-3 PUFAs-derived proresolving lipid mediators such as resolvins, protectins, and maresins in MetS is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AUC:

Area under curve

CAVI:

Cardio-ankle vascular index

CETP:

Cholesteryl ester transfer protein

CVD:

Cardiovascular disease

DHA:

Docosahexaenoic acid

DBP:

Diastolic blood pressure

EPA:

Eicosapentaenoic acid

EE:

Ethyl ester

FBI:

Fasting blood insulin

FBG:

Fasting blood glucose

FFA:

Free fatty acids

FMD:

Flow-mediated dilatation

HbA1c:

Glycosylated hemoglobin

HDL:

High-density lipoprotein

ICAM-1:

intracellular adhesion molecule 1

IDL:

Intermediate-density lipoprotein

IL:

Interleukin

LDL:

Low-density lipoprotein

sdLDL:

Small-density LDL

PWV:

Pulse wave velocity

MetS:

Metabolic syndrome

n-3 PUFAs:

Long-chain omega-3 polyunsaturated fatty acids

RLP:

Remnant lipoprotein particle

SBP:

Systolic blood pressure

TG:

Triglycerides

TNF-α:

Tumor necrosis factor-α

TNFR:

Tumor necrosis factor receptor

TRL:

Triglyceride rich lipoprotein

VCAM-1:

Vascular cell adhesion molecule 1

VLDL:

Very-low-density lipoprotein

References

  1. Simmons RK, Alberti KGMM, Gale EAM, Colagiuri S, Tuomilehto J, Qiao Q, et al. The metabolic syndrome: useful concept or clinical tool? Report of a WHO expert consultation. Diabetologia. 2010;53(4):600–5.

    Article  CAS  PubMed  Google Scholar 

  2. Torris C, Molin M, Cvancarova Smastuen M. Fish consumption and its possible preventive role on the development and prevalence of metabolic syndrome—a systematic review. Diabetol Metab Syndr. 2014;6(1):112.

    Google Scholar 

  3. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; american heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120(16):1640–5.

    Article  CAS  PubMed  Google Scholar 

  4. Grundy MDP, Scott M. Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome. Am J Cardiol. 1998;81(4 Suppl 1):18B–25B.

    Article  CAS  PubMed  Google Scholar 

  5. Eckel RH, Alberti K, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2010;375(9710):181–3.

    Article  PubMed  Google Scholar 

  6. Adiels M, Olofsson S, Taskinen M, Borén J. Overproduction of very low–density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28(7):1225–36.

    Article  CAS  PubMed  Google Scholar 

  7. Grundy SM. Hypertriglyceridemia, insulin resistance, and the metabolic syndrome. Am J Cardiol. 1999;83(9 Suppl 2):25–9.

    Article  Google Scholar 

  8. Nova Science Publishers. Advances in hypertension research. New York: Ed.Ramon Rodrigo; 2014.

    Google Scholar 

  9. Payne RA, Wilkinson IB, Webb DJ. Arterial stiffness and hypertension emerging concepts. Hypertension. 2010;55(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  10. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932–43.

    Article  CAS  PubMed  Google Scholar 

  11. Stehouwer CDA, Henry RMA, Ferreira I. Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia. 2008;51(4):527–39.

    Google Scholar 

  12. Fernandez-Garcia JC, Cardona F, Tinahones FJ. Inflammation, oxidative stress and metabolic syndrome: dietary modulation. Curr Vasc Pharmacol. 2013;11(6):906–19.

    Article  CAS  PubMed  Google Scholar 

  13. Lorente-Cebrian S, Costa AG, Navas-Carretero S, Zabala M, Martinez JA, Moreno-Aliaga MJ. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J Physiol Biochem. 2013;69(3):633–51.

    Article  CAS  PubMed  Google Scholar 

  14. Emken EA, Adlof RO, Gulley RM. Dietary linoleic acid influences desaturation and acylation of deuterium-labeled linoleic and linolenic acids in young adult males. Biochim Biophys Acta. 1994;1213(3):277–88.

    Article  CAS  PubMed  Google Scholar 

  15. Pawlosky RJ, Hibbeln JR, Novotny JA, Salem N. Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res. 2001;42(8):1257–65.

    CAS  PubMed  Google Scholar 

  16. Nigam A, Frasure-Smith N, Lespérance F, Julien P. Relationship between n-3 and n-6 plasma fatty acid levels and insulin resistance in coronary patients with and without metabolic syndrome. Nutr Metab Cardiovasc Dis. 2009;19(4):264–70.

    Article  CAS  PubMed  Google Scholar 

  17. Zaribaf F, Falahi E, Barak F, Heidari M, Keshteli AH, Yazdannik A, et al. Fish consumption is inversely associated with the metabolic syndrome. Eur J Clin Nutr. 2014;68(4):474–80.

    Article  CAS  PubMed  Google Scholar 

  18. Ebrahimi M, Ghayour-Mobarhan M, Rezaiean S, Hoseini M, Parizade SMR, Farhoudi F, et al. Omega-3 fatty acid supplements improve the cardiovascular risk profile of subjects with metabolic syndrome, including markers of inflammation and auto-immunity. Acta Cardiol. 2009;64(3):321–7.

    Article  PubMed  Google Scholar 

  19. Kabir M, Skurnik G, Naour N, Pechtner V, Meugnier E, Rome S, et al. Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: a randomized controlled study. Am J Clin Nutr. 2007;86(6):1670–9.

    CAS  PubMed  Google Scholar 

  20. Hill AM, Buckley JD, Murphy KJ, Howe PR. Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. Am J Clin Nutr. 2007;85(5):1267–74.

    CAS  PubMed  Google Scholar 

  21. Simão ANC, Lozovoy MAB, Bahls LD, Morimoto HK, Simão TNC, Matsuo T, et al. Blood pressure decrease with ingestion of a soya product (kinako) or fish oil in women with the metabolic syndrome: role of adiponectin and nitric oxide. Br J Nutr. 2012;108(8):1435–42.

    Article  PubMed  Google Scholar 

  22. Simão ANC, Lozovoy MAB, Dichi I. Effect of soy product kinako and fish oil on serum lipids and glucose metabolism in women with metabolic syndrome. Nutrition. 2014;30(1):112–5.

    Article  PubMed  Google Scholar 

  23. Tousoulis D, Plastiras A, Siasos G, Oikonomou E, Verveniotis A, Kokkou E, et al. Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel anti inflammatory effect in adults with metabolic syndrome. Atherosclerosis. 2014;232(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  24. Tapsell LC, Batterham MJ, Charlton KE, Neale EP, Probst YC, O’Shea JE, et al. Foods, nutrients or whole diets: effects of targeting fish and LCn3PUFA consumption in a 12mo weight loss trial. BMC Public Health. 2013;13:1231.

    Google Scholar 

  25. Su H, Lee H, Cheng W, Huang S. A calorie-restriction diet supplemented with fish oil and high-protein powder is associated with reduced severity of metabolic syndrome in obese women. Eur J Clin Nutr. 2014;69(3):322–8.

    Google Scholar 

  26. DeFina LF, Marcoux LG, Devers SM, Cleaver JP, Willis BL. Effects of omega-3 supplementation in combination with diet and exercise on weight loss and body composition. Am J Clin Nutr. 2011;93(2):455–62.

    Article  CAS  PubMed  Google Scholar 

  27. Munro IA, Garg ML. Dietary supplementation with long chain omega-3 polyunsaturated fatty acids and weight loss in obese adults. Obes Res Clin Pract. 2013;7(3):73–81.

    Article  Google Scholar 

  28. Krebs JD, Browning LM, McLean NK, Rothwell JL, Mishra GD, Moore CS, et al. Additive benefits of long-chain n-3 polyunsaturated fatty acids and weight-loss in the management of cardiovascular disease risk in overweight hyperinsulinaemic women. Obes Res Clin Pract. 2006;30(10):1535–44.

    CAS  Google Scholar 

  29. Munro IA, Garg ML. Dietary supplementation with n-3 PUFA does not promote weight loss when combined with a very-low-energy diet. Br J Nutr. 2012;108(8):1466–74.

    Google Scholar 

  30. Munro IA, Garg ML. Prior supplementation with long chain omega-3 polyunsaturated fatty acids promotes weight loss in obese adults: a double-blinded randomised controlled trial. Food Funct. 2013;4(4):650–8.

    Article  CAS  PubMed  Google Scholar 

  31. Thorsdottir I, Tomasson H, Gunnarsdottir I, Gisladottir E, Kiely M, Parra MD, et al. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content. Food Funct. 2007;31(10):1560–6.

    CAS  Google Scholar 

  32. Kunesova M, Braunerova R, Hlavaty P, Tvrzicka E, Stankova B, Skrha J, et al. The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women. Physiol Res. 2006;55(1):63–72.

    CAS  PubMed  Google Scholar 

  33. Vasickova L, Stavek P, Suchanek P. Possible effect of DHA intake on body weight reduction and lipid metabolism in obese children. Neuro Endocrinol Lett. 2011;32(Suppl 2):64–7.

    CAS  PubMed  Google Scholar 

  34. Itoh M, Suganami T, Satoh N, Tanimoto-Koyama K, Yuan X, Tanaka M, et al. Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects. Arterioscler Thromb Vasc Biol. 2007;27(9):1918–25.

    Article  CAS  PubMed  Google Scholar 

  35. Yamada H, Yoshida M, Nakano Y, Suganami T, Satoh N, Mita T, et al. In vivo and in vitro inhibition of monocyte adhesion to endothelial cells and endothelial adhesion molecules by eicosapentaenoic acid. Arterioscler Thromb Vasc Biol. 2008;28(12):2173–9.

    Article  CAS  PubMed  Google Scholar 

  36. Huerta AE, Navas-Carretero S, Prieto-Hontoria PL, Martínez JA, Moreno-Aliaga MJ. Effects of alpha-lipoic acid and eicosapentaenoic acid in overweight and obese women during weigh loss. Obesity. 2014;23(2):313–21.

    Google Scholar 

  37. Flachs P, Rossmeisl M, Kopecky J. The effect of n-3 fatty acids on glucose homeostasis and insulin sensitivity. Physiol Res. 2014;63(Suppl 1):93–118.

    Google Scholar 

  38. Bragt MCE, Mensink RP. Comparison of the effects of n-3 long chain polyunsaturated fatty acids and fenofibrate on markers of inflammation and vascular function, and on the serum lipoprotein profile in overweight and obese subjects. Nutr Metab Cardiovasc Dis. 2012;22(11):966–73.

    Article  CAS  PubMed  Google Scholar 

  39. Chan DC, Nguyen MN, Watts GF, Ooi EM, Barrett PH. Effects of atorvastatin and n-3 fatty acid supplementation on VLDL apolipoprotein C-III kinetics in men with abdominal obesity. Am J Clin Nutr. 2010;91(4):900–6.

    Article  CAS  PubMed  Google Scholar 

  40. Dewell A, Marvasti FF, Harris WS, Tsao P, Gardner CD. Low- and high-dose plant and marine (n-3) fatty acids do not affect plasma inflammatory markers in adults with metabolic syndrome. J Nutr. 2011;141(12):2166–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kelley DS, Adkins Y, Woodhouse LR, Swislocki A, Mackey BE, Siegel D. Docosahexaenoic acid supplementation improved lipocentric but not glucocentric markers of insulin sensitivity in hypertriglyceridemic men. Metab Syndr Relat Disord. 2012;10(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  42. Lovegrove JA, Lovegrove SS, Lesauvage SV, Brady LM, Saini N, Minihane AM, et al. Moderate fish-oil supplementation reverses low-platelet, long-chain n-3 polyunsaturated fatty acid status and reduces plasma triacylglycerol concentrations in British Indo-Asians. Am J Clin Nutr. 2004;79(6):974–82.

    CAS  PubMed  Google Scholar 

  43. Skulas-Ray AC, Kris-Etherton PM, Harris WS, Heuvel JPV, Wagner PR, West SG. Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am J Clin Nutr. 2011;93(2):243–52.

    Article  CAS  PubMed  Google Scholar 

  44. Spencer M, Finlin BS, Unal R, Zhu B, Morris AJ, Shipp LR, et al. Omega-3 fatty acids reduce adipose tissue macrophages in human subjects with insulin resistance. Diabetes. 2013;62(5):1709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wong ATY, Chan DC, Barrett PHR, Adams LA, Watts GF. Effect of ω-3 Fatty acid ethyl esters on apolipoprotein b-48 kinetics in obese subjects on a weight-loss diet: a new tracer kinetic study in the postprandial state. J Clin Endocrinol Metab. 2014;99(8):E1427–35.

    Article  CAS  PubMed  Google Scholar 

  46. Wong AT, Chan DC, Barrett PH, Adams LA, Watts GF. Supplementation with n3 fatty acid ethyl esters increases large and small artery elasticity in obese adults on a weight loss diet. J Nutr. 2013;143(4):437–41.

    Article  CAS  PubMed  Google Scholar 

  47. Ramel A, Martinez A, Kiely M, Morais G, Bandarra NM, Thorsdottir I. Beneficial effects of long-chain n-3 fatty acids included in an energy-restricted diet on insulin resistance in overweight and obese European young adults. Diabetologia. 2008;51(7):1261–8.

    Article  CAS  PubMed  Google Scholar 

  48. Neff LM, Culiner J, Cunningham-Rundles S, Seidman C, Meehan D, Maturi J, et al. Algal docosahexaenoic acid affects plasma lipoprotein particle size distribution in overweight and obese adults. J Nutr. 2011;141(2):207–13.

    Article  CAS  PubMed  Google Scholar 

  49. Mori TA, Watts GF, Burke V, Hilme E, Puddey IB, Beilin LJ. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation. 2000;102(11):1264–9.

    Article  CAS  PubMed  Google Scholar 

  50. Browning LM, Krebs JD, Moore CS, Mishra GD, O’Connell MA, Jebb SA. The impact of long chain n-3 polyunsaturated fatty acid supplementation on inflammation, insulin sensitivity and CVD risk in a group of overweight women with an inflammatory phenotype. Diabetes Obes Metab. 2007;9(1):70–80.

    Article  CAS  PubMed  Google Scholar 

  51. Chan DC, Watts GF, Mori TA, Barrett PHR, Beilin LJ, Redgrave TG. Factorial study of the effects of atorvastatin and fish oil on dyslipidemia in visceral obesity. Eur J Clin Invest. 2002;32(6):429–36.

    Article  CAS  PubMed  Google Scholar 

  52. Chan DC, Watts GF, Nguyen MN, Barrett PHR. Factorial study of the effect of n–3 fatty acid supplementation and atorvastatin on the kinetics of HDL apolipoproteins A-I and A-II in men with abdominal obesity. Am J Clin Nutr. 2006;84(1):37–43.

    CAS  PubMed  Google Scholar 

  53. Chan DC, Watts GF, Mori TA, Barrett PHR, Redgrave TG, Beilin LJ. Randomized controlled trial of the effect of n–3 fatty acid supplementation on the metabolism of apolipoprotein B-100 and chylomicron remnants in men with visceral obesity. Am J Clin Nutr. 2003;77(2):300–7.

    CAS  PubMed  Google Scholar 

  54. Davidson MH, Maki KC, Kalkowski J, Schaefer EJ, Torri SA, Drennan KB. Effects of docosahexaenoic acid on serum lipoproteins in patients with combined hyperlipidemia: a randomized, double-blind, placebo-controlled trial. J Am Coll Nutr. 1997;16(3):236–43.

    Article  CAS  PubMed  Google Scholar 

  55. Kelley DS, Siegel D, Vemuri M, Mackey BE. Docosahexaenoic acid supplementation improves fasting and postprandial lipid profiles in hypertriglyceridemic men. Am J Clin Nutr. 2007;86(2):324–33.

    CAS  PubMed  Google Scholar 

  56. Nestel P, Shige H, Pomeroy S, Cehun M, Abbey M, Raederstorff D. The n−3 fatty acids eicosapentaenoic acid and docosahexaenoic acid increase systemic arterial compliance in humans. Am J Clin Nutr. 2002;76(2):326–30.

    CAS  PubMed  Google Scholar 

  57. Chan DC, Watts GF, Barrett PHR, Beilin LJ, Redgrave TG, Mori TA. Regulatory effects of HMG CoA reductase inhibitor and fish oils on apolipoprotein B-100 kinetics in insulin-resistant obese male subjects with dyslipidemia. Diabetes. 2002;51(8):2377–86.

    Article  CAS  PubMed  Google Scholar 

  58. Kelley DS, Siegel D, Vemuri M, Chung GH, Mackey BE. Docosahexaenoic acid supplementation decreases remnant-like particle-cholesterol and increases the (n-3) index in hypertriglyceridemic men. J Nutr. 2008;138(1):30–5.

    CAS  PubMed  Google Scholar 

  59. Bitzur R, Cohen H, Cohen T, Dror TW, Herzog Y, Lifshitz Y, et al. The metabolic effects of omega-3 plant sterol esters in mixed hyperlipidemic subjects. Cardiovasc Drugs Ther. 2010;24(5–6):429–37.

    Article  CAS  PubMed  Google Scholar 

  60. Skulas-Ray AC, Kris-Etherton PM, Harris WS, West SG. Effects of marine-derived omega-3 fatty acids on systemic hemodynamics at rest and during stress: a dose–response study. Ann Behav Med. 2012;44(3):301–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mori TA, Bao DQ, Burke V, Puddey IB, Beilin LJ. Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans. Hypertension. 1999;34(2):253–60.

    Article  CAS  PubMed  Google Scholar 

  62. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to EPA, DHA, DPA and maintenance of normal blood pressure (ID 502), maintenance of normal HDL-cholesterol concentrations (ID 515), maintenance of normal (fasting) blood concentrations of triglycerides (ID 517), maintenance of normal LDL-cholesterol concentrations (ID 528, 698) and maintenance of joints (ID 503, 505, 507, 511, 518, 524, 526, 535, 537) pursuant to Article 13(1) of Regulation (EC) No 1924/2006 on request from the European Commission. EFSA J 2009;7(9):1263[26-pp].

    Google Scholar 

  63. Kelley DS, Siegel D, Fedor DM, Adkins Y, Mackey BE. DHA supplementation decreases serum C-reactive protein and other markers of inflammation in hypertriglyceridemic men. J Nutr. 2009;139(3):495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Madden J, Williams CM, Calder PC, Lietz G, Miles EA, Cordell H, et al. The impact of common gene variants on the response of biomarkers of cardiovascular disease (CVD) risk to increased fish oil fatty acids intakes. Annu Rev Nutr. 2011;31:203–34.

    Article  CAS  PubMed  Google Scholar 

  65. Kris-Etherton PM, Harris WS, Appel LJ, AHA Nutrition Committee, American Heart Association. Omega-3 fatty acids and cardiovascular disease: new recommendations from the American Heart Association. Arterioscler Thromb Vasc Biol. 2003;23(2):151–2.

    Article  CAS  PubMed  Google Scholar 

  66. Miller PE, Van Elswyk M, Alexander DD. Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials. Am J Hypertens. 2014;27(7):885–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dyerberg J, Madsen P, Moller JM, Aardestrup I, Schmidt EB. Bioavailability of marine n-3 fatty acid formulations. Prostaglandins Leukot Essent Fatty Acids. 2010;83(3):137–41.

    Article  CAS  PubMed  Google Scholar 

  68. Weintraub H. Update on marine omega-3 fatty acids: management of dyslipidemia and current omega-3 treatment options. Atherosclerosis. 2013;230(2):381–9.

    Article  CAS  PubMed  Google Scholar 

  69. Hedengran A, Szecsi PB, Dyerberg J, Harris WS, Stender S. n-3 PUFA esterified to glycerol or as ethyl esters reduce non-fasting plasma triacylglycerol in subjects with hypertriglyceridemia: a randomized trial. Lipids. 2014;50(2):165–75.

    Google Scholar 

  70. Blair HA, Dhillon S. Omega-3 carboxylic acids (Epanova): a review of its use in patients with severe hypertriglyceridemia. Am J Cardiovasc Drugs. 2014;14(5):393–400.

    Article  CAS  PubMed  Google Scholar 

  71. Roth EM. Omega-3 carboxylic acids for hypertriglyceridemia. Expert Opin Pharmacother. 2015;16(1):123–33.

    Article  CAS  PubMed  Google Scholar 

  72. Berge K, Musa-Veloso K, Harwood M, Hoem N, Burri L. Krill oil supplementation lowers serum triglycerides without increasing low-density lipoprotein cholesterol in adults with borderline high or high triglyceride levels. Nutr Res. 2014;34(2):126–33.

    Article  CAS  PubMed  Google Scholar 

  73. Madden J, Carrero JJ, Brunner A, Dastur N, Shearman CP, Calder PC, et al. Polymorphisms in the CD36 gene modulate the ability of fish oil supplements to lower fasting plasma triacyl glycerol and raise HDL cholesterol concentrations in healthy middle-aged men. Prostaglandins Leukot Essent Fatty Acids. 2008;78(6):327–35.

    Article  CAS  PubMed  Google Scholar 

  74. Itariu BK, Zeyda M, Hochbrugger EE, Neuhofer A, Prager G, Schindler K, et al. Long-chain n-3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial. Am J Clin Nutr. 2012;96(5):1137–49.

    Article  CAS  PubMed  Google Scholar 

  75. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Claria J, Nguyen BT, Madenci AL, Ozaki CK, Serhan CN. Diversity of lipid mediators in human adipose tissue depots. Am J Physiol Cell Physiol. 2013;304(12):C1141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gonzalez-Periz A, Horrillo R, Ferre N, Gronert K, Dong B, Moran-Salvador E, et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J. 2009;23(6):1946–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hellmann J, Tang Y, Kosuri M, Bhatnagar A, Spite M. Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice. FASEB J. 2011;25(7):2399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Titos E, Rius B, Gonzalez-Periz A, Lopez-Vicario C, Moran-Salvador E, Martinez-Clemente M, et al. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol. 2011;187(10):5408–18.

    Article  CAS  PubMed  Google Scholar 

  80. Claria J, Dalli J, Yacoubian S, Gao F, Serhan CN. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J Immunol. 2012;189(5):2597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Spite M, Claria J, Serhan CN. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab. 2014;19(1):21–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Moreno-Aliaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huerta, A.E., Laiglesia, L.M., Martínez-Fernández, L., Moreno-Aliaga, M.J. (2016). Role of Omega-3 Fatty Acids in Metabolic Syndrome. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics