Skip to main content

Potential Promising Set of Plant–Microbe Interactions for the Revegetation of Open-Pit Mining and Smelting Areas in Brazil

  • Chapter
  • First Online:
Phytoremediation

Abstract

Mineral exploitation is an essential modern society activity, providing resources for industry and agriculture. However, mining has disturbing effects on the local environment. Environments under influence of mining are often devoid of natural means of biotic regeneration, requiring human intervention for the revegetation. Phytoremediation has proven to be a very promising technique for in situ rehabilitation of these environments. Plant–microbe interactions, especially arbuscular mycorrhizal and legume-rhizobia symbioses have real potential for phytoremediation approaches in the revegetation of mining and smelting contaminated soils. In Brazil, studies are ongoing on the role of both mycorrhizal and legume-rhizobia symbioses as plant growth promoters in contaminated soils. Promising results have provided valuable information to assist the next step that is to apply this biotechnology in field conditions. Although promising results already have been achieved from controlled conditions, more work is needed for a deep understanding of the mechanisms, as the expression/suppression of genes, in both plant and microorganisms, linked to the symbiosis and phytoprotection under trace elements contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hertwich E, van der Voet E, Suh S, Tukker A, Huijbregts M, Kazmierczyk P, Lenzen M, McNeely J, Moriguchi Y (2010) Assessing the environmental impacts of consumption and production: priority products and materials. United Nations Environment Programme. Available via UNEP. http://www.unep.org/resourcepanel/Portals/24102/PDFs/PriorityProductsAndMaterials_Report.pdf. Accessed 2 Oct 2015

  2. Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Article  Google Scholar 

  3. Vangronsveld J, Colpaert JV, van Tichelen KK (1996) Reclamation of a bare industrial area contaminated by non-ferrous metals: physicochemical and biological evaluation of the durability of soil treatment and revegetation. Environ Pollut 94:131–140

    Article  CAS  PubMed  Google Scholar 

  4. Dias-Júnior HE, Moreira FMS, Siqueira JO, Silva R (1998) Metais Pesados, Densidade e Atividade Microbiana em Solo Contaminado por Rejeitos de Indústria de Zinco. R Bras Ci Solo 22:631–640

    Article  Google Scholar 

  5. Santos JV, Rangel WM, Guimarães AA, Jaramillo PMD, Rufini M, Marra LM, López MV, Silva MAP, Soares CRFS, Moreira FMS (2013) Soil biological attributes in arsenic-contaminated gold minig sites after revegetation. Ecotoxicology 22:1526–1537

    Article  PubMed  CAS  Google Scholar 

  6. Souza FA, Silva EMR (1996) Micorrizas arbusculares na revegetação de áreas degradadas. In: Siqueira JO (ed) Avanços em fundamentos e aplicação de micorrizas. Universidade Federal de Lavras, Lavras, 290 p

    Google Scholar 

  7. Siqueira JO, Soares CRFS, Silva CA (2008) Matéria orgânica em solos de áreas degradadas. In: Santos GA, Silva LS, Canellas LP, Camargo FAO (eds) Fundamentos da Matéria Orgânica do Solo: ecossistemas tropicais e subtropicais, 2nd edn. Metrópole, Porto Alegre, 654 p

    Google Scholar 

  8. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  9. Weyens N, Beckers B, Schellingen K, Ceulemans R, Croes S, Janssen J, Haenen S, Witters N, Vangronsveld J (2013) Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment. Microbiol Biotechnol 6:288–299

    Article  CAS  Google Scholar 

  10. Henry JR (2000) An overview of the phytoremediation of lead and mercury. Available via USEPA. http://www.clu-in.org. Accessed 20 Mar 2010

  11. Departamento Nacional de Produção Mineral (DNPM) (2014) Informe Mineral Julho-Dezembro 2014. ISSN 0101-2053. Accessed 17 Aug 2015

    Google Scholar 

  12. Instituto Brasileiro de Mineiração (IBRAM) (2015) Informações sobre a economia mineral brasileira 2015. Available via IBRAM. http://www.ibram.org.br/. Accessed 5 Oct 2015

  13. Croes S, Weyens N, Janssen J, Vercampt H, Colpaert JV, Carleer R, Vangronsveld J (2013) Bacterial communities associated with Brassica napus L. grown on trace element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison. Microbiol Biotechnol 6:371–384

    Article  CAS  Google Scholar 

  14. Koch JM (2007) Alcoa’s mining and restoration process in South Western Australia. Restor Ecol 15:11–16

    Article  Google Scholar 

  15. Ohmoto H (2001) The evolution of O2 and CO2 in the atmosphere. In: General Meeting of the NASA Astrobiology Institute, pp 231–232

    Google Scholar 

  16. Holland HD (2003) The geologic history of seawater. Treatise on geochemistry, vol 6. Harvard University, Cambridge, pp. 583–625

    Google Scholar 

  17. Frimmel HE (2005) Archean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa. Earth Sci Rev 70:1–46

    Article  CAS  Google Scholar 

  18. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  19. Phipps CJ, Taylor TN (1996) Mixed arbuscular mycorrhizae from the Triassic of Antarctica. Mycologia 88:707–714

    Article  Google Scholar 

  20. Wang J, Zhao F, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Melloni R, Siqueira JO, Moreira FMS (2003) Arbuscular mycorrhizal fungi in soils of bauxite mining area under rehabilitation. Pesqui Agropecu Bras 38:267–276

    Article  Google Scholar 

  22. Agely A, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese Brake Fern (Pteris vittata L.). J Environ Qual 34:2181–2186

    Article  PubMed  CAS  Google Scholar 

  23. Klauberg-Filho O, Siqueira JO, Moreira FMS (2002) Vesicular arbuscular mycorrhizae fungi in soils polluted with heavy metals. R Bras Ci Solo 26:125–134

    Article  CAS  Google Scholar 

  24. Schneider J, Oliveira LM, Guilherme LRG, Stürmer SL, Soares CRFS (2012) Espécies tropicais de pteridófitas em associação com fungos micorrízicos arbusculares em solo contaminado com arsênio. Quim Nova 35:709–714

    Article  CAS  Google Scholar 

  25. Schneider J, Stürmer SL, Guilherme LRG, Guilherme LRG, Moreira FMS, Soares CRFS (2013) Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. J Hazard Mater 262:1105–1115

    Article  CAS  PubMed  Google Scholar 

  26. Meharg AA, Cairney JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112

    Article  CAS  Google Scholar 

  27. Melloni R, Nóbrega RSA, Moreira FMS, Siqueira JO (2004) Density and phenotypic diversity of endophytic nitrogen fixing bacteria in soils under rehabilitation after bauxite mining. R Bras Ci Solo 28:85–93

    Article  Google Scholar 

  28. Melloni R, Moreira FMS, Nóbrega RSA, Siqueira JO (2006) Efficiency and phenotypic diversity among nitrogen-fixing bacteria that nodulate cowpea [Vigna unguiculata (L.) WALP] and common bean (Phaseolus vulgaris L.) in bauxite-mined soils under rehabilitation. R Bras Ci Solo 30:235–246

    Article  CAS  Google Scholar 

  29. Magalhães FMM, Döbereiner J (1984) Ocorrência de Azospirillum amazonense em alguns ecossistemas da Amazônia. Rev Microbiol 15:246–252

    Google Scholar 

  30. Baldani JI, Azevedo MS, Reis VM, Teixeira KRS, Olivares FL, Goi SR, Baldani VLD, Döbereiner J (1999) Fixação biológica de nitrogênio em gramíneas: avanços e aplicações. In: Siqueira JO, Moreira FMS, Lopes AS, Guilherme LRG, Faquin V, Furtini Neto AE, Carvalho JG (eds) Inter-relação fertilidade, biologia do solo e nutrição de plantas. SBCS/UFLA/DCS, Viçosa, pp 621–666

    Google Scholar 

  31. Moreira FMS (1994) Fixação Biológica do nitrogênio em espécies arbóreas. In: Hungria M, Araújo RS (eds) Microrganismos de importância agrícola. Empresa Brasileira de Pesquisa Agropecuária, Brasília, pp 121–149

    Google Scholar 

  32. World Coal Institute-WCI (2005) The coal resource: a comprehensive overview of coal. WCI, London. Available via WCI. http://www.worldcoal.org. Accessed 2 Aug 2010

  33. Companhia de Pesquisa de Recursos Minerais (CPRM)—Serviço Geológico do Brasil. Available via Ministério de Minas e Energia. http://www.cprm.gov.br/publique/media/capXI_b.pdf. Accessed 8 Sept 2010

  34. SEMC. Available via SEMC. http://www.semc.rs.gov.br/. Accessed 15 May 2011

  35. Silva LFO, Vallejuelo SFO, Martinez-Arkarazo I, Castro K, Oliveira MLS, Sampaio CH, Brum IAS, Leão FB, Taffarel SR, Madariaga JM (2013) Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage. Sci Total Environ 447:169–178

    Article  CAS  PubMed  Google Scholar 

  36. Soares PSM, Santos MDC, Possa MV (2008) Carvão Brasileiro: Tecnologia e Meio Ambiente. CETEM, Rio de Janeiro, 289 p

    Google Scholar 

  37. Barth RC (1989) Avaliação da recuperação de áreas mineradas no Brasil. UFV, Viçosa. (Boletim técnico SIF, 1), 41 p

    Google Scholar 

  38. Sanchez JCD, Formoso MLL (1990) Utilização do carvão e meio ambiente. Fundação de Ciência e Tecnologia do Rio Grande do Sul, Porto Alegre (Boletim Técnico, 20), 34 p

    Google Scholar 

  39. Silveira NA, Silva RDR, Rubio J (2007) Técnicas para tratamento e aproveitamento de águas ácidas residuais da mineração de carvão. In: III Workshop Gestão e Reuso de Água na Indústria. Florianópolis, pp 1–6

    Google Scholar 

  40. Rubio J (1998) Aspectos ambientais no setor minero-metalúrgico. In: Luz AB, Possa MV, Almeida SL (eds) Tratamento de Minérios. CETEM/CNPq-MCT, pp 537–570

    Google Scholar 

  41. Rubio J (1998) Environmental applications of the flotation process. In: Castro SH, Vergara F, Sanchez M (eds) Effluent treatment in the mining industry. University of Concepción, Chile, pp 335–364

    Google Scholar 

  42. Sharpley AN, Weld JL, Beegle DB, Kleiman PJA, Gburek WJ, Moore JPA Jr, Mullins G (2003) Development of phosphorus indices for nutrient management planning strategies in the United States. J Soil Water Conserv 58:137–52

    Google Scholar 

  43. Japan International Cooperation Agency-JICA (1997) Interim report for the feasibility study on recuperation of mined out areas in south region of Santa Catarina in the Federative Republic Brazil. Fundação do Meio Ambiente, Criciúma, 248 p

    Google Scholar 

  44. Stahl PD, Perryman BL, Sharmasarkar S, Munn LC (2002) Topsoil stockpiling versus exposure to traffic: a case study on in situ uranium wellfields. Restor Ecol 10:129–137

    Article  Google Scholar 

  45. Gonçalves FC (2008) Efeito de plantas de cobertura sobre os atributos físicos de um solo construído na área de mineração de carvão de Candiota-RS após três anos (Dissertação de Mestrado) Universidade Federal de Pelotas, Pelotas 91 p

    Google Scholar 

  46. Pereira BA, Castro-Silva MA (2010) Rizobactérias formadoras de endósporos associadas a Tibouchina urvilleana de áreas impactadas por rejeitos da mineração de carvão. R Bras Ci Solo 34:563–567

    Article  Google Scholar 

  47. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  48. Marra LM, Oliveira SM, Soares CRFS, Moreira FMS (2011) Solubilisation of inorganic phosphates by inoculant strains from tropical legumes. Sci Agric 68:603–609

    CAS  Google Scholar 

  49. Marra LM, Soares CRFS, Oliveira SM, Ferreira PAA, Soares BL, Carvalho RF, Lima JM, Moreira FMS (2012) Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil 357:289–307

    Article  CAS  Google Scholar 

  50. Silva K, Cassetari AS, Lima AS, Brandt E, Pinnock E, Vandamme P, Moreira FMS (2012) Diazotrophic Burkholderia species isolated from the Amazon region exhibit phenotypical, functional and genetic diversity. Syst Appl Microbiol 35:253–262

    Article  PubMed  Google Scholar 

  51. Munees A, Mulugeta K (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  52. Oliveira-Longatti SM, Marra LM, Soares BL, Bomfeti CA, Silva K, Ferreira PAA, Moreira FMS (2014) Bacteria isolated from soils of the western Amazon and from rehabilitated bauxite-mining areas have potential as plant growth promoters. World J Microbiol Biotechnol 30:1239–1250

    Article  PubMed  CAS  Google Scholar 

  53. Carvalho FG, Selbach PA, Silva AJN (2008) Especificidade hospedeira de variantes Bradyrhizobium spp. em soja (cvs peking e clark), caupi e guandu. R Bras Ci Solo 32:2701–2708. doi:10.1590/S0100-06832008000700013

    Article  Google Scholar 

  54. Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  55. Patten C, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  56. Newsham KK, Fitter AH, Watkinson AR (1995) Multifuncionality and biodiversity in arbuscular mycorrhizae. Trends Ecol Evol 10:407–411

    Article  CAS  PubMed  Google Scholar 

  57. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. 3rd edn. Academic, New York, 800 p

    Google Scholar 

  58. Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  59. Soares CRFS, Carneiro MAC (2010) Micorrizas arbusculares na recuperação de áreas degradadas. In: Siqueira JO, Souza FA, Cardoso EJBN, Tsai SM (eds) Micorrizas: 30 anos de Pesquisa no Brasil. UFLA, Lavras, 716 p

    Google Scholar 

  60. Nogueira MA, Soares CRFS (2010) Micorrizas Arbusculares e Elementos-Traço. In: Siqueira JO, Souza FA, Cardoso EJBN, Tsai SM (eds) Micorrizas: 30 anos de Pesquisas no Brasil. Lavras, UFLA, pp 475–501

    Google Scholar 

  61. Silva S, Soares CRFS, Siqueira JO (2006) Fungos micorrízicos no crescimento e extração de metais pesados pela Brachiaria decumbens Stapf. em solo multicontaminado. Pesqui Agropecu Bras 41:1749–1757

    Article  Google Scholar 

  62. Truong PNV (2000) The global impact of vetiver grass technology on the environment. In: In: Proceedings of the 2nd International Vetiver Conference. Annals ICV2. Available via VETIVER. http://www.vetiver.org/TVN_IVC2/ICV2_index.htm. Accessed Nov 2015

  63. Vodnik D, Grcman H, Macek I, van Elteren JT, Kovacevic M (2008) The contribution of glomalin related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136

    Article  CAS  PubMed  Google Scholar 

  64. Rillig MC, Caldwell BA, Wösten HAB, Sollins P (2007) Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry 85:25–44

    Article  CAS  Google Scholar 

  65. González M, Carrillo R, Wright S, Nichols K (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  Google Scholar 

  66. Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496

    Article  CAS  Google Scholar 

  67. Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916

    Article  CAS  Google Scholar 

  68. Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agro ecosystem functioning. Can J Bot Rev 82:1016–1045

    Article  Google Scholar 

  69. Lovelock CE, Wright SF, Nichols KA (2004) Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: an example from a tropical rain forest soil. Soil Biol Biochem 36:1009–1012

    Article  CAS  Google Scholar 

  70. Ono FB, Guilherme LRG, Penido ES, Carvalho GS, Hale B, Toujaguez R, Bundschuh J (2012) Arsenic bioaccessibility in a gold mining area: a health risk assessment for children. Environ Geochem Health 34:457–465

    Article  CAS  PubMed  Google Scholar 

  71. Guilherme LRG, Ono FB, Cantoni M, Abreu CA, Coscione AR, Tappero R, Sparks D (2014) Bioaccessibility of arsenic in a gold mine area in Brazil: why is it so low? In: Litter MI, Nicolli HB, Meichtry M, Quici N, Bundschuh J, Bhattacharya P, Naidu R. One century of the discovery of Arsenicosis in Latin America (1914–2014) As 2014, pp 349–353

    Google Scholar 

  72. Ladeira ACQ, Ciminelli VST, Nepomuceno AL (2002) Seleção de solos para a imobilização de arsênio. Rev Esc Minas 55:215–221

    Article  Google Scholar 

  73. Silva SR, Procópio SO, Queiroz TFN, Dias LE (2004) Caracterização de rejeito de mineração de ouro para avaliação de solubilização de metais pesados e arsênio e revegetação local. R Bras Ci Solo 28:189–196

    Article  CAS  Google Scholar 

  74. Matchullat J, Borba RP, Deschamps E, Figueiredo BF, Gabrio T, Schwenk M (2000) Human and environmental contamination in the Iron Quadrangle, Brazil. Appl Geochem 15:181–190

    Article  Google Scholar 

  75. Borch T, Kretzschmar R, Kappler A, van Cappellen P, Ginder-Vogelm M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44:15–23

    Article  CAS  PubMed  Google Scholar 

  76. Young JPW (1994) Sex and the single cell: the population ecology and genetics of microbes. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Compositional and functional analysis of soil microbial communities. Wiley, Chichester, pp 101–107

    Google Scholar 

  77. Trannin ICB, Moreira FMS, Siqueira JO, Lima A (2001) Tolerance of Bradyrhizobium and Azorhizobium strains and isolates to copper, cadmium and zinc “in vitro”. R Bras Ci Solo 25:305–316

    Article  CAS  Google Scholar 

  78. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  PubMed  Google Scholar 

  79. Cabral L, Soares CRFS, Giachini AJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31:1655–1664

    Article  CAS  PubMed  Google Scholar 

  80. Rangel WM, Schneider J, Costa ETS, Soares CRFS, Guilherme LRG, Moreira FMS (2014) Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. Int J Phytoremediation 16:840–858

    Article  CAS  Google Scholar 

  81. Chen B, Xiao X, Zhu Y, Smith FA, Xie ZM, Smith SE (2007) The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci Total Environ 379:226–234

    Article  CAS  PubMed  Google Scholar 

  82. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil wet sieving and decanting. Trans Brit Mycol Soc 46:235–244

    Article  Google Scholar 

  83. Schneider J, Labory CRG, Rangel WM, Alves E, Guilherme LRG (2013) Anatomy and ultrastructure alterations of Leucena leucocephala (Lam.) inoculated with mycorrhizal fungi in response to arsenic-contaminated soil. J Hazard Mater 262:1245–1258

    Article  CAS  PubMed  Google Scholar 

  84. Soares CRFS, Siqueria JO (2008) Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fert Soils 44:833–841

    Article  CAS  Google Scholar 

  85. Schutzendubel A, Polie A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  CAS  PubMed  Google Scholar 

  86. Farshian S, Khara J, Malekzadeh P (2007) Effect of arbuscular mycorrhizal (G. ettunicatum) fungus on antioxidant enzymes activity under zinc toxicity in Lettuce plants. Pak J Biol Sci 10:1865–1869

    Article  CAS  PubMed  Google Scholar 

  87. Andrade SAL, Gratão PL, Azevedo RA, Silveira APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil increasing Cu concentrations. Environ Exp Bot 68:198–207

    Article  CAS  Google Scholar 

  88. Garg N, Kaur H (2013) Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) Millsp. Genotypes colonized by arbuscular mycorrhizal fungi. J Agron Crop Sci 199:118–133

    Article  CAS  Google Scholar 

  89. Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201–202:42–51

    Article  PubMed  CAS  Google Scholar 

  90. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  PubMed  Google Scholar 

  91. Gardea-Torresdeya JL, Peralta-Videa JR, Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810

    Article  CAS  Google Scholar 

  92. French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395

    Article  CAS  PubMed  Google Scholar 

  93. Xu P, Christie P, Liu Y, Zhang J, Li X (2008) The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Environ Pollut 156:215–220

    Article  CAS  PubMed  Google Scholar 

  94. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  95. Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  PubMed  Google Scholar 

  96. Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  97. Costa PS, Scholte LLS, Reis MP, Chaves AV, Oliveira PL, Itabayana LB, Suhadolnik MLS, Barbosa FAR, Chartone-Souza E, Nascimento AMA (2014) Bacteria and genes involved in arsenic speciation in sediment impacted by long-term gold mining. PLos One 9:e95655. doi:10.1371/journal.pone.0095655

    Article  PubMed  PubMed Central  Google Scholar 

  98. Franco AA, Dias LE, Faria SM, Campello EFC, Silva EMR (1995) Use of nodulate and mycorrhizal forest leguminous trees as agents of recovery and maintenance of soil life: a technological model. Oecol Bras 1:459–467

    Article  Google Scholar 

  99. Franco AA, Faria SM (1997) The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol Biochem 29:897–903

    Article  CAS  Google Scholar 

  100. Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crop Res 65:249–258

    Article  Google Scholar 

  101. Costa GS, Franco AA, Damasceno RN, Faria SM (2004) Nutrient input through litter in a degraded area revegetated with legume trees. R Bras Ci Solo 28:919–927

    Article  CAS  Google Scholar 

  102. Khan AG (2006) Mycorrhizoremediation: an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7:503–514

    Article  PubMed  PubMed Central  Google Scholar 

  103. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  104. Moreira FMS, Ferreira PAA, Vilela LAF, Carneiro MAC (2015) Symbioses of plants with rhizobia and mycorrhizal fungi in heavy metal-contaminated tropical soils. In: Sherameti I, Varma A (eds) Soil biology, 1st edn. Springer International Publishing, Berlin, pp 215–243

    Google Scholar 

  105. Ribeiro-Filho MR, Curi N, Siqueira JO, Motta PEF (1999) Heavy metals in soils from a waste area in a zinc processing industry. R Bras Ci Solo 23:453–464

    Article  CAS  Google Scholar 

  106. Soares CRFS, Accioly AMA, Siqueira JO, Moreira FMS (2002) Diagnóstico e reabilitação de área degradada pela contaminação por metais pesados. In: Simpósio Nacional sobre recuperação de áreas degradadas, 5, Belo Horizonte. Anais… DCF/UFLA/SOBRADE, Lavras, pp 56–82

    Google Scholar 

  107. Vangronsveld J, Cunningham SD (1998) Introduction to the concepts. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils. Georgetown, pp 1–15

    Google Scholar 

  108. Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated water and soil. In: Kruger EL, Anderson TA, Coats JL (eds) Phytoremediation of soil and water contaminants, vol 664. American Chemical Society, Washington, pp 2–17

    Chapter  Google Scholar 

  109. Turnau K, Kottke I, Oberwinkler F (1993) Element localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots treated with cadmium dust. New Phytol 123:313–324

    Article  CAS  Google Scholar 

  110. Griffiöen WAJ, Ietswaart JH, Ernerst WHO (1994) Mycorrhizal infection of an Agrostis capillaris population on copper contaminated soil. Plant Soil 158:83–89

    Article  Google Scholar 

  111. Nogueira AV (1996) As micorrizas e o excesso de metais. In: Siqueira JO (ed) Avanços em fundamentos e aplicação de micorrizas. Universidade Federal de Lavras, Lavras, pp 135–174

    Google Scholar 

  112. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  113. Siqueira JO, Pereira MAM, Simão JBP, Moreira FMS (1999) Efeito da formononetina (7 Hidroxi, 4′ metoxi Isoflavona) na colonização micorrízica e crescimento do milho em solo contendo excesso de metais pesados. R Bras Ci Solo 23:561–568

    Article  CAS  Google Scholar 

  114. Ietswaart JH, Griffiöen WAJ, Ernst WHO (1992) Seasonality of VAM infection in three populations of Agrostis capillaris (Graminae) on soil with or without heavy metal enrichment. Plant Soil 139:67–73

    Article  CAS  Google Scholar 

  115. Noyd RK, Pfleger FL, Russelle MP (1995) Interactions between native prairie grasses and indigenous arbuscular mycorrhizal fungi: implications for reclamation of taconite iron ore tailing. New Phytol 129:651–660

    Article  Google Scholar 

  116. Pawlowska TE, Blaszkowski J, Rühling A (1996) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505

    Article  Google Scholar 

  117. Sambandan K, Kannan K, Raman N (1992) Distribution of vesicular-arbuscular mycorrhizal fungi in heavy metal polluted soils of Tamil Nadu, India. J Environ Biol 13:159–167

    CAS  Google Scholar 

  118. Cabral L, Siqueira JO, Soares CRFS, Brasil JEPP (2010) Retenção de metais pesados em micélio de fungos micorrízicos arbusculares. Quim Nova 33:25–29

    Article  CAS  Google Scholar 

  119. Carrizo ME, Alesso CA, Cosentino D, Imhoff S (2015) Aggregation agents and structural stability in soils with different texture and organic carbon contents. Sci Agric 72:75–82

    Article  CAS  Google Scholar 

  120. Carneiro MAC, Siqueira JO, Moreira FMS (2001) Establishment of herbaceous plant in heavy metal contaminated soils inoculated with arbuscular mycorrhizal fungi. Pesqui Agropecu Bras 36:1443–1452

    Article  Google Scholar 

  121. Accioly AMA, Siqueira JO (2000) Contaminação química e biorremediação do solo. In: Novais RF, Alvarez VHV, Schaefer CEGR (eds) Tópicos em Ciência do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, MG, pp 299–352

    Google Scholar 

  122. Mostasso FL (1997) Crescimento e nodulação de leguminosas em solo contaminado com metais pesados (Dissertação de Mestrado). Universidade Federal de Lavras, Lavras, 50 p

    Google Scholar 

  123. Matsuda A, Moreira FMS, Siqueira JO (2002) Tolerance of rhizobia genera from different origins to zinc, copper and cadmium. Pesqui Agropecu Bras 37:343–355

    Article  Google Scholar 

  124. Matsuda A, Moreira FMS, Siqueira JO (2002) Survival of Bradyrhizobium and Azorhizobium in heavy metal contaminated soil. R Bras Ci Solo 26:249–256

    Article  CAS  Google Scholar 

  125. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov. isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735

    Article  CAS  PubMed  Google Scholar 

  126. Moulin L, Munive A, Dreyfus B, Masson CB (2001) Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411:948–950

    Article  CAS  PubMed  Google Scholar 

  127. Florentino LA, Moreira FMS (2009) Características simbióticas e fenotípicas de Azorhizobium doebereinerae, microissimbiote de Sesbania virgata. Rev Árvore 33:215–226

    Article  Google Scholar 

  128. Florentino LA, Jaramillo PMD, Silva KB, Silva JS, Oliveira SM, Moreira FMS (2012) Physiological and symbiotic diversity of Cupriavidus necator strains isolated from nodules of Leguminosae species. Sci Agric 69:247–258

    Article  Google Scholar 

  129. Silva K, Florentino LA, Silva KB, Evie B, Vandamme P, Moreira FMS (2012) Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst Appl Microbiol 35:175–182

    Article  PubMed  CAS  Google Scholar 

  130. Ferreira PAA, Bomfeti CA, Júnior RS, Soares BL, Soares CRFS, Moreira FMS (2012) Eficiência simbiótica de estirpes de Cupriavidus necator tolerantes a zinco, cádmio, cobre e chumbo. Pesqui Agropecu Bras 47:85–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley de Melo Rangel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Melo Rangel, W. et al. (2016). Potential Promising Set of Plant–Microbe Interactions for the Revegetation of Open-Pit Mining and Smelting Areas in Brazil. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-40148-5_18

Download citation

Publish with us

Policies and ethics