Skip to main content

Chemistry of PET Radiopharmaceuticals: Labelling Strategies

  • Chapter
  • First Online:
Basic Science of PET Imaging

Abstract

Positron emission tomography (PET) is an imaging technology developed to use compounds labelled with positron-emitting radioisotopes as molecular probes to image and measure biochemical processes of mammalian biology in vivo. Since this area is rapidly developing, the demand for rapid synthetic methods for radiolabelling the molecule of interest is one of the main challenges for the radiochemists. This chapter will provide information about the most common radiolabelling strategies as well as the more recent developments in the synthesis of PET radiopharmaceuticals labelled with fluorine-18, carbon-11, nitrogen-13 and oxygen-15. Since gallium-68 has gained enormous importance in radiopharmacy in the last 10 years, a chapter will highlight the important role of radiolabelling with gallium-68 in clinical radiopharmacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallagher BM, Ansari A, Atkins H, et al. Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro- D-glucose as radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med. 1977;18:990–6.

    CAS  PubMed  Google Scholar 

  2. Hamacher K, Coenen HH, Stöcklin G. Efficient stereospecific synthesis of no-carrier added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986;27:235–8.

    CAS  PubMed  Google Scholar 

  3. Vaalburg W, Kamphuis JA, Beerling-van der Molen HD, et al. An improved method for the cyclotron production of 13N-labelled ammonia. Int J Appl Radiat Isot. 1975;26:316–8.

    Article  CAS  PubMed  Google Scholar 

  4. Sobczyk DP, van Grondelle J, de Jong AM, et al. Production of chemically pure gaseous [13N]NH3 pulses for PEP studies using a modified DeVarda reduction. Appl Radiat Isot. 2002;57:201–7.

    Article  CAS  Google Scholar 

  5. Suzuki K, Yoshida Y, Shikano N, et al. Development of an automated system for the quick production of 13N-labeled compounds with high specific activity using anhydrous [13N]NH3. Appl Radiat Isot. 1999;50:1033–8.

    Article  CAS  Google Scholar 

  6. Berridge MS, Landmeier BJ. In-target production of [13N]ammonia: target design, products, and operating parameters. Appl Radiat Isot. 1993;44:1433–41.

    Article  CAS  PubMed  Google Scholar 

  7. Krasikova RN, Fedorova OS, Korsakov MV, et al. Improved [N-13] ammonia yield from the proton irradiation of water using methane gas. Appl Radiat Isot. 1999;51:395–401.

    Article  CAS  Google Scholar 

  8. Koehler L, Gagnon K, McQuarrie S, et al. Iodine-124: a promising positron emitter for organic PET chemistry. Molecules. 2010;15:2686–718.

    Article  CAS  PubMed  Google Scholar 

  9. Belov VV, Bonab AA, Fischman AJ, et al. Iodine-124 as a label for pharmacological PET imaging. Mol Pharm. 2011;8:736–47.

    Article  CAS  PubMed  Google Scholar 

  10. Ambrosini V, Campana D, Bodei L, et al. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med. 2010;51:669–73.

    Article  PubMed  Google Scholar 

  11. Virgolini I, Ambrosini V, Bomanji JB, et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging. 2010;37:2004–10.

    Article  PubMed  Google Scholar 

  12. Krohn KA, Mankoff DA, Muzi M, et al. True tracers: comparing FDG with glucose and FLT with thymidine. Nucl Med Biol. 2005;32:663–71.

    Article  CAS  PubMed  Google Scholar 

  13. Casella V, Ido T, Wolf AP, et al. Anhydrous F-18 labeled elemental fluorine for radiopharmaceutical preparation. J Nucl Med. 1980;21:750–7.

    CAS  PubMed  Google Scholar 

  14. Schlyer DJ. PET tracers and radiochemistry. Ann Acad Med Singapore. 2004;33:146–54.

    CAS  PubMed  Google Scholar 

  15. Nickles RJ, Daube ME, Ruth TJ. An 18O2 target for the production of [18F]F2. Int J Appl Radiat Isot. 1984;35:117–22.

    Article  CAS  Google Scholar 

  16. Berridge MS, Tewson TJ. Chemistry of fluorine-18 radiopharmaceuticals. Int J Rad Appl Instrum A. 1986;37:685–93.

    Article  CAS  PubMed  Google Scholar 

  17. Ogawa M, Hatano K, Oishi S, et al. Direct electrophilic radiofluorination of a cyclic RGD peptide for in vivo alpha(v)beta3 integrin related tumor imaging. Nucl Med Biol. 2003;30:1–9.

    Article  CAS  PubMed  Google Scholar 

  18. Diksic M, Farrokhzad S, Yamamoto YL, et al. Simple synthesis of 18F-labelled 5-fluorouracil using acetylhypofluorite. Int J Nucl Med Biol. 1984;11:141–2.

    Article  CAS  PubMed  Google Scholar 

  19. Oberdorfer F, Hofmann E, Maier-Borst W. Preparation of 18F-labelled N-fluoropyridinium triflate. J Label Compd Radiopharm. 1988;25:999–1005.

    Article  CAS  Google Scholar 

  20. Oberdorfer F, Hofmann E, Maier-Borst W. Preparation of new fluorine-18-labelled precursor. Int J Rad Appl Instrum. 1988;39:685–8.

    Article  CAS  Google Scholar 

  21. Satyamurthy N, Bida GT, Phelps ME, et al. Fluorine-18 labelled N-[18F] fluoro-N-alkylsulfonamides: novel reagents for mild and regioselective radiofluorination. Appl Radiat Isot. 1990;41:733–8.

    Article  CAS  Google Scholar 

  22. Dolle F, Demphe S, Hinne F, et al. 6-[18F]Fluoro-L-DOPA by radiofluorodestannylation: a short and simple synthesis of a new labelling precursor. J Label Compd Radiopharm. 1998;41:105–14.

    Article  CAS  Google Scholar 

  23. de Vries EFJ, Luurtsema G, Brüssermann M, et al. Fully automated synthesis module for the high yield one-pot preparation of 6-[18F]-Fluoro-L-DOPA. Appl Radiat Isot. 1997;51:389–94.

    Article  Google Scholar 

  24. Bergman J, Solin O. Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl Med Biol. 1997;24:677–83.

    Article  CAS  PubMed  Google Scholar 

  25. Cai L, Lu S, Pike VW. Chemistry with [18F]fluoride ion. Eur J Org Chem. 2008;2008:2853–73.

    Article  CAS  Google Scholar 

  26. Berridge MS, Apana SM, Hersh JM. Teflon radiolysis as the major source of carrier in fluorine-18. J Label Compd Radiopharm. 2009;52:543–8.

    Article  CAS  Google Scholar 

  27. Sun H, DiMagno SG. Fluoride relay: a new concept for the rapid preparation of anhydrous nucleophilic fluoride salts from KF. Chem Commun. 2007;5:528–9.

    Article  Google Scholar 

  28. Tewson TJ. Procedures, pitfalls and solutions in the production of [18F]2-deoxy-2-fluoro-D-glucose: a paradigm in the routine synthesis of fluorine-18 radiopharmaceuticals. Nucl Med Biol. 1989;16:533–61.

    CAS  Google Scholar 

  29. Kiesewetter DO, Eckelman WC, Cohen RM, et al. Syntheses and D2 receptor affinities of derivatives of spiperone containing aliphatic halogens. Int J Rad Appl Instrum A. 1986;37:1181–8.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang MR, Suzuki K. [18F]Fluoroalkyl agents: synthesis, reactivity and application for development of PET ligands in molecular imaging. Curr Top Med Chem. 2007;7:1817–28.

    Article  CAS  PubMed  Google Scholar 

  31. Iwata R, Pascali C, Bogni A, et al. [18F]fluoromethyl triflate, a novel and reactive [18F]fluoromethylating agent: preparation and application to the on-column preparation of [18F]fluorocholine. Appl Radiat Isot. 2002;57:347–52.

    Article  CAS  PubMed  Google Scholar 

  32. Grierson JR, Shields AF. Radiosynthesis of 3′-deoxy-3′-[(18)F]fluorothymidine: [(18)F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol. 2000;27:143–56.

    Article  CAS  PubMed  Google Scholar 

  33. Pascali C, Bogni A, Fugazza L, et al. Simple preparation and purification of ethanol-free solutions of 3′-deoxy-3′-[18F]fluorothymidine by means of disposable solid-phase extraction cartridges. Nucl Med Biol. 2012;39:540–50.

    Article  CAS  PubMed  Google Scholar 

  34. Romer J, Fuchtner F, Steinbach J, et al. Automated production of 16alpha-[18F]fluoroestradiol for breast cancer imaging. Nucl Med Biol. 1999;26:473–9.

    Article  CAS  PubMed  Google Scholar 

  35. Kiesewetter DO, Kilbourn MR, Landvatter SW, et al. Preparation of four fluorine-18- labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med. 1984;25:1212–21.

    CAS  PubMed  Google Scholar 

  36. Grierson JR, Link JM, Mathis CA, et al. A radiosynthesis of fluorine-18 fluoromisonidazole. J Nucl Med. 1989;30:343–50.

    CAS  PubMed  Google Scholar 

  37. McConathy J, Voll RJ, Yu W, et al. Improved synthesis of anti-[18F]FACBC: improved preparation of labelling precursor and automated radiosynthesis. Appl Radiat Isot. 2003;58:657–66.

    Article  CAS  PubMed  Google Scholar 

  38. Kim DW, Ahn DS, Oh YH, et al. A new class of SN2 reactions catalyzed by protic solvents: facile fluorination for isotopic labelling of diagnostic molecules. J Am Chem Soc. 2006;128:16394–7.

    Article  CAS  PubMed  Google Scholar 

  39. Kim DW, Jeong HJ, Lim ST, et al. Facile nucleophilic fluorination reactions using tert-alcohols as a reaction medium: significantly enhanced reactivity of alkali metal fluorides and improved selectivity. J Org Chem. 2008;73:957–62.

    Article  CAS  PubMed  Google Scholar 

  40. Lee SJ, Oh SJ, Chi DY, et al. Comparison of synthesis yields of 3′-deoxy-3′-[18F]-fluorothymidine by nucleophilic fluorination in various alcohol solvents. J Label Compd Radiopharm. 2008;51:80–2.

    Article  CAS  Google Scholar 

  41. De Grado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of 18Flabeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42:1805–14.

    Google Scholar 

  42. Kilbourn MR, Welch MJ, Dence CS, et al. Carrier added and no-carried added synthesis of [F-18]spiroperidol and [F-18]haloperidol. Int J Appl Radiat Isot. 1984;35:591–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kuhnast B, Hinnen F, Boisgard R, et al. Fluorine-18 labelling of oligonucleotides: prosthetic labelling at the 5′-end using the N-(4-[18F]fluorobenzyl)-2-bromoacetamide reagent. J Label Compd Radiopharm. 2003;46:1093–103.

    Article  CAS  Google Scholar 

  44. Kamlet AS, Neumann CN, Lee E, et al. Application of palladium-mediated 18F-fluorination to PET radiotracer development: overcoming hurdles to translation. PLoS One. 2013;8(3):e59187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ross TL, Ermert J, Hocke C, et al. Nucleophilic 18F-fluorination of heteroaromatic iodonium salts with no-carrier added [18F]fluoride. J Am Chem Soc. 2007;129:8018–25.

    Article  CAS  PubMed  Google Scholar 

  46. Di Magno SG, inventor, Nutech Ventures, assignee. Fluorination of aromatic ring systems. US Patent 8,604,213 B2. December 10, 2013.

    Google Scholar 

  47. Kuik WJ, Kema IP, Brouwers AH, et al. In vivo biodistribution of no-carrier-added 6-18F-fluoro-3,4-dihydroxy-L-phenylalanine (18F-DOPA), produced by a new nucleophilic substitution approach, compared with carrier-added 18F-DOPA, prepared by conventional electrophilic substitution. J Nucl Med. 2015;56:106–12.

    Article  CAS  PubMed  Google Scholar 

  48. Vaidyanathan G, Zalutsky MR. Synthesis of N-succinimidyl 4-[18F]fluorobenzoate, an agent for labelling proteins and peptides with 18F. Nat Protoc. 2006;1:1655–61.

    Article  CAS  PubMed  Google Scholar 

  49. Mäding P, Füchtner F, Wüst F. Module-assisted synthesis of the bifunctional labelling agent N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]SFB). Appl Radiat Isot. 2005;63:329–32.

    Article  PubMed  CAS  Google Scholar 

  50. Poethko T, Schottelius M, Thumshim G, et al. Two-step methodology for high-yield routine radiohalogenation of peptides: (18)F-labeled RGD and octreotide analogs. J Nucl Med. 2004;45:892–902.

    CAS  PubMed  Google Scholar 

  51. Li X, Link JM, Stekhova S, et al. Site-specific labelling of annexin V with F-18 for apoptosis imaging. Bioconjug Chem. 2008;19:1684–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chang YS, Jeong JM, Lee YS, et al. Preparation of 18F-human serum albumin: a simple and efficient protein labelling method with 18F using a hydrazone-formation method. Bioconjug Chem. 2005;16:1329–33.

    Article  CAS  PubMed  Google Scholar 

  53. Prante O, Einsiedel J, Haubner R, et al. 3,4,6-Tri-O-acetyl-2-deoxy-2-[18F]fluoro glucopyranosyl phenylthiosulfonate: a thiol-reactive agent for the chemoselective 18F-glycosylation of peptides. Bioconjug Chem. 2007;18:254–62.

    Article  CAS  PubMed  Google Scholar 

  54. Maschauer S, Prante O. Sweetening pharmaceutical radiochemistry by (18)F-fluoroglycosylation: a short review. Biomed Res Int. 2014;2014:214748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Marik J, Sutcliffe J. Click for PET: rapid preparation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett. 2006;47:6681–4.

    Article  CAS  Google Scholar 

  56. Huisgen R. 1.3-dipolare cycloadditionen. Angew Chem. 1963;13:604–37.

    Article  Google Scholar 

  57. Sirion U, Kim HI, Lee JH, et al. An efficient F-18 labeling method for PET study: huisgen 1,3-dipolar cycloaddition of bioactive substances and F-18-labeled compounds. Tetrahedron Lett. 2007;48:3953–7.

    Article  CAS  Google Scholar 

  58. Li ZB, Wu Z, Chen K, et al. Click chemistry for 18F-labeling of RGD peptides and microPET imaging of tumor integrin \( \alpha \)v\( \beta \)3 expression. Bioconjug Chem. 2007;18:1987–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gill HS, Marik J. Preparation of 18F-labeled peptides using the copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition. Nat Protoc. 2011;6:1718–25.

    Article  CAS  PubMed  Google Scholar 

  60. Lee CM, Jeong HJ, Kim DW, et al. The effect of fluorination of zinc oxide nanoparticles on evaluation of their biodistribution after oral administration. Nanotechnology. 2012;23:205102.

    Article  PubMed  CAS  Google Scholar 

  61. Maschauer S, Prante O. A series of 2-O-trifluoromethylsulfonyl- d-mannopyranosides as precursors for concomitant 18F-labeling and glycosylation by click chemistry. Carbohydr Res. 2009;344:753–61.

    Article  CAS  PubMed  Google Scholar 

  62. Hausner SH, Carpenter RD, Bauer N, et al. Evaluation of an integrin \( \alpha \)v\( \beta \)6-specific peptide labeled with [18F]fluorine by copper-free, strain-promoted click chemistry. Nucl Med Biol. 2013;40:233–9.

    Article  CAS  PubMed  Google Scholar 

  63. Li Z, Cai H, Hassink M, et al. Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. Chem Commun. 2010;46:8043–5.

    Article  CAS  Google Scholar 

  64. Kettenbach K, Schieferstein H, Ross TL. 18F-labeling using click cycloadditions. Biomed Res Int. 2014;2014:361329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Schirrmacher R, Bradtmoller G, Schirrmacher E, et al. 18F-Triorganofluorosilanes as tools for the development of silicon based 18F-radiopharmaceuticals: labelling chemistry for in vivo application. Angew Chem Int. 2006;45:6047–50.

    Article  CAS  Google Scholar 

  66. Schirrmacher E, Wängler B, Cypryk M, et al. Synthesis of p-(Di-tert-butyl [18F]fluorosilyl) benzaldehyde ([18F]SiFA-a) with high specific activity by isotopic exchange: a convenient labeling synthon for the 18F-labeling of N-aminooxy derivatized peptides. Bioconjug Chem. 2007;18:2085–9.

    Article  CAS  PubMed  Google Scholar 

  67. Rosa-Neto P, Wangler B, Iovkova L, et al. [(18)F]SiFA-isothiocyanate: a New highly effective radioactive labeling agent for lysine-containing proteins. Chembiochem. 2009;10:1321–4.

    Article  CAS  PubMed  Google Scholar 

  68. Wangler B, Quandt G, Iovkova L, et al. Kit-like 18F-labeling of proteins: synthesis of 4-(ditert-butyl[18F]fluoro-silyl)benzenethiol (Si[18F]FA-SH) labeled rat serum albumin for blood pool imaging with PET. Bioconjug Chem. 2009;20:317–21.

    Article  CAS  PubMed  Google Scholar 

  69. McBride WJ, Sharkey RM, Karacay H, et al. A novel method of 18F radiolabeling for PET. J Nucl Med. 2009;50:991–8.

    Article  CAS  PubMed  Google Scholar 

  70. Lang L, Eckelmann WC. One-step synthesis of 18F labeled [18F]-N-succinimidyl 4-(fluoromethyl) benzoate for protein labeling. Appl Radiat Isot. 1994;45:1155–63.

    Article  CAS  PubMed  Google Scholar 

  71. Lang L, Li W, Guo N, et al. Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconjug Chem. 2011;22:2415–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Laverman P, D’Souza CA, Eek A, et al. Optimized labelling of NOTA-conjugated octreotide with F-18. Tumour Biol. 2012;33:427–34.

    Article  CAS  PubMed  Google Scholar 

  73. Liu S, Liu H, Jiang H, et al. One-step radiosynthesis of 18F-AlF-NOTA-RGD2 for tumor angiogenesis PET imaging. Eur J Nucl Med Mol Imaging. 2011;38:1732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Varasteh Z, Aberg O, Velikyan I, et al. In vitro and in vivo evaluation of a (18)F-labeled high affinity NOTA conjugated bombesin antagonist as a PET ligand for GRPR-targeted tumor imaging. PLoS One. 2013;8(12), e81932.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Malik N, Zlatopolskiy B, Machulla HJ, et al. One pot radiofluorination of a new potential PSMA ligand [Al18F]NOTA-DUPA-Pep. J Label Compd Radiopharm. 2012;55:320–5.

    Article  CAS  Google Scholar 

  76. Lütje S, Franssen GM, Sharkey RM, et al. Anti-CEA antibody fragments labeled with [(18)F]AlF for PET imaging of CEA-expressing tumors. Bioconjug Chem. 2014;25:335–41.

    Article  PubMed  CAS  Google Scholar 

  77. Niu G, Lang L, Kiesewetter DO, et al. In vivo labeling of serum albumin for PET. J Nucl Med. 2014;55:1150–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Osman S, Lundkvist C, Pike VW, et al. Characterisation of the appearance of radioactive metabolites in monkey and human plasma from the 5-HT1A receptor radioligand, [carbonyl-11C]WAY-100635. Explanation of high signal contrast in PET and an aid to biomathematical modelling. Nucl Med Biol. 1998;25:215–23.

    Article  CAS  PubMed  Google Scholar 

  79. Antoni G, Kihlberg T, Langstrom B. Aspect on the synthesis of 11Clabelled compounds. In: Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals. Chichester: Wiley; 2003. p. 141–94.

    Google Scholar 

  80. Larsen P, Ulin J, Dahlstrom K, et al. Synthesis of [11C] Iodomethane by iodination of [11C]methane. Appl Radiat Isot. 1997;48:153–7.

    Article  CAS  Google Scholar 

  81. Crouzel C, Langstrom B, Pike VW, et al. Recommendations for practical production of [11C]methyl iodide. Appl Radiat Isot. 1997;38:601–3.

    Article  Google Scholar 

  82. Noguchi J, Suzuki K. Automated synthesis of the ultra high specific activity of [11C]Ro15-4513 and its application in an extremely low concentration region to an ARG study. Nucl Med Biol. 2003;30:335–43.

    Article  CAS  PubMed  Google Scholar 

  83. Andersson J, Truong P, Halldin C. In-target produced [11C]methane: increased specific radioactivity. Appl Radiat Isot. 2009;67:106–10.

    Article  CAS  PubMed  Google Scholar 

  84. Lodi F, Malizia C, Castellucci P, et al. Synthesis of oncological [11C]radiopharmaceuticals for clinical PET. Nucl Med Biol. 2012;39:447–60.

    Article  CAS  PubMed  Google Scholar 

  85. Matarrese M, Soloviev D, Todde S, et al. Preparation of [11C] radioligands with high specific radioactivity on a commercial PET tracer synthesizer. Nucl Med Biol. 2003;30:79–83.

    Article  CAS  PubMed  Google Scholar 

  86. Lodi F, Trespidi S, Di Pierro D, et al. A simple Tracerlab module modification for automated on-column [11C]methylation and [11C]carboxylation. Appl Radiat Isot. 2007;65:691–5.

    Article  CAS  PubMed  Google Scholar 

  87. Boschi S, Lodi F, Cicoria G, et al. Development of a modular system for the synthesis of PET [(11)C]labelled radiopharmaceuticals. Appl Radiat Isot. 2009;67:1869–73.

    Article  CAS  PubMed  Google Scholar 

  88. Lodi F, Carpinelli A, Malizia C, et al. Synthesis of [11C]-Meta-Hydroxyephedrine ([11C]MHED). In: Scott PJH, Hockley BG, Kilbourn MR, editors. Radiochemical syntheses, radiopharmaceuticals for positron emission tomography, vol. 1. Hoboken: Wiley; 2012. p. 191–8.

    Chapter  Google Scholar 

  89. Kealey S, Plisson C, Collier TL, et al. Microfluidic reactions using [11C]carbon monoxide solutions for the synthesis of a positron emission tomography radiotracer. Org Biomol Chem. 2011;9:3313–9.

    Article  CAS  PubMed  Google Scholar 

  90. Audrain H. Positron emission tomography (PET) and microfluidic devices: a breakthrough on the microscale? Angew Chem Int. 2007;46:1772–5.

    Article  CAS  Google Scholar 

  91. Pascali C, Bogni A, Iwata R, et al. [11C] methylation on a C18 Sep-Pak cartridge: a convenient way to produce [N-methyl-11C]choline. J Label Compd Radiopharm. 2000;43:195–203.

    Article  CAS  Google Scholar 

  92. Iwata R, Pascali C, Bogni A, et al. Simple loop method for the automated preparation of [11C]raclopride from [11C] methyl triflate. Appl Radiat Isot. 2001;55:17–22.

    Article  CAS  PubMed  Google Scholar 

  93. Soloviev D, Tamburella C. Captive solvent [11C]acetate synthesis in GMP conditions. Appl Radiat Isot. 2006;64:995–1000.

    Article  CAS  PubMed  Google Scholar 

  94. Langstrom B, Lunquvist H. The preparation of [11C]methyl iodide and its use in the synthesis of [11C]methyl-L-methionine. Int J Appl Radiat Isot. 1976;27:357–63.

    Article  CAS  PubMed  Google Scholar 

  95. Marazano C, Maziere M, Berger G, et al. Synthesis of methyl iodide-11C and formaldehyde-11C. Int J Appl Radiat Isot. 1977;28:49–52.

    Article  CAS  PubMed  Google Scholar 

  96. Link JM, Clark JC, Larsen P, et al. Production of [11C]methyl iodide by reaction of [11C]CH4 with I2. J Label Compd Radiopharm. 1995;37:76–8.

    Google Scholar 

  97. Jewett DM. A simple synthesis of [11C]methyl triflate. Appl Radiat Isot. 1992;43:1383–5.

    Article  CAS  Google Scholar 

  98. Dolle F, Emond P, Mavel S, et al. Synthesis, radiosynthesis and in vivo preliminary evaluation of [11C]LBT-999, a selective radioligand for the visualisation of the dopamine transporter with PET. Bioorg Med Chem. 2006;14:1115–25.

    Article  CAS  PubMed  Google Scholar 

  99. Nagren K, Halldin C, Müller L, et al. Comparison of [11C]methyl triflate and [11C]methyl iodide in the synthesis of PET radioligands such as [11C]beta-CIT and [11C]beta-CFT. Nucl Med Biol. 1995;22:965–79.

    Article  CAS  PubMed  Google Scholar 

  100. Pascali C, Bogni A, Iwata R, et al. High efficiency preparation of L-[S-methyl-11C]methionine by on-column [11C]methylation on C18 Sep-Pak. J Label Compd Radiopharm. 1999;42:715–24.

    Article  CAS  Google Scholar 

  101. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19.

    Article  CAS  PubMed  Google Scholar 

  102. Langer O, Nagren K, Dolle F, et al. Precursor synthesis and radiolabelling of the dopamine D-2 receptor ligand C-11 raclopride from C-11 methyl triflate. J Label Compd Radiopharm. 1999;42:1183–93.

    Article  CAS  Google Scholar 

  103. Suzuki K, Inoue O, Tamate K, et al. Production of 3-N-[11C]methylspiperone with high specific activity and high radiochemical purity for PET studies: suppression of its radiolysis. Appl Radiat Isot. 1990;41:593–9.

    Article  CAS  Google Scholar 

  104. Scott DJ, Stohler CS, Koeppe RA, et al. Time-course of change in [11C]carfentanil and [11C]raclopride binding potential after a nonpharmacological challenge. Synapse. 2007;61:707–14.

    Article  CAS  PubMed  Google Scholar 

  105. Pike VW, Halldin C, Crouzel C, et al. Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites – current status. Nucl Med Biol. 1993;20:503–25.

    Article  CAS  PubMed  Google Scholar 

  106. Jacobson O, Mishani E. [11C]-dimethylamine as a labeling agent for PET biomarkers. Appl Radiat Isot. 2008;66:188–93.

    Article  CAS  PubMed  Google Scholar 

  107. Hosoya T, Sumi K, Doi H, et al. Rapid methylation on carbon frameworks useful for the synthesis of 11CH3-incorporated PET tracers: Pd(0)-mediated rapid coupling of methyl iodide with an alkenyltributylstannane leading to a 1-methylalkene. Org Biomol Chem. 2006;4:410–5.

    Article  CAS  PubMed  Google Scholar 

  108. Pretze M, Große-Gehling P, Mamat C. Cross-coupling reactions as valuable tool for the preparation of PET radiotracers. Molecules. 2011;16:1129–65.

    Article  CAS  PubMed  Google Scholar 

  109. Eriksson J, Aberg O, Langstrom B. Synthesis of [11C]/[13C] acrylamides by palladium‐mediated carbonylation. Eur J Org Chem. 2007;2007:455–61.

    Article  CAS  Google Scholar 

  110. Barletta J, Karimi F, Langstrom B. Synthesis of [11C-carbonyl]hydroxyureas by a rhodium-mediated carbonylation reaction using [11C]carbon monoxide. J Label Compd Radiopharm. 2006;49:429–36.

    Article  CAS  Google Scholar 

  111. Langstrom B, Itsenko O, Rahman O. [11C]Carbon monoxide, a versatile and useful precursor in labelling chemistry for PET-ligand development. J Label Compd Radiopharm. 2007;50:794–810.

    Article  CAS  Google Scholar 

  112. Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med. 1989;30:187–93.

    CAS  PubMed  Google Scholar 

  113. Sörensen J, Valind S, Andersson LG. Simultaneous quantification of myocardial perfusion, oxidative metabolism, cardiac efficiency and pump function at rest and during supine bicycle exercise using 11C-acetate PET—a pilot study. Clin Physiol Funct Imaging. 2010;30:279–84.

    Article  PubMed  Google Scholar 

  114. Yu EY, Muzi M, Hackenbracht JA, et al. C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin Nucl Med. 2011;36:192–8.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Albrecht S, Buchegger F, Soloviev D, et al. (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging. 2007;34:185–96.

    Article  PubMed  Google Scholar 

  116. Park JW, Kim JH, Kim SK, et al. A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med. 2008;49:1912–21.

    Article  PubMed  Google Scholar 

  117. Huo L, Wu Z, Zhuang H, et al. Dual time point 11C-acetate PET imaging can potentially distinguish focal nodular hyperplasia from primary hepatocellular carcinoma. Clin Nucl Med. 2009;34:874–7.

    Article  PubMed  Google Scholar 

  118. Shibata H, Nomori H, Uno K, et al. 11C-acetate for positron emission tomography imaging of clinical stage IA lung adenocarcinoma: comparison with 18F -fluorodeoxyglucose for imaging and evaluation of tumor aggressiveness. Ann Nucl Med. 2009;23:609–16.

    Article  PubMed  Google Scholar 

  119. Liu RS, Chang CP, Guo WY, et al. 11C-acetate versus 18F-FDG PET in detection of meningioma and monitoring the effect of gamma-knife radiosurgery. J Nucl Med. 2010;51:883–91.

    Article  PubMed  Google Scholar 

  120. Machulla HJ, Stöcklin G, Kupfernagel C, et al. Comparative evaluation of fatty acids labeled with C-11, Cl-34m, Br-77, and I-123 for metabolic studies of the myocardium: concise communication. J Nucl Med. 1978;19:298–302.

    CAS  PubMed  Google Scholar 

  121. Runkle AC, Shao X, Tluczek LJ, et al. Automated production of [11C]acetate and [11C]palmitate using a modified GE Tracerlab FX(C-Pro). Appl Radiat Isot. 2011;69:691–8.

    Article  CAS  PubMed  Google Scholar 

  122. Matarrese M, Sudati F, Soloviev D, et al. Automation of [11C]acyl chloride syntheses using commercially available 11C-modules. Appl Radiat Isot. 2002;57:675–9.

    Article  CAS  PubMed  Google Scholar 

  123. McCarron JA, Turton DR, Pike VW, et al. Remotely controlled production of the 5-HT1A receptor radioligand, [carbonyl11C]WAY-100635, via 11C-carboxylation of an immobilized Grignard reagent. J Label Compd Radiopharm. 1996;38:943–53.

    Article  Google Scholar 

  124. Weber B, Westera G, Treyer V, et al. Constant-infusion H(2)15O PET and acetazolamide challenge in the assessment of cerebral perfusion status. J Nucl Med. 2004;45:1344–50.

    PubMed  Google Scholar 

  125. Vakil P, Lee JJ, Mouannes-Srour JJ, et al. Cerebrovascular occlusive disease: quantitative cerebral blood flow using dynamic susceptibility contrast MR imaging correlates with quantitative H2[15O] PET. Radiology. 2010;266:879–86.

    Article  Google Scholar 

  126. Berridge MS, Terris AH, Cassidy EH. Low-carrier production of [15O]oxygen, water and carbon monoxide. Appl Radiat Isot. 1990;41:1173–5.

    Article  CAS  Google Scholar 

  127. Clark JC, Crouzel C, Meyer GJ, et al. Current methodology for oxygen-15 production for clinical use. Appl Radiat Isot. 1987;38:597–600.

    Article  CAS  Google Scholar 

  128. VanNaemen J, Monclus M, Damhaut P, et al. Production, automatic delivery and bolus injection of [15O]water for positron emission tomography studies. Nucl Med Biol. 1996;23:413–6.

    Article  CAS  Google Scholar 

  129. Porenta G, Czernin J, Schelbert HR. Positron emission tomography of the heart. Bergmann SR, Sobel BE, editors. Mt. Kisco: Futura Publication; 1992, p. 153.

    Google Scholar 

  130. Gómez-Vallejo V, Gaja V, Gona KB, et al. Nitrogen-13: historical review and future perspectives. J Label Compd Radiopharm. 2014;57:244–54.

    Article  CAS  Google Scholar 

  131. Velikyan I. Prospective of 68Ga-radiopharmaceutical development. Theranostics. 2014;4:47–80.

    Article  CAS  Google Scholar 

  132. Lambrecht R, Sajjad M. Accelerator derived radionuclide generators. Radiochim Acta. 1988;43:171–9.

    Article  CAS  Google Scholar 

  133. Mirzadeh S, Lambrecht R. Radiochemistry of germanium. J Radioanal Nucl Chem. 1996;202:7–102.

    Article  CAS  Google Scholar 

  134. Roesch F, Riss PJ. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem. 2010;10:1633–68.

    Article  CAS  PubMed  Google Scholar 

  135. Rösch F. Past, present and future of 68Ge/68Ga generators. Appl Radiat Isot. 2013;76:24–30.

    Article  PubMed  CAS  Google Scholar 

  136. Meyer GJ, Mäcke HR, Schuhmacher J, et al. 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med. 2004;31:1097–104.

    Article  CAS  Google Scholar 

  137. Breeman WAP, de Jong M, de Blois E, et al. Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med. 2005;32:478–85.

    Article  CAS  Google Scholar 

  138. Zhernosekov KP, Filosofov DV, Baum RP, et al. Processing of generator produced 68Ga for medical application. J Nucl Med. 2007;48:1741–8.

    Article  CAS  PubMed  Google Scholar 

  139. Harris WR, Pecoraro V. Thermodynamic binding constants for gallium transferrin. Biochemistry. 1983;22:292–9.

    Article  CAS  PubMed  Google Scholar 

  140. Maecke HR, Hofmann M, Haberkorn U. 68Ga-labeled peptides in tumor imaging. J Nucl Med. 2005;46:172S–8.

    CAS  PubMed  Google Scholar 

  141. Antunes P, Ginj M, Zhang H, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.

    Article  CAS  PubMed  Google Scholar 

  142. Traub T, von Guggenberg E, Kendler D, et al. First experiences with Ga-68-DOTA-lanreotide PET in tumor patients. Nuklearmedizin. 2005;44:A198.

    Google Scholar 

  143. Baum R, Schmucking M, Wortmann R, et al. Receptor PET/CT using the Ga-68 labelled somatostatin analog DOTA-1-Nal3-octreotide (DOTA-NOC): clinical experience in 140 patients. Nuklearmedizin. 2005;44:A57.

    Google Scholar 

  144. Hofmann M, Oei M, Boerner AR, et al. Comparison of Ga-68-DOTATOC and Ga-68-DOTANOC for radiopeptide PET. Nuklearmedizin. 2005;44:A58.

    Google Scholar 

  145. Win Z, Rahman L, Murrell J, et al. The possible role of 68Ga-DOTATATE PET in malignant abdominal paraganglioma. Eur J Nucl Med Mol Imaging. 2006;33:506.

    Article  PubMed  Google Scholar 

  146. Clarke ET, Martell AE. Stabilities of trivalent metal ion complexes of the tetraacetate derivatives of 12-, 13-, and 14-membered tetraazamacrocycles. Inorg Chim Acta. 1992;190:37–46.

    Article  Google Scholar 

  147. Clarke E, Martell AE. Stabilities of the Fe(III), Ga(III) and In(III) chelates of N, N’, N”triaza cyclononane triacetic acid. Inorg Chim Acta. 1991;181:273–80.

    Article  CAS  Google Scholar 

  148. Eisenwiener KP, Prata MIM, Buschmann I, et al. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem. 2002;13:530–41.

    Article  CAS  PubMed  Google Scholar 

  149. Kataky R, Matthes KE, Nicholson PE, et al. Synthesis and binding properties of amide-functionalized polyaza macrocycles. J Chem Soc Perkin Trans 2: Phys Org Chem. 1990;8:1425–32.

    Article  Google Scholar 

  150. Andre JP, Maecke HR, Zehnder M, et al. 1,4,7-Triazacyclononane-1-succinic acid-4,7-diacetic acid (NODASA): a new bifunctional chelator for radio gallium labeling of biomolecules. Chem Commun. 1998;12:1301–2.

    Article  Google Scholar 

  151. Riss PJ, Kroll C, Nagel V, et al. NODAPA-OH and NODAPA-(NCS)n: synthesis, 68Ga-radiolabelling and in vitro characterisation of novel versatile bifunctional chelators for molecular imaging. Bioorg Med Chem Lett. 2008;18:5364–7.

    Article  CAS  PubMed  Google Scholar 

  152. Fani M, Del Pozzo L, Abiraj K, et al. PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference. J Nucl Med. 2011;52:1110–8.

    Article  CAS  PubMed  Google Scholar 

  153. Notni J, Hermann P, Havlícková J, et al. A triazacyclononane-based bifunctional phosphinate ligand for the preparation of multimeric 68Ga tracers for positron emission tomography. Chemistry. 2010;16:7174–85.

    Article  CAS  PubMed  Google Scholar 

  154. Simecek J, Zemek O, Hermann P, et al. A monoreactive bifunctional triazacyclononane phosphinate chelator with high selectivity for gallium-68. ChemMedChem. 2012;7:1375–8.

    Article  CAS  PubMed  Google Scholar 

  155. Notni J, Pohle K, Wester HJ. Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET. EJNMMI Res. 2012;2:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. De Blois E, Chan HS, Naidoo C, et al. Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides. Appl Radiat Isot. 2011;69:308–15.

    Article  PubMed  CAS  Google Scholar 

  157. Notni J, Simecek J, Wester HJ. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics:unique characteristics and applications. ChemMedChem. 2014;9:1107–15.

    Article  CAS  PubMed  Google Scholar 

  158. Eder M, Wangler B, Knackmuss S, et al. Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for (68)Ga-labeled small recombinant antibodies. Eur J Nucl Med Mol Imaging. 2008;35:1878–86.

    Article  CAS  PubMed  Google Scholar 

  159. Eder M, Knackmuss S, Le Gall F, et al. 68Ga labelled recombinant antibody variants for immuno-PET imaging of solid tumours. Eur J Nucl Med Mol Imaging. 2010;37:1397–407.

    Article  CAS  PubMed  Google Scholar 

  160. Kularatne SA, Zhou Z, Yang J, et al. Design, synthesis, and preclinical evaluation of prostate-specific membrane antigen targeted (99m)Tc-radioimaging agents. Mol Pharm. 2009;6:790–800.

    Article  CAS  PubMed  Google Scholar 

  161. Eder M, Schafer M, Bauder-Wust U, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23:688–97.

    Article  CAS  PubMed  Google Scholar 

  162. Afshar-Oromieh A, Zechmann CM, Malcher A, et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:11–20.

    Article  CAS  PubMed  Google Scholar 

  163. Afshar-Oromieh A, Avtzi E, Giesel FL, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:197–209.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Boschi PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boschi, S., Lodi, F. (2017). Chemistry of PET Radiopharmaceuticals: Labelling Strategies. In: Khalil, M. (eds) Basic Science of PET Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-40070-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40070-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40068-6

  • Online ISBN: 978-3-319-40070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics