Skip to main content

State of the Art in Air Pollution Control for Sinter Plants

  • Chapter
  • First Online:
Ironmaking and Steelmaking Processes
  • 2041 Accesses

Abstract

In integrated steel mills, the sinter plant is one of the major sources of emissions to the atmosphere, whereas the emissions of waste water and solid residues from the sinter plant are usually less significant. Therefore, state-of-the-art emission control technology for off-gas treatment is essential in order to comply with stringent emission limits. In the first part of this chapter, the sinter process is described, the resulting emissions are characterized and primary measures to reduce the off-gas volume and the emission of various pollutants are presented. The second part gives an overview of the state-of-the-art emission control technologies applied in sinter plants for the reduction of particulate emissions, emissions of SO2 and other acid gases, NOx emissions and emissions of dioxins. In the third part, methods of treating and recycling the residues from sinter plant off-gas cleaning are described. The last part describes some possible future developments in air pollution control for sinter plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn YC, Lee JK (2006) Physical, chemical, and electrical analysis of aerosol particles generated from industrial plants. J Aerosol Sci 37:187–202. doi:10.1016/j.jaerosci.2005.04.008

    Article  Google Scholar 

  • Anderson DR, Fisher R (2002) Sources of dioxins in the United Kingdom: the steel industry and other sources. Chemosphere 46:371–381

    Article  Google Scholar 

  • Anderson DR, Fisher R, Johnston S, Aries E, Fray TAT, Ooi TC (2007) Investigation into the effect of organic nitrogen compounds on the suppression of PCDD/Fs in iron ore sintering. Organohalogen Compd 69:2470–2473

    Google Scholar 

  • Ando H, Shiromaru N, Mochizuki Y (2011) Recent technology of moving electrode electrostatic precipitator. Int J Plasma Environ Sci Technol 5:130–134

    Google Scholar 

  • Aries E, Anderson DR, Fisher R, Fray TAT, Hemfrey D (2006) PCDD/F and “Dioxin-like” PCB emissions from iron ore sintering plants in the UK. Chemosphere 65:1470–1480. doi:10.1016/j.chemosphere.2006.04.020

    Article  Google Scholar 

  • Bastürk S, Delwig C, Ehler W, Hartig W, Hillmann C, Lüngen HB, Richter J, Schneider H, Zirngast J (2009) Technologien und Trends zur Abgasreinigung an Sinteranlagen. Stahl Eisen 129(5):51–59

    Google Scholar 

  • Bonte L, Buttiens K, Fournelle R, Merchiers G, Pieters M (2003) New coal injection plant for dioxin reduction at the Sidmar sinter plants. Stahl Eisen 123(1):47–50

    Google Scholar 

  • Boscolo M, Padoano E, Tommasi S (2008) Identification of possible dioxin emission reduction strategies in pre-existing iron ore sinter plants. Ironmak Steelmak 35:146–152. doi:10.1179/174328107X247815

    Article  Google Scholar 

  • Briggs AMW, Carcedo FG, Sedeno JV, Estrela MA (2004) Reductions in dust and gaseous emissions from sinter strands. Final Report. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Brunnbauer G, Ehler W, Zwittag E, Schmid H, Reidetschläger J, Kainz K (2006) Eposint – a new waste gas recirculation system concept for sinter plants. Szahl Eisen 126(9):41–46

    Google Scholar 

  • Buchwalder J, Hensel M, Richter J, Lychatz B (2008) Verminderung der Staubemissionen an der Sinteranlage von ArcelorMittal Eisenhüttenstadt. Stahl Eisen 128(9):111–117

    Google Scholar 

  • Cavaliere P, Perrone A (2013) Analysis of dangerous emissions and plant productivity during sintering ore operations. Ironmak Steelmak 40:9–24. doi:10.1179/1743281212Y.0000000019

    Article  Google Scholar 

  • Cavaliere P, Perrone A, Tafuro P, Primavera V (2011) Reducing emissions of PCDD/F in sintering plant: numerical and experimental analysis. Ironmak Steelmak 38:422–431. doi:10.1179/1743281211Y.0000000034

    Article  Google Scholar 

  • Chang MB, Chi KH, Chang SH, Yeh JW (2007) Destruction of PCDD/Fs by SCR from flue gases of municipal waste incinerator and metal smelting plant. Chemosphere 66:1114–1122. doi:10.1016/j.chemosphere.2006.06.020

    Article  Google Scholar 

  • Chang SH, Chi KH, Young CW, Hong BZ, Chang MB (2009) Effect of fly ash on catalytic removal of gaseous dioxins over V2O5-WO3 catalyst of a sinter plant. Environ Sci Technol 43:7523–7530

    Article  Google Scholar 

  • Chen Y-C, Tsai P-J, Mou J-L (2008) Determining optimal operation parameters for reducing PCDD/F emissions (I-TEQ values) from the iron ore sintering process by using the Taguchi experimental design. Environ Sci Technol 42:5298–5303

    Article  Google Scholar 

  • Chen Y-C, Tsai P-J, Mou J-L (2009) Reducing PAH emissions from the iron ore sintering process by optimizing its operation parameters. Environ Sci Technol 43:4459–4465

    Article  Google Scholar 

  • Debrincat D, Loo CE (2007) Factors influencing particulate emissions during iron ore sintering. ISIJ Int 47:652–658

    Article  Google Scholar 

  • Delwig C, Hartig W, Hoffmann M, Lüngen HB (2007) Developments in sinter technology. Stahl Eisen 127:S51–S66

    Google Scholar 

  • Eisen HP, Groß J, Hüsig K-R, Kersting K, Stedem K-H (1996) Reduction of dust emissions in German sinter plants. In: Proceedings of 3rd international ironmaking congress, Gent, pp 165–169

    Google Scholar 

  • Eisen HP, Hüsig K-R, Köfler A (2004) Construction of the exhaust recycling facilities at a sintering plant. Stahl Eisen 124(5):37–40

    Google Scholar 

  • Esezobor DE, Balogun SA (2006) Zinc accumulation during recycling of iron oxide wastes in the blast furnace. Ironmak Steelmak 33:419–425

    Article  Google Scholar 

  • European Commission (2012) Commission implementing decision of 28 February 2012 establishing the best available techniques (BAT) conclusions under Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions for iron and steel production; notified under document C(2012) 903, (2012/135/EU)

    Google Scholar 

  • European Parliament and Council of the European Union (2010) Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control)

    Google Scholar 

  • Finocchio E, Busca G, Notaro M (2006) A review of catalytic processes for the destruction of PCDD and PCDF from waste gases. Appl Catal B Environ 62:12–20. doi:10.1016/j.apcatb.2005.06.010

    Article  Google Scholar 

  • Fleischanderl A, Aichinger C (2009) New developments to achieve environmentally-friendly sinter production. In: Proceedings of the iron & steel technology conference 2009, vol I. Association for Iron & Steel Technology, Warrendale, pp 191–200

    Google Scholar 

  • Fleischanderl A, Neuhold R, Meierhofer G, Lanzerstorfer C (2006) MEROS® - improved dry-type gas-cleaning process for the treatment of sinter offgas. In: Proceedings of iron & steelmaking conference 2006, Linz, Paper No. 11.4, pp 1–6

    Google Scholar 

  • Fleischanderl A, Plattner T, Lanzerstorfer C (2007) Efficient reduction of PM 10/2.5 emissions at iron ore sinter plants. In: Proceedings of DustConf2007, Maastricht, S2/3, pp 1–12

    Google Scholar 

  • Grass N, Hartmann W, Klöckner M (2004) Application of different types of high-voltage supplies on industrial electrostatic precipitators. IEEE Trans Ind Appl 40:1513–1520

    Article  Google Scholar 

  • Grochowalski A, Lassen C, Holtzer M, Sadowski M, Hudyma T (2007) Determination of PCDDs, PCDFs, PCBs and HCB emissions from the metallurgical sector in Poland. Environ Sci Pollut Res 14:326–332. doi:10.1065/espr2006.05.303

    Article  Google Scholar 

  • Guerriero E, Lutri A, Mabilia R, Tomasi Scian MC, Rotatori M (2008) Polycyclic aromatic hydrocarbon emission profiles and removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant. J Air Waste Manag Assoc 58:1401–1406. doi:10.3155/1047-3289.58.11.1401

    Article  Google Scholar 

  • Guerriero E, Guarnieri A, Mosca S, Rosetti G, Rotatori M (2009) PCDD/F removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant. J Hazard Mater 172:1498–1504. doi:10.1016/j.jhazmat.2009.08.019

    Article  Google Scholar 

  • Guo B, Ren A, Gao J, Fang Z, Zhu T (2009) Sintered flue gas semidry processing desulphurization ash as cementing materials. In: Proceedings 3rd international conference on bioinformatics and biomedical engineering, Beijing, IEEE. doi:10.1109/ICBBE.2009.5163404

  • Hansmann T, Fontana P, Chiappero A, Both I, Roth J-L (2008) Technologies for optimum recycling of steelmaking residues. Stahl Eisen 128(5):29–36

    Google Scholar 

  • Hartig W, Hoffmann M, Reufer F, Weissert H (2007) Commissioning and first operational results of the new gas cleaning installation with the Paul Wurth Entrained Flow Absorber (EFA) at ROGESA No 3 sinter strand. In: Proceedings METEC Congress, Düsseldorf, Germany, pp 322–330, 11–15 Jun 2007

    Google Scholar 

  • Haynes WM (ed) (2012) CRC handbook of chemistry and physics, 93rd edn. Taylor & Francis, Boca Raton

    Google Scholar 

  • Heck RM (1999) Catalytic abatement of nitrogen oxides–stationary applications. Catal Today 53:519–523

    Article  Google Scholar 

  • Hofstadler K, Lanzerstorfer C, Gebert W (1999) Fine dedusting and waste gas cleaning of ore sintering plants with AIRFINE. Revue Metallurgie-CIT 96:1191–1196

    Google Scholar 

  • Hofstadler K, Friedacher A, Gebert W, Lanzerstorfer C (2000) Dioxin at sinter plants and electric arc furnace – emission profiles and removal efficiency. Organohalogen Compd 46:66–69

    Google Scholar 

  • Institute of Clean Air Companies (ed) (2009) White paper – selective catalytic reduction (SCR) control of NOx emissions from fossil fuel-fired electric power plants. Institute of Clean Air Companies, Arlington

    Google Scholar 

  • Iosif AM, Havelange O, DeMontard B, Ebert J (2015) Reduction of NOx emissions in sinter plants with catalytic bags filter. In: Proceedings METEC & 2nd ESTAD conference, Düsseldorf, Germany, 15–19 Jun 2015

    Google Scholar 

  • Kasai E, Aono T, Tomita Y, Takasaki M, Shiraishi N, Kitano S (2001a) Macroscopic behaviors of dioxins in the iron ore sintering plants. ISIJ Int 41:86–92

    Article  Google Scholar 

  • Kasai E, Hosotani Y, Kawaguchi T, Nushiro K, Aono T (2001b) Effect of additives on the dioxins emissions in the iron ore sintering process. ISIJ Int 41:93–97

    Article  Google Scholar 

  • Kasama S, Kitaguchi H, Yamamura Y, Watanabe K, Umezu A (2006) Analysis of exhaust gas visibility in iron ore sintering plant. ISIJ Int 46:1027–1032

    Article  Google Scholar 

  • Kazyuta VI, Mantula VD, Shvets MN (2004) Ecology and resource conservation: bag filters for cleaning sintering gases. Steel Translat 34(11):68–73

    Google Scholar 

  • Kim JR, Lee KJ, Hur NS (1997) Reduction of dust emission in sinter plant at Kwangyang Works. Curr Adv Mater Process 10:799

    Google Scholar 

  • Lanzerstorfer C (2015a) Mechanical properties of dust collected by dust separators in iron ore sinter plants. Environ Technol 36:3186–3193. doi:10.1080/09593330.2015.1055821

    Article  Google Scholar 

  • Lanzerstorfer C (2015b) Application of air classification for improved recycling of sinter plant dust. Resour Conserv Recycl 94:66–71. doi:10.1016/j.resconrec.2014.11.013

    Article  Google Scholar 

  • Lanzerstorfer C (2015c) Mechanical and flow properties of residue from dry desulphurization of iron ore sinter plant off-gas. Environ Eng Sci 32:970–976. doi:10.1089/ees.2015.0180

    Article  Google Scholar 

  • Lanzerstorfer C, Neuhold R (2015) Residues from single-stage dry de-dusting and desulphurization of sinter plant off-gas: enabling partial recirculation by classification. Int J Environ Sci Technol 12:2939–2946. doi:10.1007/s13762-014-0709-6

    Article  Google Scholar 

  • Lanzerstorfer C, Steiner D (2015) Characterization of sintering dust collected in the various fields of an electrostatic precipitator. Environ Technol. doi:10.1080/09593330.2015.1120787

    Google Scholar 

  • Lanzerstorfer C, Fleischanderl A, Plattner T, Ehler W, Zwittag E (2008) Emissionsminderung bei Eisenerz-Sinteranlagen. In: VDI-Bericht 2035. VDI Verlag, Düsseldorf, pp 161–170

    Google Scholar 

  • Lanzerstorfer C, Bamberger-Straßmayr B, Pilz K (2015a) Recycling of blast furnace dust in the iron ore sinter process: investigation of coke breeze substitution and the influence on off-gas emissions. ISIJ Int 55:758–764. doi:10.2355/isijinternational.55.758

    Article  Google Scholar 

  • Lanzerstorfer C, Xu Q, Neuhold R (2015b) Leaching of the residue from the dry off-gas de-dusting and desulphurization process of an iron ore sinter plant. Int J Miner Metall Mater 22:116–121. doi:10.1007/s12613-015-1051-9

    Article  Google Scholar 

  • Lee C-S, Charng C-T, Hong G-W (1999) DeNOx system in sinter plant at CSC. SEAISI Q 1999:44–50

    Google Scholar 

  • Lee JK, Hyun OC, Lee JE, Park SD (2001) High resistivity characteristics of the sinter dust generated from the steel plant. KSME Int J 15:630–638

    Google Scholar 

  • Leroy J, Ravier E, Wajs A (2007) New abatement technique of the atmospheric emissions of large sinter plant. First results of industrial pilot in Arcelor’s Fos-sur-mer. In: Proceedings DustConf2007, Maastricht, p.S2/2,1

    Google Scholar 

  • Leuwerink T, van der Panne A (2000) Reduced emissions from Hoogovens sinter and pellet plants. In: Seminar on sinter and pellets 1999, International Iron and Steel Institute, Committee on Raw Materials, Brussels, pp 176–183

    Google Scholar 

  • Leuwerink T, van der Panne A (2001) Operation results of emission optimized sintering with Airfine gas cleaning. Stahl Eisen 121:29–34

    Google Scholar 

  • Liu G, Zheng M, Du B, Nie Z, Zhang B, Liu W, Li C, Hu J (2012) Atmospheric emission of polychlorinated naphthalenes from iron ore sintering processes. Chemosphere 89:467–472. doi:10.1016/j.chemosphere.2012.05.101

    Article  Google Scholar 

  • Menad N, Tayibi H, Carcedo FG, Hernández A (2006) Minimization methods for emissions generated from sinter strands: a review. J Clean Prod 14:740–747. doi:10.1016/j.jclepro.2004.03.005

    Article  Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China (2012) Emission standard of air pollutants for sintering and pelletizing of iron and steel industry, GB28662-2012

    Google Scholar 

  • Mo C-L, Teo C-S, Hamilton I, Morrison J (1997) Admixing hydrocarbons in the raw mix to reduce NOx emission in iron ore sintering process. ISIJ Int 37:350–357

    Google Scholar 

  • Moore C, Deike R, Hillmann C (2003) Minimization of dioxin emissions during sintering of iron residues. In: Proceedings 3rd international conference on science & technology of ironmaking (ICSTI), Düsseldorf, Germany, pp 578–581, 16–20 Juni 2003

    Google Scholar 

  • Nakano M, Morii K, Sato T (2009) Factors accelerating dioxin emission from iron ore sintering machines. ISIJ Int 49:729–734

    Article  Google Scholar 

  • Ooi TC, Lu L (2011) Formation and mitigation of PCDD/Fs in iron ore sintering. Chemosphere 85:291–299. doi:10.1016/j.chemosphere.2011.08.020

    Article  Google Scholar 

  • Park KS, Seo Y-C, Lee SJ, Lee JH (2008) Emission and speciation of mercury from various combustion sources. Powder Technol 180:151–156. doi:10.1016/j.powtec.2007.03.006

    Article  Google Scholar 

  • Peng C, Guo Z-C, Zhang F-L (2008) Discovery of potassium chloride in the sintering dust by chemical and physical characterization. ISIJ Int 48:1398–1403

    Article  Google Scholar 

  • Peng C, Zhang F-L, Guo Z-C (2009) Separation and recovery of potassium chloride from sintering dust of ironmaking works. ISIJ Int 49:735–742

    Article  Google Scholar 

  • Putz B (2015) Operational experience in the field of sintering with the new installed DeNOx plant at voestalpine Linz. In: Proceedings METEC & 2nd ESTAD conference, Düsseldorf, Germany, 15–19 Jun 2015

    Google Scholar 

  • Quaß U, Fermann M, Bröker G (2004) The European dioxin air emission inventory project––final results. Chemosphere 54:1319–1327. doi:10.1016/S0045-6535(03)00251-0

    Article  Google Scholar 

  • Reidetschläger J, Stiasny H, Hötzinger S, Aichinger C, Fulgencio A (2012) Selective waste gas recirculation system for sintering plants. Stahl Eisen 132(1):25–30

    Google Scholar 

  • Remus R, Aguado-Monsonet MA, Roudier S, Sancho LD (2013) Best available techniques (BAT) reference document for iron and steel production, industrial emissions Directive 2010/75/EU, Integrated Pollution Prevention and Control. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Sakuragi J, Kubo S, Terada J, Mochida J (1994) Operation results of the exhaust gas recirculation system in Tobata No. 3 sinter plant. Revue Metallurgie-CIT 94:899–908

    Google Scholar 

  • Sammut ML, Noack Y, Rose J, Hazemann JL, Proux O, Depoux M, Ziebel A, Fiani E (2010) Speciation of Cd and Pb in dust emitted from sinter plant. Chemosphere 78:445–450. doi:10.1016/j.chemosphere.2009.10.039

    Article  Google Scholar 

  • Schofield N, Fisher R, Anderson DR (2004) Environmental challenges for the iron- and steelmaking process. Ironmak Steelmak 31:428–432

    Article  Google Scholar 

  • Schuster E, Zirngast J, Zellner H, Pössler J (2003) Improved flue-gas cleaning by bag filter at the sinter strand of voestalpine Stahl Donawitz. In: Proceedings METEC Congress, Düsseldorf, Germany, pp 574–577, 16–21 Jun 2003

    Google Scholar 

  • Shvets MN, Brekhunov AV, Kachmarchik YA, Yurchenko VN, Savenchuk SV (2003) Reconstruction of gas-purification systems for sintering machines. Steel Translat 33(2):9–12

    Google Scholar 

  • Sinha M, Ramna RV, Sinha S, Bose G (2010) Characterization of ESP dust sample from sinter plant. ISIJ Int 50:1719–1721

    Article  Google Scholar 

  • Smit A, Leuwerink THP, van der Panne ALJ, Gebert W, Lanzerstorfer C, Riepl H, Hofstadler K (1999) Reduction of dioxin emissions from Hoogovens sinter plant with the AIRFINE® system. Organohalogen Compd 40:441–444

    Google Scholar 

  • Tsai J-H, Lin K-H, Chen C-Y, Ding J-Y, Choa C-G, Chiang H-L (2007) Chemical constituents in particulate emissions from an integrated iron and steel facility. J Hazard Mater 147:111–119. doi:10.1016/j.jhazmat.2006.12.054

    Article  Google Scholar 

  • Tsai J-H, Lin K-H, Chen C-Y, Lai N, Ma S-Y, Chiang H-L (2008) Volatile organic compound constituents from an integrated iron and steel facility. J Hazard Mater 157:569–578. doi:10.1016/j.jhazmat.2008.01.022

    Article  Google Scholar 

  • Wang L-C, Lee W-J, Tsai P-J, Lee W-S, Chang-Chien G-P (2003a) Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants. Chemosphere 50:1123–1129

    Article  Google Scholar 

  • Wang T, Anderson DR, Thompson D, Clench M, Fisher R (2003b) Studies into the formation of dioxins in the sintering process used in the iron and steel industry. 1. Characterisation of isomer profiles in particulate and gaseous emissions. Chemosphere 51:585–594. doi:10.1016/S0045-6535(02)00784-1

    Article  Google Scholar 

  • Wang JB, Hung CH, Hung CH, Chang-Chien GP (2009) Polychlorinated dibenzo-p-dioxin and dibenzofuran emissions from an industrial park clustered with metallurgical industries. J Hazard Mater 161:800–807. doi:10.1016/j.jhazmat.2008.04.026

    Article  Google Scholar 

  • Weiss W (1998) Maßnahmen zur Verbesserung der Entstaubung einer Eisenerzsinteranlage mit nachfolgenden Untersuchungen zur Minderung der PADD/PCDF-Emissionen, Stahlwerke Bremen

    Google Scholar 

  • Wisse AM (2014) Installation von Gewebefiltern an der Sinteranlage von Tata Steel in IJmuiden. Stahl Eisen 134(3):41–50

    Google Scholar 

  • Xhrouet C, De Pauw E (2003) Prevention of dioxins de novo formation by ethanolamines. Environ Chem Lett 1:51–56

    Article  Google Scholar 

  • Xhrouet C, De Pauw E (2004) Formation of PCDD/Fs in the sintering process: influence of the raw materials. Environ Sci Technol 38:4222–4226

    Article  Google Scholar 

  • Xhrouet C, Nadin C, De Pauw E (2002) Amines compounds as inhibitors of PCDD/F de novo formation on sintering process fly ash. Environ Sci Technol 36:2760–2765

    Article  Google Scholar 

  • Xu S, Liu J, Song M (2012) Water-washing of iron-ore sintering gas cleaning residue for beneficial reutilization as secondary construction material. Procedia Environ Sci 16:244–252

    Article  Google Scholar 

  • Yu Z, Li Q, Xu H, Lin C (2009) Design and application of the Dry-FGD process in sanming steel No. 2 sintering plant. In: Yan K (ed) Electrostatic precipitation - 11th international conference on electrostatic precipitation. Springer, Berlin, pp 620–623

    Google Scholar 

  • Zhan G, Guo Z-C (2013) Water leaching kinetics and recovery of potassium salt from sintering dust. Trans Nonferrous Met Soc China 23:3770–3779

    Article  Google Scholar 

Download references

Acknowledgements

Translation of the document GB28662-2012 from Chinese by Mrs. Xu Qi and proofreading by Mr. Peter Orgill is gratefully acknowledged. The author also gratefully acknowledges the helpful suggestions of the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Lanzerstorfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lanzerstorfer, C. (2016). State of the Art in Air Pollution Control for Sinter Plants. In: Cavaliere, P. (eds) Ironmaking and Steelmaking Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-39529-6_18

Download citation

Publish with us

Policies and ethics