Skip to main content

Role of the Extracellular Matrix in Tumor Stroma: Barrier or Support?

  • Chapter
  • First Online:
Biomarkers of the Tumor Microenvironment

Abstract

Extensive evidence exists to functionally implicate stromal cancer-associated fibroblasts in tumor progression. Data from experimental cancer models has questioned the exclusive tumor-supportive function of the tumor stroma and suggested that the stroma might also act as a barrier to inhibit tumor metastasis. With consideration of this shift in dogma, we discuss the role of a specific part of the tumor stroma, the insoluble extracellular matrix (ECM), in tumor growth and spread. We summarize data from experimental tumor models on the role of fibrillar collagens, the fibronectin EDA splice form, proteoglycans, and the matricellular proteins, periostin and tenascins, which are all major components of the tumor stroma. In addition to the composition of the ECM being able to regulate tumorigenesis via integrin-mediated signaling, recent data indicate that the stiffness of the ECM also significantly impacts tumor growth and progression. These two properties add to the complexity of tumor-stroma interactions and have significant implications for gene regulation, matrix remodeling, and tumor metastasis. The role of the tumor stroma is thus extremely complex and highlights the importance of relating findings to tumor-type-, tissue-, and stage-specific effects in addition to considering inter-tumor and intra-tumor heterogeneity. Further work is needed to determine the relative contribution of different ECM proteins to the tumor-supporting and tumor-inhibiting roles of the tumor stroma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lu N, Karlsen TV, Reed RK, et al. Fibroblast alpha11beta1 integrin regulates tensional homeostasis in fibroblast/A549 carcinoma heterospheroids. PLoS One. 2014;9:e103173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Osterholm C, Lu N, Liden A, et al. Fibroblast EXT1-levels influence tumor cell proliferation and migration in composite spheroids. PLoS One. 2012;7:e41334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ohlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med. 2014;211:1503–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139:891–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weaver VM. The microenvironment matters. Mol Biol Cell. 2014;25:3254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeltz C, Gullberg D. Post-translational modifications of integrin ligands as pathogenic mechanisms in disease. Matrix Biol. 2014;40:5–9.

    Article  CAS  PubMed  Google Scholar 

  7. Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32:623–42.

    Article  CAS  PubMed  Google Scholar 

  8. Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cirri P, Chiarugi P. Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res. 2011;1:482–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Östman A, Augsten M. Cancer-associated fibroblasts and tumor growth – bystanders turning into key players. Curr Opin Genet Dev. 2009;19:67–73.

    Article  PubMed  CAS  Google Scholar 

  11. Hu Y, Yan C, Mu L, et al. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One. 2015;10:e0125625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Eberlein C, Rooney C, Ross SJ, et al. E-Cadherin and EpCAM expression by NSCLC tumour cells associate with normal fibroblast activation through a pathway initiated by integrin alphavbeta6 and maintained through TGFbeta signalling. Oncogene. 2014;34:704–16.

    Article  PubMed  CAS  Google Scholar 

  13. Eberlein C, Kendrew J, Mcdaid K, et al. A human monoclonal antibody 264RAD targeting alphavbeta6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo. Oncogene. 2013;32:4406–16.

    Article  CAS  PubMed  Google Scholar 

  14. Henderson NC, Arnold TD, Katamura Y, et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med. 2013;19:1617–24.

    Article  CAS  PubMed  Google Scholar 

  15. Hinz B. The extracellular matrix and transforming growth factor-beta1: tale of a strained relationship. Matrix Biol. 2015;47:54–65.

    Article  CAS  PubMed  Google Scholar 

  16. Klingberg F, Chow ML, Koehler A, et al. Prestress in the extracellular matrix sensitizes latent TGF-beta1 for activation. J Cell Biol. 2014;207:283–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reed NI, Jo H, Chen C, et al. The alphavbeta1 integrin plays a critical in vivo role in tissue fibrosis. Sci Transl Med. 2015;7:288ra279.

    Article  CAS  Google Scholar 

  18. Gaggioli C, Hooper S, Hidalgo-Carcedo C, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9:1392–400.

    Article  CAS  PubMed  Google Scholar 

  19. Sanz-Moreno V, Gaggioli C, Yeo M, et al. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell. 2011;20:229–45.

    Article  CAS  PubMed  Google Scholar 

  20. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25:719–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kramann R, Schneider RK, Dirocco DP, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015;16:51–66.

    Article  CAS  PubMed  Google Scholar 

  24. Rinkevich Y, Walmsley GG, Hu MS, et al. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science. 2015;348:aaa2151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Neesse A, Algul H, Tuveson DA, et al. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut. 2015;64:1476–84.

    Article  CAS  PubMed  Google Scholar 

  26. Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3:a004978.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rubashkin MG, Ou G, Weaver VM. Deconstructing signaling in three dimensions. Biochemistry. 2014;53:2078–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Egeblad M, Rasch MG, Weaver VM. Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol. 2010;22:697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dvorak HF. Tumors: wounds that do not heal-redux. Cancer Immunol Res. 2015;3:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.

    Article  CAS  PubMed  Google Scholar 

  31. Merkel JR, Dipaolo BR, Hallock GG, et al. Type I and type III collagen content of healing wounds in fetal and adult rats. Proc Soc Exp Biol Med. 1988;187:493–7.

    Article  CAS  PubMed  Google Scholar 

  32. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–80.

    Article  CAS  PubMed  Google Scholar 

  33. Zeltz C, Gullberg D. The integrin-collagen connection – a glue for tissue repair? J Cell Sci. 2016;129:653–64.

    Article  CAS  PubMed  Google Scholar 

  34. Zeltz C, Orgel J, Gullberg D. Molecular composition and function of integrin-based collagen glues-introducing COLINBRIs. Biochim Biophys Acta. 2014;1840:2533–48.

    Article  CAS  PubMed  Google Scholar 

  35. Abbonante V, Gruppi C, Rubel D, et al. Discoidin domain receptor 1 protein is a novel modulator of megakaryocyte-collagen interactions. J Biol Chem. 2013;288:16738–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Staudinger LA, Spano SJ, Lee W, et al. Interactions between the discoidin domain receptor 1 and beta1 integrin regulate attachment to collagen. Biology Open. 2013;2:1148–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Xu H, Bihan D, Chang F, et al. Discoidin domain receptors promote alpha1beta1- and alpha2beta1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLoS One. 2012;7:e52209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cox TR, Erler JT. Molecular pathways: connecting fibrosis and solid tumor metastasis. Clin Cancer Res. 2014;20:3637–43.

    Article  CAS  PubMed  Google Scholar 

  39. Dufort CC, Paszek MJ, Weaver VM. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol. 2011;12:308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14:430–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Malik R, Lelkes PI, Cukierman E. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol. 2015;33:230–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller BW, Morton JP, Pinese M, et al. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Mol Med. 2015;7:1063–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

    Article  CAS  PubMed  Google Scholar 

  44. Cooke ME, Sakai T, Mosher DF. Contraction of collagen matrices mediated by a2b1A and avb3 integrins. J Cell Sci. 2000;113:2375–83.

    CAS  PubMed  Google Scholar 

  45. Schulz JN, Zeltz C, Sorensen IW, et al. Reduced granulation tissue and wound strength in the absence of alpha11beta1 integrin. J Invest Dermatol. 2015;135:1435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gullberg D, Tingstrom A, Thuresson AC, et al. b1 integrin-mediated collagen gel contraction is stimulated by PDGF. Exp Cell Res. 1990;186:264–72.

    Article  CAS  PubMed  Google Scholar 

  47. Jokinen J, Dadu E, Nykvist P, et al. Integrin-mediated cell adhesion to type I collagen fibrils. J Biol Chem. 2004;279:31956–63.

    Article  CAS  PubMed  Google Scholar 

  48. Barczyk MM, Lu N, Popova SN, et al. Alpha11beta1 integrin-mediated MMP-13-dependent collagen lattice contraction by fibroblasts: evidence for integrin-coordinated collagen proteolysis. J Cell Physiol. 2013;228:1108–19.

    Article  CAS  PubMed  Google Scholar 

  49. Ravanti L, Heino J, Lopez-Otin C, et al. Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase. J Biol Chem. 1999;274:2446–55.

    Article  CAS  PubMed  Google Scholar 

  50. Provenzano PP, Eliceiri KW, Keely PJ. Shining new light on 3D cell motility and the metastatic process. Trends Cell Biol. 2009;19:638–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brisson BK, Mauldin EA, Lei W, et al. Type III collagen directs stromal organization and limits metastasis in a murine model of breast cancer. Am J Pathol. 2015;185:1471–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nistico P, Bissell MJ, Radisky DC. Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol. 2012;4:a011908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Radisky D, Muschler J, Bissell MJ. Order and disorder: the role of extracellular matrix in epithelial cancer. Cancer Investig. 2002;20:139–53.

    Article  Google Scholar 

  54. Smith BN, Bhowmick NA. Role of EMT in metastasis and therapy resistance. J Clin Med. 2016;5:17.

    Article  PubMed Central  Google Scholar 

  55. Provenzano PP, Inman DR, Eliceiri KW, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Xiong G, Deng L, Zhu J, et al. Prolyl-4-hydroxylase alpha subunit 2 promotes breast cancer progression and metastasis by regulating collagen deposition. BMC Cancer. 2014;14:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chen Y, Terajima M, Yang Y, et al. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma. J Clin Invest. 2015;125:1147–62.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Montgomery AM, Reisfeld RA, Cheresh DA. Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci U S A. 1994;91:8856–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Assent D, Bourgot I, Hennuy B, et al. A membrane-type-1 matrix metalloproteinase (MT1-MMP)-discoidin domain receptor 1 axis regulates collagen-induced apoptosis in breast cancer cells. PLoS One. 2015;10:e0116006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Maquoi E, Assent D, Detilleux J, et al. MT1-MMP protects breast carcinoma cells against type I collagen-induced apoptosis. Oncogene. 2011;31:480–93.

    Article  PubMed  CAS  Google Scholar 

  61. Nielsen BS, Egeblad M, Rank F, et al. Matrix metalloproteinase 13 is induced in fibroblasts in polyomavirus middle T antigen-driven mammary carcinoma without influencing tumor progression. PLoS One. 2008;3:e2959.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Perry SW, Schueckler JM, Burke K, et al. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells. BMC Cancer. 2013;13:411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Krane SM, Byrne MH, Lemaitre V, et al. Different collagenase gene products have different roles in degradation of type I collagen. J Biol Chem. 1996;271:28509–15.

    Article  CAS  PubMed  Google Scholar 

  64. Romanic AM, Adachi E, Kadler KE, et al. Copolymerization of pNcollagen III and collagen I. pNcollagen III decreases the rate of incorporation of collagen I into fibrils, the amount of collagen I incorporated, and the diameter of the fibrils formed. J Biol Chem. 1991;266:12703–9.

    CAS  PubMed  Google Scholar 

  65. Lebert DC, Squirrell JM, Rindy J, et al. Matrix metalloproteinase 9 modulates collagen matrices and wound repair. Development. 2015;142:2136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Herchenhan A, Uhlenbrock F, Eliasson P, et al. Lysyl oxidase activity is required for ordered collagen fibrillogenesis by tendon cells. J Biol Chem. 2015;290:16440–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol. 2009;185:11–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wolf K, Te Lindert M, Krause M, et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol. 2013;201:1069–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nishioka T, Eustace A, West C. Lysyl oxidase: from basic science to future cancer treatment. Cell Struct Funct. 2012;37:75–80.

    Article  CAS  PubMed  Google Scholar 

  70. Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4:165–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cox TR, Rumney RM, Schoof EM, et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature. 2015;522:106–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oskarsson T, Acharyya S, Zhang XH, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med. 2011;17:867–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Oskarsson T, Massague J. Extracellular matrix players in metastatic niches. EMBO J. 2012;31:254–6.

    Article  CAS  PubMed  Google Scholar 

  75. Wilgus ML, Borczuk AC, Stoopler M, et al. Lysyl oxidase: a lung adenocarcinoma biomarker of invasion and survival. Cancer. 2011;117:2186–91.

    Article  CAS  PubMed  Google Scholar 

  76. Navab R, Strumpf D, To C, et al. Integrin alpha11beta1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer. Oncogene. 2016;35:1899–908.

    Article  CAS  PubMed  Google Scholar 

  77. Erler JT, Bennewith KL, Nicolau M, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006;440:1222–6.

    Article  CAS  PubMed  Google Scholar 

  78. Pupa SM, Menard S, Forti S, et al. New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol. 2002;192:259–67.

    Article  CAS  PubMed  Google Scholar 

  79. Theret N, Musso O, Turlin B, et al. Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas. Hepatology. 2001;34:82–8.

    Article  CAS  PubMed  Google Scholar 

  80. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  81. Ronnov-Jessen L, Petersen OW, Bissell MJ. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev. 1996;76:69–125.

    Article  CAS  PubMed  Google Scholar 

  82. Leitinger B, Hohenester E. Mammalian collagen receptors. Matrix Biol. 2007;26:146–55.

    Article  CAS  PubMed  Google Scholar 

  83. Chen X, Nadiarynkh O, Plotnikov S, et al. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc. 2012;7:654–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tuer A, Tokarz D, Prent N, et al. Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections. J Biomed Opt. 2010;15:026018.

    Article  PubMed  CAS  Google Scholar 

  85. Tuer AE, Akens MK, Krouglov S, et al. Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue. Biophys J. 2012;103:2093–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tuer AE, Krouglov S, Prent N, et al. Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy. J Phys Chem B. 2011;115:12759–69.

    Article  CAS  PubMed  Google Scholar 

  87. Amat-Roldan I, Psilodimitrakopoulos S, Loza-Alvarez P, et al. Fast image analysis in polarization SHG microscopy. Opt Express. 2010;18:17209–19.

    Article  PubMed  Google Scholar 

  88. Golaraei A, Cisek R, Krouglov S, et al. Characterization of collagen in non-small cell lung carcinoma with second harmonic polarization microscopy. Biomed Opt Express. 2014;5:3562–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Strupler M, Pena AM, Hernest M, et al. Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express. 2007;15:4054–65.

    Article  CAS  PubMed  Google Scholar 

  90. Rezakhaniha R, Agianniotis A, Schrauwen JT, et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol. 2012;11:461–73.

    Article  CAS  PubMed  Google Scholar 

  91. Starborg T, Kalson NS, Lu Y, et al. Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization. Nat Protoc. 2013;8:1433–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Paige MF, Rainey JK, Goh MC. A study of fibrous long spacing collagen ultrastructure and assembly by atomic force microscopy. Micron. 2001;32:341–53.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang J, Wang YL, Gu L, et al. Atomic force microscopy of actin. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2003;35:489–94.

    CAS  Google Scholar 

  94. Glatzel T, Holscher H, Schimmel T, et al. Advanced atomic force microscopy techniques. Beilstein J Nanotechnol. 2012;3:893–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Strasser S, Zink A, Janko M, et al. Structural investigations on native collagen type I fibrils using AFM. Biochem Biophys Res Commun. 2007;354:27–32.

    Article  CAS  PubMed  Google Scholar 

  96. Lopez JI, Kang I, You WK, et al. In situ force mapping of mammary gland transformation. Integr Biol (Camb). 2011;3:910–21.

    Article  CAS  Google Scholar 

  97. Braet F, Vermijlen D, Bossuyt V, et al. Early detection of cytotoxic events between hepatic natural killer cells and colon carcinoma cells as probed with the atomic force microscope. Ultramicroscopy. 2001;89:265–73.

    Article  CAS  PubMed  Google Scholar 

  98. Akhtar R, Schwarzer N, Sherratt MJ, et al. Nanoindentation of histological specimens: mapping the elastic properties of soft tissues. J Mater Res. 2009;24:638–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gueta R, Barlam D, Shneck RZ, et al. Measurement of the mechanical properties of isolated tectorial membrane using atomic force microscopy. Proc Natl Acad Sci U S A. 2006;103:14790–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Barbone PE, Bamber JC. Quantitative elasticity imaging: what can and cannot be inferred from strain images. Phys Med Biol. 2002;47:2147–64.

    Article  PubMed  Google Scholar 

  101. Jiang T, Olson ES, Nguyen QT, et al. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A. 2004;101:17867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Scherer RL, Vansaun MN, Mcintyre JO, et al. Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon. Mol Imaging. 2008;7:118–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Littlepage LE, Sternlicht MD, Rougier N, et al. Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. Cancer Res. 2010;70:2224–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Low AF, Tearney GJ, Bouma BE, et al. Technology Insight: optical coherence tomography – current status and future development. Nat Clin Pract Cardiovasc Med. 2006;3:154–62. quiz 172

    Article  PubMed  Google Scholar 

  105. Miserus RJ, Herias MV, Prinzen L, et al. Molecular MRI of early thrombus formation using a bimodal alpha2-antiplasmin-based contrast agent. JACC Cardiovasc Imaging. 2009;2:987–96.

    Article  PubMed  Google Scholar 

  106. Spuentrup E, Buecker A, Katoh M, et al. Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation. 2005;111:1377–82.

    Article  CAS  PubMed  Google Scholar 

  107. Stracke CP, Katoh M, Wiethoff AJ, et al. Molecular MRI of cerebral venous sinus thrombosis using a new fibrin-specific MR contrast agent. Stroke. 2007;38:1476–81.

    Article  CAS  PubMed  Google Scholar 

  108. Hynes R. Molecular biology of fibronectin. Annu Rev Cell Biol. 1985;1:67–90.

    Article  CAS  PubMed  Google Scholar 

  109. White ES, Baralle FE, Muro AF. New insights into form and function of fibronectin splice variants. J Pathol. 2008;216:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Astrof S, Crowley D, George EL, et al. Direct test of potential roles of EIIIA and EIIIB alternatively spliced segments of fibronectin in physiological and tumor angiogenesis. Mol Cell Biol. 2004;24:8662–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Singh P, Reimer CL, Peters JH, et al. The spatial and temporal expression patterns of integrin alpha9beta1 and one of its ligands, the EIIIA segment of fibronectin, in cutaneous wound healing. J Invest Dermatol. 2004;123:1176–81.

    Article  CAS  PubMed  Google Scholar 

  112. Bhattacharyya S, Tamaki Z, Wang W, et al. FibronectinEDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling. Sci Transl Med. 2014;6:232ra250.

    Article  CAS  Google Scholar 

  113. Rybinski B, Franco-Barraza J, Cukierman E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genomics. 2014;46:223–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rybak JN, Roesli C, Kaspar M, et al. The extra-domain A of fibronectin is a vascular marker of solid tumors and metastases. Cancer Res. 2007;67:10948–57.

    Article  CAS  PubMed  Google Scholar 

  115. Matsumoto E, Yoshida T, Kawarada Y, et al. Expression of fibronectin isoforms in human breast tissue: production of extra domain A+/extra domain B+ by cancer cells and extra domain A+ by stromal cells. Jpn J Cancer Res. 1999;90:320–5.

    Article  CAS  PubMed  Google Scholar 

  116. Pujuguet P, Hammann A, Moutet M, et al. Expression of fibronectin ED-A+ and ED-B+ isoforms by human and experimental colorectal cancer. Contribution of cancer cells and tumor-associated myofibroblasts. Am J Pathol. 1996;148:579–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Manabe R, Ohe N, Maeda T, et al. Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment. J Cell Biol. 1997;139:295–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shinde AV, Bystroff C, Wang C, et al. Identification of the peptide sequences within the EIIIA (EDA) segment of fibronectin that mediate integrin alpha9beta1-dependent cellular activities. J Biol Chem. 2008;283:2858–70.

    Article  CAS  PubMed  Google Scholar 

  119. Kohan M, Muro AF, White ES, et al. EDA-containing cellular fibronectin induces fibroblast differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2-dependent signaling. FASEB J. 2010;24:4503–12.

    Article  CAS  PubMed  Google Scholar 

  120. Okamura Y, Watari M, Jerud ES, et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem. 2001;276:10229–33.

    Article  CAS  PubMed  Google Scholar 

  121. Kelsh RM, Mckeown-Longo PJ, Clark RA. EDA fibronectin in keloids create a vicious cycle of fibrotic tumor formation. J Invest Dermatol. 2015;135:1714–8.

    Article  CAS  PubMed  Google Scholar 

  122. Bazigou E, Xie S, Chen C, et al. Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell. 2009;17:175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fukuda T, Yoshida N, Kataoka Y, et al. Mice lacking the EDB segment of fibronectin develop normally but exhibit reduced cell growth and fibronectin matrix assembly in vitro. Cancer Res. 2002;62:5603–10.

    CAS  PubMed  Google Scholar 

  124. Muro AF, Chauhan AK, Gajovic S, et al. Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. J Cell Biol. 2003;162:149–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Astrof S, Crowley D, Hynes RO. Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. Dev Biol. 2007;311:11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Danussi C, Del Bel Belluz L, Pivetta E, et al. EMILIN1/alpha9beta1 integrin interaction is crucial in lymphatic valve formation and maintenance. Mol Cell Biol. 2013;33:4381–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Serini G, Bochaton-Piallat ML, Ropraz P, et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol. 1998;142:873–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shinde AV, Kelsh R, Peters JH, et al. The alpha4beta1 integrin and the EDA domain of fibronectin regulate a profibrotic phenotype in dermal fibroblasts. Matrix Biol. 2015;41:26–35.

    Article  CAS  PubMed  Google Scholar 

  129. Singh P, Chen C, Pal-Ghosh S, et al. Loss of integrin alpha9beta1 results in defects in proliferation, causing poor re-epithelialization during cutaneous wound healing. J Invest Dermatol. 2009;129:217–28.

    Article  CAS  PubMed  Google Scholar 

  130. Nakayama Y, Kon S, Kurotaki D, et al. Blockade of interaction of alpha9 integrin with its ligands hinders the formation of granulation in cutaneous wound healing. Lab Investig. 2010;90:881–94.

    Article  CAS  PubMed  Google Scholar 

  131. Muro AF, Moretti FA, Moore BB, et al. An essential role for fibronectin extra type III domain A in pulmonary fibrosis. Am J Respir Crit Care Med. 2008;177:638–45.

    Article  CAS  PubMed  Google Scholar 

  132. Arslan F, Smeets MB, Riem Vis PW, et al. Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circ Res. 2011;108:582–92.

    Article  CAS  PubMed  Google Scholar 

  133. Ou J, Deng J, Wei X, et al. Fibronectin extra domain A (EDA) sustains CD133(+)/CD44(+) subpopulation of colorectal cancer cells. Stem Cell Res. 2013;11:820–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Xiang L, Xie G, Ou J, et al. The extra domain A of fibronectin increases VEGF-C expression in colorectal carcinoma involving the PI3K/AKT signaling pathway. PLoS One. 2012;7:e35378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ou J, Peng Y, Deng J, et al. Endothelial cell-derived fibronectin extra domain A promotes colorectal cancer metastasis via inducing epithelial-mesenchymal transition. Carcinogenesis. 2014;35:1661–70.

    Article  CAS  PubMed  Google Scholar 

  136. Sun X, Fa P, Cui Z, et al. The EDA-containing cellular fibronectin induces epithelial-mesenchymal transition in lung cancer cells through integrin alpha9beta1-mediated activation of PI3-K/AKT and Erk1/2. Carcinogenesis. 2014;35:184–91.

    Article  CAS  PubMed  Google Scholar 

  137. Ou J, Pan F, Geng P, et al. Silencing fibronectin extra domain A enhances radiosensitivity in nasopharyngeal carcinomas involving an FAK/Akt/JNK pathway. Int J Radiat Oncol Biol Phys. 2012;82:e685–91.

    Article  CAS  PubMed  Google Scholar 

  138. Iozzo RV, Sanderson RD. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med. 2011;15:1013–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Theocharis AD, Skandalis SS, Tzanakakis GN, et al. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 2010;277:3904–23.

    Article  CAS  PubMed  Google Scholar 

  140. Wegrowski Y, Maquart FX. Involvement of stromal proteoglycans in tumour progression. Crit Rev Oncol Hematol. 2004;49:259–68.

    Article  PubMed  Google Scholar 

  141. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol. 2011;3:a004952.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Li J-P, Kusche-Gullberg M. Heparan sulfate: biosynthesis, structure and function. Int Rev Cell Mol Biol. 2016;325:215–73.

    Article  PubMed  Google Scholar 

  143. Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007;446:1030–7.

    Article  CAS  PubMed  Google Scholar 

  144. Ai X, Do AT, Lozynska O, et al. QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol. 2003;162:341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Billings PC, Pacifici M. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connect Tissue Res. 2015;56:272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dowsland MH, Harvey JR, Lennard TW, et al. Chemokines and breast cancer: a gateway to revolutionary targeted cancer treatments? Curr Med Chem. 2003;10:579–92.

    Article  CAS  PubMed  Google Scholar 

  147. Lau EK, Paavola CD, Johnson Z, et al. Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1: implications for structure and function in vivo. J Biol Chem. 2004;279:22294–305.

    Article  CAS  PubMed  Google Scholar 

  148. Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Choi Y, Chung H, Jung H, et al. Syndecans as cell surface receptors: unique structure equates with functional diversity. Matrix Biol. 2011;30:93–9.

    Article  CAS  PubMed  Google Scholar 

  150. Couchman JR, Gopal S, Lim HC, et al. Syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int J Exp Pathol. 2015;96:1–10.

    Article  CAS  PubMed  Google Scholar 

  151. Ihrcke NS, Platt JL. Shedding of heparan sulfate proteoglycan by stimulated endothelial cells: evidence for proteolysis of cell-surface molecules. J Cell Physiol. 1996;168:625–37.

    Article  CAS  PubMed  Google Scholar 

  152. Choi S, Kim JY, Park JH, et al. The matrix metalloproteinase-7 regulates the extracellular shedding of syndecan-2 from colon cancer cells. Biochem Biophys Res Commun. 2012;417:1260–4.

    Article  CAS  PubMed  Google Scholar 

  153. Manon-Jensen T, Itoh Y, Couchman JR. Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J. 2010;277:3876–89.

    Article  CAS  PubMed  Google Scholar 

  154. Manon-Jensen T, Multhaupt HA, Couchman JR. Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains. FEBS J. 2013;280:2320–31.

    Article  CAS  PubMed  Google Scholar 

  155. Ding K, Lopez-Burks M, Sanchez-Duran JA, et al. Growth factor-induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells. J Cell Biol. 2005;171:729–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tan X, Khalil N, Tesarik C, et al. Th1 cytokine-induced syndecan-4 shedding by airway smooth muscle cells is dependent on mitogen-activated protein kinases. Am J Physiol Lung Cell Mol Physiol. 2012;302:L700–10.

    Article  CAS  PubMed  Google Scholar 

  157. Yang Y, Macleod V, Miao HQ, et al. Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem. 2007;282:13326–33.

    Article  CAS  PubMed  Google Scholar 

  158. Joensuu H, Anttonen A, Eriksson M, et al. Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res. 2002;62:5210–7.

    CAS  PubMed  Google Scholar 

  159. Seidel C, Sundan A, Hjorth M, et al. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood. 2000;95:388–92.

    CAS  PubMed  Google Scholar 

  160. Szarvas T, Reis H, Kramer G, et al. Enhanced stromal syndecan-1 expression is an independent risk factor for poor survival in bladder cancer. Hum Pathol. 2014;45:674–82.

    Article  CAS  PubMed  Google Scholar 

  161. Su G, Blaine SA, Qiao D, et al. Membrane type 1 matrix metalloproteinase-mediated stromal syndecan-1 shedding stimulates breast carcinoma cell proliferation. Cancer Res. 2008;68:9558–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Su G, Blaine SA, Qiao D, et al. Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF2 activation. J Biol Chem. 2007;282:14906–15.

    Article  CAS  PubMed  Google Scholar 

  163. Nikolova V, Koo CY, Ibrahim SA, et al. Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression. Carcinogenesis. 2009;30:397–407.

    Article  CAS  PubMed  Google Scholar 

  164. Choi S, Choi Y, Jun E, et al. Shed syndecan-2 enhances tumorigenic activities of colon cancer cells. Oncotarget. 2015;6:3874–86.

    PubMed  PubMed Central  Google Scholar 

  165. Stewart MD, Ramani VC, Sanderson RD. Shed syndecan-1 translocates to the nucleus of cells delivering growth factors and inhibiting histone acetylation: a novel mechanism of tumor-host cross-talk. J Biol Chem. 2015;290:941–9.

    Article  CAS  PubMed  Google Scholar 

  166. Ramani VC, Sanderson RD. Chemotherapy stimulates syndecan-1 shedding: a potentially negative effect of treatment that may promote tumor relapse. Matrix Biol. 2014;35:215–22.

    Article  CAS  PubMed  Google Scholar 

  167. Wang X, Zuo D, Chen Y, et al. Shed Syndecan-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer. Br J Cancer. 2014;111:1965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chen S, Birk DE. The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly. FEBS J. 2013;280:2120–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cawthorn TR, Moreno JC, Dharsee M, et al. Proteomic analyses reveal high expression of decorin and endoplasmin (HSP90B1) are associated with breast cancer metastasis and decreased survival. PLoS One. 2012;7:e30992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sainio A, Nyman M, Lund R, et al. Lack of decorin expression by human bladder cancer cells offers new tools in the therapy of urothelial malignancies. PLoS One. 2013;8:e76190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Henke A, Grace OC, Ashley GR, et al. Stromal expression of decorin, Semaphorin6D, SPARC, Sprouty1 and Tsukushi in developing prostate and decreased levels of decorin in prostate cancer. PLoS One. 2012;7:e42516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Campioni M, Ambrogi V, Pompeo E, et al. Identification of genes down-regulated during lung cancer progression: a cDNA array study. J Exp Clin Cancer Res. 2008;27:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Bostrom P, Sainio A, Kakko T, et al. Localization of decorin gene expression in normal human breast tissue and in benign and malignant tumors of the human breast. Histochem Cell Biol. 2013;139:161–71.

    Article  PubMed  CAS  Google Scholar 

  174. Oda G, Sato T, Ishikawa T, et al. Significance of stromal decorin expression during the progression of breast cancer. Oncol Rep. 2012;28:2003–8.

    Article  PubMed  Google Scholar 

  175. Troup S, Njue C, Kliewer EV, et al. Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin Cancer Res. 2003;9:207–14.

    CAS  PubMed  Google Scholar 

  176. Horvath Z, Kovalszky I, Fullar A, et al. Decorin deficiency promotes hepatic carcinogenesis. Matrix Biol. 2014;35:194–205.

    Article  CAS  PubMed  Google Scholar 

  177. Xu W, Neill T, Yang Y, et al. The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer. Gene Ther. 2015;22:31–40.

    Article  CAS  Google Scholar 

  178. Bi X, Pohl NM, Qian Z, et al. Decorin-mediated inhibition of colorectal cancer growth and migration is associated with E-cadherin in vitro and in mice. Carcinogenesis. 2012;33:326–30.

    Article  CAS  PubMed  Google Scholar 

  179. Nyman MC, Sainio AO, Pennanen MM, et al. Decorin in human colon cancer: localization in vivo and effect on cancer cell behavior in vitro. J Histochem Cytochem. 2015;63:710–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Buraschi S, Neill T, Owens RT, et al. Decorin protein core affects the global gene expression profile of the tumor microenvironment in a triple-negative orthotopic breast carcinoma xenograft model. PLoS One. 2012;7:e45559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Goldoni S, Iozzo RV. Tumor microenvironment: modulation by decorin and related molecules harboring leucine-rich tandem motifs. Int J Cancer. 2008;123:2473–9.

    Article  CAS  PubMed  Google Scholar 

  182. Buraschi S, Pal N, Tyler-Rubinstein N, et al. Decorin antagonizes Met receptor activity and down-regulates {beta}-catenin and Myc levels. J Biol Chem. 2010;285:42075–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Neill T, Torres A, Buraschi S, et al. Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) and mitostatin. J Biol Chem. 2014;289:4952–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Buraschi S, Neill T, Goyal A, et al. Decorin causes autophagy in endothelial cells via Peg3. Proc Natl Acad Sci U S A. 2013;110:E2582–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Neill T, Painter H, Buraschi S, et al. Decorin antagonizes the angiogenic network: concurrent inhibition of Met, hypoxia inducible factor 1alpha, vascular endothelial growth factor A, and induction of thrombospondin-1 and TIMP3. J Biol Chem. 2012;287:5492–506.

    Article  CAS  PubMed  Google Scholar 

  186. Morcavallo A, Buraschi S, Xu SQ, et al. Decorin differentially modulates the activity of insulin receptor isoform A ligands. Matrix Biol. 2014;35:82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kasamatsu A, Uzawa K, Minakawa Y, et al. Decorin in human oral cancer: a promising predictive biomarker of S-1 neoadjuvant chemosensitivity. Biochem Biophys Res Commun. 2015;457:71–6.

    Article  CAS  PubMed  Google Scholar 

  188. Koninger J, Giese NA, Di Mola FF, et al. Overexpressed decorin in pancreatic cancer: potential tumor growth inhibition and attenuation of chemotherapeutic action. Clin Cancer Res. 2004;10:4776–83.

    Article  PubMed  Google Scholar 

  189. Aprile G, Avellini C, Reni M, et al. Biglycan expression and clinical outcome in patients with pancreatic adenocarcinoma. Tumour Biol. 2013;34:131–7.

    Article  CAS  PubMed  Google Scholar 

  190. Zhu YH, Yang F, Zhang SS, et al. High expression of biglycan is associated with poor prognosis in patients with esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2013;6:2497–505.

    PubMed  PubMed Central  Google Scholar 

  191. Hu L, Duan YT, Li JF, et al. Biglycan enhances gastric cancer invasion by activating FAK signaling pathway. Oncotarget. 2014;5:1885–96.

    PubMed  PubMed Central  Google Scholar 

  192. Niedworok C, Rock K, Kretschmer I, et al. Inhibitory role of the small leucine-rich proteoglycan biglycan in bladder cancer. PLoS One. 2013;8:e80084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Weber CK, Sommer G, Michl P, et al. Biglycan is overexpressed in pancreatic cancer and induces G1-arrest in pancreatic cancer cell lines. Gastroenterology. 2001;121:657–67.

    Article  CAS  PubMed  Google Scholar 

  194. Corpuz LM, Funderburgh JL, Funderburgh ML, et al. Molecular cloning and tissue distribution of keratocan. Bovine corneal keratan sulfate proteoglycan 37A. J Biol Chem. 1996;271:9759–63.

    Article  CAS  PubMed  Google Scholar 

  195. Brezillon S, Pietraszek K, Maquart FX, et al. Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins. FEBS J. 2013;280:2369–81.

    Article  CAS  PubMed  Google Scholar 

  196. Nikitovic D, Papoutsidakis A, Karamanos NK, et al. Lumican affects tumor cell functions, tumor-ECM interactions, angiogenesis and inflammatory response. Matrix Biol. 2014;35:206–14.

    Article  CAS  PubMed  Google Scholar 

  197. Seya T, Tanaka N, Shinji S, et al. Lumican expression in advanced colorectal cancer with nodal metastasis correlates with poor prognosis. Oncol Rep. 2006;16:1225–30.

    CAS  PubMed  Google Scholar 

  198. De Wit M, Belt EJ, Delis-Van Diemen PM, et al. Lumican and versican are associated with good outcome in stage II and III colon cancer. Ann Surg Oncol. 2013;20(Suppl 3):S348–59.

    Article  PubMed  Google Scholar 

  199. Panis C, Pizzatti L, Herrera AC, et al. Putative circulating markers of the early and advanced stages of breast cancer identified by high-resolution label-free proteomics. Cancer Lett. 2013;330:57–66.

    Article  CAS  PubMed  Google Scholar 

  200. Ishiwata T, Cho K, Kawahara K, et al. Role of lumican in cancer cells and adjacent stromal tissues in human pancreatic cancer. Oncol Rep. 2007;18:537–43.

    CAS  PubMed  Google Scholar 

  201. Li X, Truty MA, Kang Y, et al. Extracellular lumican inhibits pancreatic cancer cell growth and is associated with prolonged survival after surgery. Clin Cancer Res. 2014;20:6529–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Matsuda Y, Yamamoto T, Kudo M, et al. Expression and roles of lumican in lung adenocarcinoma and squamous cell carcinoma. Int J Oncol. 2008;33:1177–85.

    CAS  PubMed  Google Scholar 

  203. Brezillon S, Venteo L, Ramont L, et al. Expression of lumican, a small leucine-rich proteoglycan with antitumour activity, in human malignant melanoma. Clin Exp Dermatol. 2007;32:405–16.

    Article  CAS  PubMed  Google Scholar 

  204. Brezillon S, Radwanska A, Zeltz C, et al. Lumican core protein inhibits melanoma cell migration via alterations of focal adhesion complexes. Cancer Lett. 2009;283:92–100.

    Article  CAS  PubMed  Google Scholar 

  205. Zeltz C, Brezillon S, Kapyla J, et al. Lumican inhibits cell migration through alpha2beta1 integrin. Exp Cell Res. 2010;316:2922–31.

    Article  CAS  PubMed  Google Scholar 

  206. Zeltz C, Brezillon S, Perreau C, et al. Lumcorin: a leucine-rich repeat 9-derived peptide from human lumican inhibiting melanoma cell migration. FEBS Lett. 2009;583:3027–32.

    Article  CAS  PubMed  Google Scholar 

  207. Pietraszek K, Chatron-Colliet A, Brezillon S, et al. Lumican: a new inhibitor of matrix metalloproteinase-14 activity. FEBS Lett. 2014;588:4319–24.

    Article  CAS  PubMed  Google Scholar 

  208. Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, et al. Lumican expression, localization and antitumor activity in prostate cancer. Exp Cell Res. 2013;319:967–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Radwanska A, Litwin M, Nowak D, et al. Overexpression of lumican affects the migration of human colon cancer cells through up-regulation of gelsolin and filamentous actin reorganization. Exp Cell Res. 2012;318:2312–23.

    Article  CAS  PubMed  Google Scholar 

  210. Oldberg A, Kalamajski S, Salnikov AV, et al. Collagen-binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma. Proc Natl Acad Sci U S A. 2007;104:13966–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hildebrand A, Romaris M, Rasmussen LM, et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J. 1994;302(Pt 2):527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Maris P, Blomme A, Palacios AP, et al. Asporin is a fibroblast-derived TGF-beta1 inhibitor and a tumor suppressor associated with good prognosis in breast cancer. PLoS Med. 2015;12:e1001871.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Mosher DF, Adams JC. Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal. Matrix Biol. 2012;31:155–61.

    Article  CAS  PubMed  Google Scholar 

  214. Wong GS, Rustgi AK. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis. Br J Cancer. 2013;108:755–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chiquet-Ehrismann R, Tucker RP. Tenascins and the importance of adhesion modulation. Cold Spring Harb Perspect Biol. 2011;3:a004960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Orend G, Chiquet-Ehrismann R. Tenascin-C induced signaling in cancer. Cancer Lett. 2006;244:143–63.

    Article  CAS  PubMed  Google Scholar 

  217. Martin D, Brown-Luedi M, Chiquet-Ehrismann R. Tenascin-C signaling through induction of 14-3-3 tau. J Cell Biol. 2003;160:171–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ruiz C, Huang W, Hegi ME, et al. Growth promoting signaling by tenascin-C [corrected]. Cancer Res. 2004;64:7377–85.

    Article  CAS  PubMed  Google Scholar 

  219. Huang W, Chiquet-Ehrismann R, Moyano JV, et al. Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res. 2001;61:8586–94.

    CAS  PubMed  Google Scholar 

  220. Shi M, He X, Wei W, et al. Tenascin-C induces resistance to apoptosis in pancreatic cancer cell through activation of ERK/NF-kappaB pathway. Apoptosis. 2015;20:843–57.

    Article  CAS  PubMed  Google Scholar 

  221. Katoh D, Nagaharu K, Shimojo N, et al. Binding of alphavbeta1 and alphavbeta6 integrins to tenascin-C induces epithelial-mesenchymal transition-like change of breast cancer cells. Oncogene. 2013;2:e65.

    Article  CAS  Google Scholar 

  222. Nagaharu K, Zhang X, Yoshida T, et al. Tenascin C induces epithelial-mesenchymal transition-like change accompanied by SRC activation and focal adhesion kinase phosphorylation in human breast cancer cells. Am J Pathol. 2011;178:754–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ghahhari NM, Babashah S. Interplay between microRNAs and WNT/beta-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur J Cancer. 2015;51:1638–49.

    Article  CAS  PubMed  Google Scholar 

  224. Saupe F, Schwenzer A, Jia Y, et al. Tenascin-C downregulates wnt inhibitor dickkopf-1, promoting tumorigenesis in a neuroendocrine tumor model. Cell Rep. 2013;5:482–92.

    Article  CAS  PubMed  Google Scholar 

  225. Beiter K, Hiendlmeyer E, Brabletz T, et al. Beta-Catenin regulates the expression of tenascin-C in human colorectal tumors. Oncogene. 2005;24:8200–4.

    Article  CAS  PubMed  Google Scholar 

  226. Grahovac J, Becker D, Wells A. Melanoma cell invasiveness is promoted at least in part by the epidermal growth factor-like repeats of tenascin-C. J Invest Dermatol. 2013;133:210–20.

    Article  CAS  PubMed  Google Scholar 

  227. Nong Y, Wu D, Lin Y, et al. Tenascin-C expression is associated with poor prognosis in hepatocellular carcinoma (HCC) patients and the inflammatory cytokine TNF-alpha-induced TNC expression promotes migration in HCC cells. Am J Cancer Res. 2015;5:782–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Kaariainen E, Nummela P, Soikkeli J, et al. Switch to an invasive growth phase in melanoma is associated with tenascin-C, fibronectin, and procollagen-I forming specific channel structures for invasion. J Pathol. 2006;210:181–91.

    Article  CAS  PubMed  Google Scholar 

  229. Hancox RA, Allen MD, Holliday DL, et al. Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Res. 2009;11:R24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Kalembeyi I, Inada H, Nishiura R, et al. Tenascin-C upregulates matrix metalloproteinase-9 in breast cancer cells: direct and synergistic effects with transforming growth factor beta1. Int J Cancer. 2003;105:53–60.

    Article  CAS  PubMed  Google Scholar 

  231. Calvo A, Catena R, Noble MS, et al. Identification of VEGF-regulated genes associated with increased lung metastatic potential: functional involvement of tenascin-C in tumor growth and lung metastasis. Oncogene. 2008;27:5373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. O’connell JT, Sugimoto H, Cooke VG, et al. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci U S A. 2011;108:16002–7.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Chiovaro F, Martina E, Bottos A, et al. Transcriptional regulation of tenascin-W by TGF-beta signaling in the bone metastatic niche of breast cancer cells. Int J Cancer. 2015;137:1842–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Degen M, Brellier F, Kain R, et al. Tenascin-W is a novel marker for activated tumor stroma in low-grade human breast cancer and influences cell behavior. Cancer Res. 2007;67:9169–79.

    Article  CAS  PubMed  Google Scholar 

  235. Degen M, Brellier F, Schenk S, et al. Tenascin-W, a new marker of cancer stroma, is elevated in sera of colon and breast cancer patients. Int J Cancer. 2008;122:2454–61.

    Article  CAS  PubMed  Google Scholar 

  236. Scherberich A, Tucker RP, Degen M, et al. Tenascin-W is found in malignant mammary tumors, promotes alpha8 integrin-dependent motility and requires p38MAPK activity for BMP-2 and TNF-alpha induced expression in vitro. Oncogene. 2005;24:1525–32.

    Article  CAS  PubMed  Google Scholar 

  237. Brellier F, Martina E, Degen M, et al. Tenascin-W is a better cancer biomarker than tenascin-C for most human solid tumors. BMC Clin Pathol. 2012;12:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Matsumoto K, Saga Y, Ikemura T, et al. The distribution of tenascin-X is distinct and often reciprocal to that of tenascin-C. J Cell Biol. 1994;125:483–93.

    Article  CAS  PubMed  Google Scholar 

  239. Chiquet-Ehrismann R, Chiquet M. Tenascins: regulation and putative functions during pathological stress. J Pathol. 2003;200:488–99.

    Article  CAS  PubMed  Google Scholar 

  240. Geffrotin C, Horak V, Crechet F, et al. Opposite regulation of tenascin-C and tenascin-X in MeLiM swine heritable cutaneous malignant melanoma. Biochim Biophys Acta. 2000;1524:196–202.

    Article  CAS  PubMed  Google Scholar 

  241. Matsumoto K, Takayama N, Ohnishi J, et al. Tumour invasion and metastasis are promoted in mice deficient in tenascin-X. Genes Cells. 2001;6:1101–11.

    Article  CAS  PubMed  Google Scholar 

  242. Matsumoto K, Minamitani T, Orba Y, et al. Induction of matrix metalloproteinase-2 by tenascin-X deficiency is mediated through the c-Jun N-terminal kinase and protein tyrosine kinase phosphorylation pathway. Exp Cell Res. 2004;297:404–14.

    Article  CAS  PubMed  Google Scholar 

  243. Alcaraz LB, Exposito JY, Chuvin N, et al. Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-beta. J Cell Biol. 2014;205:409–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Rios H, Koushik SV, Wang H, et al. periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol. 2005;25:11131–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Elliott CG, Wang J, Guo X, et al. Periostin modulates myofibroblast differentiation during full-thickness cutaneous wound repair. J Cell Sci. 2012;125:121–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Lorts A, Schwanekamp JA, Baudino TA, et al. Deletion of periostin reduces muscular dystrophy and fibrosis in mice by modulating the transforming growth factor-beta pathway. Proc Natl Acad Sci U S A. 2012;109:10978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Shimazaki M, Nakamura K, Kii I, et al. Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med. 2008;205:295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Egbert M, Ruetze M, Sattler M, et al. The matricellular protein periostin contributes to proper collagen function and is downregulated during skin aging. J Dermatol Sci. 2013;73:40–8.

    Article  PubMed  CAS  Google Scholar 

  249. Norris RA, Damon B, Mironov V, et al. Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem. 2007;101:695–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Shimazaki M, Kudo A. Impaired capsule formation of tumors in periostin-null mice. Biochem Biophys Res Commun. 2008;367:736–42.

    Article  CAS  PubMed  Google Scholar 

  251. Fukuda K, Sugihara E, Ohta S, et al. Periostin is a key niche component for wound metastasis of melanoma. PLoS One. 2015;10:e0129704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Kikuchi Y, Kunita A, Iwata C, et al. The niche component periostin is produced by cancer-associated fibroblasts, supporting growth of gastric cancer through ERK activation. Am J Pathol. 2014;184:859–70.

    Article  CAS  PubMed  Google Scholar 

  253. Zhou W, Ke SQ, Huang Z, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Malanchi I, Santamaria-Martinez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481:85–9.

    Article  CAS  Google Scholar 

  255. Andrikopoulos K, Liu X, Keene DR, et al. Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly. Nat Genet. 1995;9:31–6.

    Article  CAS  PubMed  Google Scholar 

  256. Lohler J, Timpl R, Jaenisch R. Embryonic lethal mutation in mouse collagen I gene causes rupture of blood vessels and is associated with erythropoietic and mesenchymal cell death. Cell. 1984;38:597–607.

    Article  CAS  PubMed  Google Scholar 

  257. Wenstrup RJ, Florer JB, Brunskill EW, et al. Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem. 2004;279:53331–7.

    Article  CAS  PubMed  Google Scholar 

  258. Liu X, Wu H, Byrne M, et al. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci U S A. 1997;94:1852–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Liu X, Wu H, Byrne M, et al. A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. J Cell Biol. 1995;130:227–37.

    Article  CAS  PubMed  Google Scholar 

  260. Kii I, Amizuka N, Minqi L, et al. Periostin is an extracellular matrix protein required for eruption of incisors in mice. Biochem Biophys Res Commun. 2006;342:766–72.

    Article  CAS  PubMed  Google Scholar 

  261. Ishiba T, Nagahara M, Nakagawa T, et al. Periostin suppression induces decorin secretion leading to reduced breast cancer cell motility and invasion. Sci Rep. 2014;4:7069.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Ontsuka K, Kotobuki Y, Shiraishi H, et al. Periostin, a matricellular protein, accelerates cutaneous wound repair by activating dermal fibroblasts. Exp Dermatol. 2012;21:331–6.

    Article  CAS  PubMed  Google Scholar 

  263. Danielson KG, Baribault H, Holmes DF, et al. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997;136:729–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Chakravarti S, Magnuson T, Lass JH, et al. Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol. 1998;141:1277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Stepp MA, Daley WP, Bernstein AM, et al. Syndecan-1 regulates cell migration and fibronectin fibril assembly. Exp Cell Res. 2010;316:2322–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Goldoni S, Seidler DG, Heath J, et al. An antimetastatic role for decorin in breast cancer. Am J Pathol. 2008;173:844–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Beauvais DM, Burbach BJ, Rapraeger AC. The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells. J Cell Biol. 2004;167:171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Mcquade KJ, Beauvais DM, Burbach BJ, et al. Syndecan-1 regulates alphavbeta5 integrin activity in B82L fibroblasts. J Cell Sci. 2006;119:2445–56.

    Article  CAS  PubMed  Google Scholar 

  269. Vuoriluoto K, Jokinen J, Kallio K, et al. Syndecan-1 supports integrin alpha2beta1-mediated adhesion to collagen. Exp Cell Res. 2008;314:3369–81.

    Article  CAS  PubMed  Google Scholar 

  270. Beauvais DM, Ell BJ, Mcwhorter AR, et al. Syndecan-1 regulates {alpha}v{beta}3 and {alpha}v{beta}5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J Exp Med. 2009;16:691–705.

    Article  CAS  Google Scholar 

  271. Vuillermoz B, Khoruzhenko A, D’onofrio MF, et al. The small leucine-rich proteoglycan lumican inhibits melanoma progression. Exp Cell Res. 2004;296:294–306.

    Article  CAS  PubMed  Google Scholar 

  272. Yang Y, Macleod V, Dai Y, et al. The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood. 2007;110:2041–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Hendaoui I, Tucker RP, Zingg D, et al. Tenascin-C is required for normal Wnt/beta-catenin signaling in the whisker follicle stem cell niche. Matrix Biol. 2014;40:46–53.

    Article  CAS  PubMed  Google Scholar 

  274. Saga Y, Yagi T, Ikawa Y, et al. Mice develop normally without tenascin. Genes Dev. 1992;6:1821–31.

    Article  CAS  PubMed  Google Scholar 

  275. Mao JR, Taylor G, Dean WB, et al. Tenascin-X deficiency mimics Ehlers-Danlos syndrome in mice through alteration of collagen deposition. Nat Genet. 2002;30:421–5.

    Article  CAS  PubMed  Google Scholar 

  276. Tucker RP, Chiquet-Ehrismann R. Tenascin-C: its functions as an integrin ligand. Int J Biochem Cell Biol. 2015;65:165–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the useful comments from Sandy Der (University Health Network, Toronto).

Supported by grants to DG from the Research Council of Norway (Norwegian Centres of Excellence grant, grants 2233250), the Western Norway Regional Health Authority (ID911899), and the Norwegian Cancer Society (id 3292722 to MKG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Gullberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zeltz, C., Navab, R., Kusche-Gullberg, M., Tsao, MS., Gullberg, D. (2017). Role of the Extracellular Matrix in Tumor Stroma: Barrier or Support?. In: Akslen, L., Watnick, R. (eds) Biomarkers of the Tumor Microenvironment. Springer, Cham. https://doi.org/10.1007/978-3-319-39147-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39147-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39145-8

  • Online ISBN: 978-3-319-39147-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics