Skip to main content

Developmental Roles of Histone H3 Variants and Their Chaperones

  • Chapter
  • First Online:
The Functional Nucleus

Abstract

Within the nucleus, chromatin dynamics with the interplay between lineage-specific transcription factors, histone dynamics, non-histone proteins and their modifications along with contribution of non coding RNA emerge as critical in defining a stable cellular identity. A fine tuning of these different parameters can impact the balance between stability and plasticity during the development and life span of a multicellular organism. At the chromatin level, dynamics of histone H3 variants through their regulated incorporation into the genome, orchestrated in time and location by dedicated histone chaperones, have gained importance in our understanding of these processes. The combination of their individual modifications and specific binding partners provide distinct features that together contribute to the establishment of genomic loci. Here, we describe the network of histone chaperones that governs their handling with a focus on deposition, to highlight how their distinct distribution impacts genome organization and function. Next, we integrate the importance of H3 variants in the context of current knowledge related to nuclear reprogramming and cell differentiation. Then, using the centromere as a paradigm, we describe a case where the identity of a given genomic locus is propagated across different cell types. Finally, to place H3 dynamics in a developmental context, we underline the role of chromatin changes in cell differentiation associated with gastrulation, myogenesis or neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai X, Parthun MR (2004) The nuclear Hat1p/Hat2p complex: a molecular link between type B histone acetyltransferases and chromatin assembly. Mol Cell 14:195–205

    Article  CAS  PubMed  Google Scholar 

  • Aida M, Hamad N, Stanlie A, Begum NA, Honjo T (2013) Accumulation of the FACT complex, as well as histone H3.3, serves as a target marker for somatic hypermutation. Proc Natl Acad Sci USA 110:7784–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aihara K, Mukasa A, Gotoh K, Saito K, Nagae G et al (2014) H3F3A K27M mutations in thalamic gliomas from young adult patients. Neuro Oncol 16:140–146

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T, Suzuki O, Matsuda J, Aoki F (2011) Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet 7:e1002279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albig W, Ebentheuer J, Klobeck G, Kunz J, Doenecke D (1996) A solitary human H3 histone gene on chromosome 1. Hum Genet 97:486–491

    Article  CAS  PubMed  Google Scholar 

  • Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V et al (2012) An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487:249–253

    Article  CAS  PubMed  Google Scholar 

  • Ambartsumyan G, Gill RK, Perez SD, Conway D, Vincent J et al (2010) Centromere protein A dynamics in human pluripotent stem cell self-renewal, differentiation and DNA damage. Hum Mol Genet 19:3970–3982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews AJ, Luger K (2011) Nucleosome structure(s) and stability: variations on a theme. Annu Rev Biophys 40:99–117

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Nakatani T, Oda M, Kimura Y, Sekita Y et al (2015) Stella controls chromocenter formation through regulation of Daxx expression in 2-cell embryos. Biochem Biophys Res Commun 466:60–65

    Article  CAS  PubMed  Google Scholar 

  • Aristotle Stagiritis son of Nicomachus. 350 BC. On the generation of animals

    Google Scholar 

  • Banaszynski LA, Wen D, Dewell S, Whitcomb SJ, Lin M et al (2013) Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells. Cell 155:107–120

    Article  CAS  PubMed  Google Scholar 

  • Banumathy G, Somaiah N, Zhang R, Tang Y, Hoffmann J et al (2009) Human UBN1 is an ortholog of yeast Hpc2p and has an essential role in the HIRA/ASF1a chromatin-remodeling pathway in senescent cells. Mol Cell Biol 29:758–770

    Article  CAS  PubMed  Google Scholar 

  • Barnhart MC, Kuich PH, Stellfox ME, Ward JA, Bassett EA et al (2011) HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J Cell Biol 194:229–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090–1093

    Article  CAS  PubMed  Google Scholar 

  • Berube NG, Mangelsdorf M, Jagla M, Vanderluit J, Garrick D et al (2005) The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J Clin Invest 115:258–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black BE, Bassett EA (2008) The histone variant CENP-A and centromere specification. Curr Opin Cell Biol 20:91–100

    Article  CAS  PubMed  Google Scholar 

  • Bonnefoy E, Orsi GA, Couble P, Loppin B (2007) The essential role of Drosophila HIRA for de novo assembly of paternal chromatin at fertilization. PLoS Genet 3:1991–2006

    Article  CAS  PubMed  Google Scholar 

  • Bortvin A, Winston F (1996) Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272:1473–1476

    Article  CAS  PubMed  Google Scholar 

  • Boyarchuk E, Montes de Oca R, Almouzni G (2011) Cell cycle dynamics of histone variants at the centromere, a model for chromosomal landmarks. Curr Opin Cell Biol 23:266–276

    Article  CAS  PubMed  Google Scholar 

  • Boyarchuk E, Filipescu D, Vassias I, Cantaloube S, Almouzni G (2014) The histone variant composition of centromeres is controlled by the pericentric heterochromatin state during the cell cycle. J Cell Sci 127:3347–3359

    Article  CAS  PubMed  Google Scholar 

  • Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci USA 38:455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ et al (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17:679–687

    Article  CAS  PubMed  Google Scholar 

  • Bush KM, Yuen BT, Barrilleaux BL, Riggs JW, O’Geen H et al (2013) Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development. Epigenetics Chromatin 6:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos EI, Fillingham J, Li G, Zheng H, Voigt P et al (2010) The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 17:1343–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casanova M, Pasternak M, El Marjou F, Le Baccon P, Probst AV, Almouzni G (2013) Heterochromatin reorganization during early mouse development requires a single-stranded noncoding transcript. Cell Rep 4:1156–1167

    Article  CAS  PubMed  Google Scholar 

  • Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J et al (2015) The histone chaperone CAF-1 safeguards somatic cell identity. Nature 528:218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Zhao J, Wang Y, Wang M, Long H et al (2013) H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin. Genes Dev 27:2109–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CC, Dechassa ML, Bettini E, Ledoux MB, Belisario C et al (2014) CAL1 is the Drosophila CENP-A assembly factor. J Cell Biol 204:313–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook AJ, Gurard-Levin ZA, Vassias I, Almouzni G (2011) A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3–H4 in the histone supply chain. Mol Cell 44:918–927

    Article  CAS  PubMed  Google Scholar 

  • Couldrey C, Carlton MB, Nolan PM, Colledge WH, Evans MJ (1999) A retroviral gene trap insertion into the histone 3.3A gene causes partial neonatal lethality, stunted growth, neuromuscular deficits and male sub-fertility in transgenic mice. Hum Mol Genet 8:2489–2495

    Article  CAS  PubMed  Google Scholar 

  • Cox SG, Kim H, Garnett AT, Medeiros DM, An W, Crump JG (2012) An essential role of variant histone H3.3 for ectomesenchyme potential of the cranial neural crest. PLoS Genet 8:e1002938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel Ricketts M, Frederick B, Hoff H, Tang Y, Schultz DC et al (2015) Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex. Nat Commun 6:7711

    Article  PubMed  PubMed Central  Google Scholar 

  • De Koning L, Corpet A, Haber JE, Almouzni G (2007) Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol 14:997–1007

    Article  PubMed  CAS  Google Scholar 

  • DeNizio JE, Elsässer SJ, Black BE (2014) DAXX co-folds with H3.3/H4 using high local stability conferred by the H3.3 variant recognition residues. Nucleic Acids Res 42:4318–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24:1253–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z, Santella A, He F, Shah PK, Kamikawa Y, Bao Z (2015) The regulatory landscape of lineage differentiation in a metazoan embryo. Dev Cell 34:592–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D et al (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137:485–497

    Article  CAS  PubMed  Google Scholar 

  • Dunleavy EM, Almouzni G, Karpen GH (2011) H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G(1) phase. Nucleus 2:146–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunleavy EM, Beier NL, Gorgescu W, Tang J, Costes SV, Karpen GH (2012) The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C. PLoS Biol 10:e1001460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta D, Ray S, Home P, Saha B, Wang S et al (2010) Regulation of angiogenesis by histone chaperone HIRA-mediated incorporation of lysine 56-acetylated histone H3.3 at chromatin domains of endothelial genes. J Biol Chem 285:41567–41577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsässer SJ, Huang H, Lewis PW, Chin JW, Allis CD, Patel DJ (2012) DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition. Nature 491:560–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elsässer SJ, Noh KM, Diaz N, Allis CD, Banaszynski LA (2015) Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522:240–244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erkek S, Hisano M, Liang CY, Gill M, Murr R et al (2013) Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 20:868–875

    Article  CAS  PubMed  Google Scholar 

  • Fachinetti D, Folco HD, Nechemia-Arbely Y, Valente LP, Nguyen K et al (2013) A two-step mechanism for epigenetic specification of centromere identity and function. Nat Cell Biol 15:1056–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipescu D, Müller S, Almouzni G (2014) Histone H3 variants and their chaperones during development and disease: contributing to epigenetic control. Annu Rev Cell Dev Biol 30:615–646

    Article  CAS  PubMed  Google Scholar 

  • Foltz DR, Jansen LE, Bailey AO, Yates JR 3rd, Bassett EA et al (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137:472–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontebasso AM, Liu XY, Sturm D, Jabado N (2013) Chromatin remodeling defects in pediatric and young adult glioblastoma: a tale of a variant histone 3 tail. Brain Pathol 23:210–216

    Article  CAS  PubMed  Google Scholar 

  • Franklin RE, Gosling RG (1953) Molecular configuration in sodium thymonucleate. Nature 171:740–741

    Article  CAS  PubMed  Google Scholar 

  • Franklin SG, Zweidler A (1977) Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature 266:273–275

    Article  CAS  PubMed  Google Scholar 

  • Fudenberg G, Mirny LA (2012) Higher-order chromatin structure: bridging physics and biology. Curr Opin Genet Dev 22:115–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrick D, Sharpe JA, Arkell R, Dobbie L, Smith AJ et al (2006) Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues. PLoS Genet 2:e58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ et al (2009) Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460:863–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann R, Rechtsteiner A, Yuen KW, Muroyama A, Egelhofer T et al (2012) An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature 484:534–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaume X, Torres-Padilla ME (2015) Regulation of reprogramming and cellular plasticity through histone exchange and histone variant incorporation. Cold Spring Harb Symp Quant Biol pi:027458

    Google Scholar 

  • Gibbons RJ, Picketts DJ, Villard L, Higgs DR (1995) Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 80:837–845

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ et al (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurard-Levin ZA, Quivy JP, Almouzni G (2014) Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 83:487–517

    Article  CAS  PubMed  Google Scholar 

  • Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC et al (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452:877–881

    Article  CAS  PubMed  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harada A, Okada S, Konno D, Odawara J, Yoshimi T et al (2012) Chd2 interacts with H3.3 to determine myogenic cell fate. EMBO J 31:2994–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatanaka Y, Inoue K, Oikawa M, Kamimura S, Ogonuki N et al (2015) Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons. Proc Natl Acad Sci USA 112:14641–14646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heitz E (1928) Das Heterochromatin der Moose. I Jahrb Wiss Botan 69:762–818

    Google Scholar 

  • Hödl M, Basler K (2009) Transcription in the absence of histone H3.3. Curr Biol 19:1221–1226

    Article  PubMed  CAS  Google Scholar 

  • Hödl M, Basler K (2012) Transcription in the absence of histone H3.2 and H3K4 methylation. Curr Biol 22:2253–2257

    Article  PubMed  CAS  Google Scholar 

  • Houlard M, Berlivet S, Probst AV, Quivy JP, Hery P et al (2006) CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet 2:e181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC et al (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci USA 97:1148–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Zhou H, Katzmann D, Hochstrasser M, Atanasova E, Zhang Z (2005) Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc Natl Acad Sci USA 102:13410–13415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue A, Zhang Y (2014) Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat Struct Mol Biol 21:609–616

    Article  CAS  PubMed  Google Scholar 

  • Ishiuchi T, Enriquez-Gasca R, Mizutani E, Boskovic A, Ziegler-Birling C et al (2015) Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat Struct Mol Biol 22:662–671

    Article  CAS  PubMed  Google Scholar 

  • Jones JM, Bhattacharyya A, Simkus C, Vallieres B, Veenstra TD, Zhou M (2011) The RAG1 V(D)J recombinase/ubiquitin ligase promotes ubiquitylation of acetylated, phosphorylated histone 3.3. Immunol Lett 136:156–162

    Article  CAS  PubMed  Google Scholar 

  • Jullien J, Astrand C, Szenker E, Garrett N, Almouzni G, Gurdon JB (2012) HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes. Epigenetics Chromatin 5:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalashnikova AA, Porter-Goff ME, Muthurajan UM, Luger K, Hansen JC (2013) The role of the nucleosome acidic patch in modulating higher order chromatin structure. J R Soc Interface 10:20121022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalitsis P, Fowler KJ, Earle E, Griffiths B, Howman E et al (2003) Partially functional Cenpa-GFP fusion protein causes increased chromosome missegregation and apoptosis during mouse embryogenesis. Chromosome Res 11:345–357

    Article  CAS  PubMed  Google Scholar 

  • Katagiri C, Ohsumi K (1994) Remodeling of sperm chromatin induced in egg extracts of amphibians. Int J Dev Biol 38:209–216

    CAS  PubMed  Google Scholar 

  • Kaufman PD, Kobayashi R, Kessler N, Stillman B (1995) The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Kawamura M, Akiyama T, Tsukamoto S, Suzuki MG, Aoki F (2012) The expression and nuclear deposition of histone H3.1 in murine oocytes and preimplantation embryos. J Reprod Dev 58:557–562

    Article  CAS  PubMed  Google Scholar 

  • Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinschmidt JA, Fortkamp E, Krohne G, Zentgraf H, Franke WW (1985) Co-existence of two different types of soluble histone complexes in nuclei of Xenopus laevis oocytes. J Biol Chem 260:1166–1176

    CAS  PubMed  Google Scholar 

  • Konev AY, Tribus M, Park SY, Podhraski V, Lim CY et al (2007) CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317:1087–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    Article  CAS  PubMed  Google Scholar 

  • Kubo N, Toh H, Shirane K, Shirakawa T, Kobayashi H et al (2015) DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis. BMC Genomics 16:624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lacoste N, Woolfe A, Tachiwana H, Garea AV, Barth T et al (2014) Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. Mol Cell 53:631–644

    Article  CAS  PubMed  Google Scholar 

  • Laslett AL, Grimmond S, Gardiner B, Stamp L, Lin A et al (2007) Transcriptional analysis of early lineage commitment in human embryonic stem cells. BMC Dev Biol 7:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Latreille D, Bluy L, Benkirane M, Kiernan RE (2014) Identification of histone 3 variant 2 interacting factors. Nucleic Acids Res 42:3542–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le S, Davis C, Konopka JB, Sternglanz R (1997) Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13:1029–1042

    Article  CAS  PubMed  Google Scholar 

  • Leitch HG, McEwen KR, Turp A, Encheva V, Carroll T et al (2013) Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol 20:311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD (2010) Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 107:14075–14080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CY, Reversade B, Knowles BB, Solter D (2013) Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus. Development 140:853–860

    Article  CAS  PubMed  Google Scholar 

  • Lin CJ, Conti M, Ramalho-Santos M (2013) Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development. Development 140:3624–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CP, Xiong C, Wang M, Yu Z, Yang N et al (2012) Structure of the variant histone H3.3-H4 heterodimer in complex with its chaperone DAXX. Nat Struct Mol Biol 19:1287–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, Couble P (2005) The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437:1386–1390

    Article  CAS  PubMed  Google Scholar 

  • Loyola A, Almouzni G (2007) Marking histone H3 variants: how, when and why? Trends Biochem Sci 32:425–433

    Article  CAS  PubMed  Google Scholar 

  • Loyola A, LeRoy G, Wang YH, Reinberg D (2001) Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription. Genes Dev 15:2837–2851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino-Ramirez L, Kann MG, Shoemaker BA, Landsman D (2005) Histone structure and nucleosome stability. Expert Rev Proteomics 2:719–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattiroli F, D’Arcy S, Luger K (2015) The right place at the right time: chaperoning core histone variants. EMBO Rep 16:1454–1466

    Article  CAS  PubMed  Google Scholar 

  • Maze I, Wenderski W, Noh KM, Bagot RC, Tzavaras N et al (2015) Critical role of histone turnover in neuronal transcription and plasticity. Neuron 87:77–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGhee JD, Felsenfeld G (1980) Nucleosome structure. Annu Rev Biochem 49:1115–1156

    Article  CAS  PubMed  Google Scholar 

  • McGregor M, Hariharan N, Joyo AY, Margolis RL, Sussman MA (2014) CENP-A is essential for cardiac progenitor cell proliferation. Cell Cycle 13:739–748

    Article  CAS  PubMed  Google Scholar 

  • Mello JA, Sillje HH, Roche DM, Kirschner DB, Nigg EA, Almouzni G (2002) Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 3:329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelson JS, Bader D, Kuo F, Kozak C, Leder P (1999) Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev 13:1918–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michod D, Bartesaghi S, Khelifi A, Bellodi C, Berliocchi L et al (2012) Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation. Neuron 74:122–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monen J, Maddox PS, Hyndman F, Oegema K, Desai A (2005) Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 7:1248–1255

    Article  PubMed  CAS  Google Scholar 

  • Müller S, Almouzni G (2014) A network of players in H3 histone variant deposition and maintenance at centromeres. Biochim Biophys Acta 1839:241–250

    Article  PubMed  CAS  Google Scholar 

  • Müller S, Montes de Oca R, Lacoste N, Dingli F, Loew D, Almouzni G (2014) Phosphorylation and DNA binding of HJURP determine its centromeric recruitment and function in CenH3(CENP-A) loading. Cell Rep 8:190–203

    Article  PubMed  CAS  Google Scholar 

  • Munakata T, Adachi N, Yokoyama N, Kuzuhara T, Horikoshi M (2000) A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 5:221–233

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K et al (2012) PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486:415–419

    CAS  PubMed  Google Scholar 

  • Nakano S, Stillman B, Horvitz HR (2011) Replication-coupled chromatin assembly generates a neuronal bilateral asymmetry in C. elegans. Cell 147:1525–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nashun B, Akiyama T, Suzuki MG, Aoki F (2011) Dramatic replacement of histone variants during genome remodeling in nuclear-transferred embryos. Epigenetics 6:1489–1497

    Article  CAS  PubMed  Google Scholar 

  • Nashun B, Hill PW, Smallwood SA, Dharmalingam G, Amouroux R et al (2015) Continuous histone replacement by Hira is essential for normal transcriptional regulation and de novo DNA methylation during mouse oogenesis. Mol Cell 60:611–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng RK, Gurdon JB (2008) Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol 10:102–109

    Article  CAS  PubMed  Google Scholar 

  • Ooi SL, Priess JR, Henikoff S (2006) Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans. PLoS Genet 2:e97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orsi GA, Algazeery A, Meyer RE, Capri M, Sapey-Triomphe LM et al (2013) Drosophila Yemanuclein and HIRA cooperate for de novo assembly of H3.3-containing nucleosomes in the male pronucleus. PLoS Genet 9:e1003285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oudet P, Gross-Bellard M, Chambon P (1975) Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4:281–300

    Article  CAS  PubMed  Google Scholar 

  • Palmer DK, O’Day K, Margolis RL (1990) The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 100:32–36

    Article  CAS  PubMed  Google Scholar 

  • Perpelescu M, Hori T, Toyoda A, Misu S, Monma N et al (2015) HJURP is involved in the expansion of centromeric chromatin. Mol Biol Cell 26:2742–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Probst AV, Almouzni G (2011) Heterochromatin establishment in the context of genome-wide epigenetic reprogramming. Trends Genet 27:177–185

    Article  CAS  PubMed  Google Scholar 

  • Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G (2010) A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 19:625–638

    Article  CAS  PubMed  Google Scholar 

  • Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K et al (2008) PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40:411–420

    Article  CAS  PubMed  Google Scholar 

  • Quivy JP, Grandi P, Almouzni G (2001) Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J 20:2015–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai TS, Puri A, McBryan T, Hoffman J, Tang Y et al (2011) Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex. Mol Cell Biol 31:4107–4118

    Article  PubMed  PubMed Central  Google Scholar 

  • Raychaudhuri N, Dubruille R, Orsi GA, Bagheri HC, Loppin B, Lehner CF (2012) Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-A presence in Drosophila sperm. PLoS Biol 10:e1001434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray-Gallet D, Quivy JP, Scamps C, Martini EM, Lipinski M, Almouzni G (2002) HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell 9:1091–1100

    Article  CAS  PubMed  Google Scholar 

  • Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N et al (2011) Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell 44:928–941

    Article  CAS  PubMed  Google Scholar 

  • Richardson RT, Batova IN, Widgren EE, Zheng LX, Whitfield M et al (2000) Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. J Biol Chem 275:30378–30386

    Article  CAS  PubMed  Google Scholar 

  • Ridgway P, Brown KD, Rangasamy D, Svensson U, Tremethick DJ (2004) Unique residues on the H2A.Z containing nucleosome surface are important for Xenopus laevis development. J Biol Chem 279:43815–43820

    Article  CAS  PubMed  Google Scholar 

  • Roberts C, Sutherland HF, Farmer H, Kimber W, Halford S et al (2002) Targeted mutagenesis of the Hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivatives prior to early embryonic lethality. Mol Cell Biol 22:2318–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers RS, Inselman A, Handel MA, Matunis MJ (2004) SUMO modified proteins localize to the XY body of pachytene spermatocytes. Chromosoma 113:233–243

    Article  PubMed  Google Scholar 

  • Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M et al (2010) Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol 20:2117–2123

    Article  CAS  PubMed  Google Scholar 

  • Russo V, Martienssen RA, Riggs AD (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  • Sakai A, Schwartz BE, Goldstein S, Ahmad K (2009) Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr Biol 19:1816–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santenard A, Torres-Padilla ME (2009) Epigenetic reprogramming in mammalian reproduction: contribution from histone variants. Epigenetics 4:80–84

    Article  CAS  PubMed  Google Scholar 

  • Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME (2010) Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 12:853–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawatsubashi S, Murata T, Lim J, Fujiki R, Ito S et al (2010) A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev 24:159–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk R, Jenke A, Zilbauer M, Wirth S, Postberg J (2011) H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes. Chromosoma 120:275–285

    Article  CAS  PubMed  Google Scholar 

  • Schneiderman JI, Orsi GA, Hughes KT, Loppin B, Ahmad K (2012) Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant. Proc Natl Acad Sci USA 109:19721–19726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuh M, Lehner CF, Heidmann S (2007) Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol 17:237–243

    Article  CAS  PubMed  Google Scholar 

  • Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231

    Article  CAS  PubMed  Google Scholar 

  • Sharp JA, Fouts ET, Krawitz DC, Kaufman PD (2001) Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol 11:463–473

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Ranallo R, Choi E, Wu C (2003) Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol Cell 12:147–155

    Article  CAS  PubMed  Google Scholar 

  • Shuaib M, Ouararhni K, Dimitrov S, Hamiche A (2010) HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc Natl Acad Sci USA 107:1349–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S et al (2015) Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350:aab2006

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25

    Article  CAS  PubMed  Google Scholar 

  • Solomon LA, Li JR, Berube NG, Beier F (2009) Loss of ATRX in chondrocytes has minimal effects on skeletal development. PLoS One 4:e7106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solomon LA, Russell BA, Watson LA, Beier F, Berube NG (2013) Targeted loss of the ATR-X syndrome protein in the limb mesenchyme of mice causes brachydactyly. Hum Mol Genet 22:5015–5025

    Article  CAS  PubMed  Google Scholar 

  • Song TY, Yang JH, Park JY, Song Y, Han JW et al (2012) The role of histone chaperones in osteoblastic differentiation of C2C12 myoblasts. Biochem Biophys Res Commun 423:726–732

    Article  CAS  PubMed  Google Scholar 

  • Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  CAS  PubMed  Google Scholar 

  • Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128:747–762

    Article  CAS  PubMed  Google Scholar 

  • Szenker E, Ray-Gallet D, Almouzni G (2011) The double face of the histone variant H3.3. Cell Res 21:421–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szenker E, Lacoste N, Almouzni G (2012) A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. Cell Rep 1:730–740

    Article  CAS  PubMed  Google Scholar 

  • Szenker E, Boyarchuk E, Almouzni G (2014) Properties and functions of histone variants. In: Workman J (ed) Fundamentals of chromatin. Springer, Berlin

    Google Scholar 

  • Tachiwana H, Osakabe A, Kimura H, Kurumizaka H (2008) Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro. Nucleic Acids Res 36:2208–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachiwana H, Kagawa W, Osakabe A, Kawaguchi K, Shiga T et al (2010) Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proc Natl Acad Sci USA 107:10454–10459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachiwana H, Müller S, Blumer J, Klare K, Musacchio A, Almouzni G (2015) HJURP involvement in de novo CenH3(CENP-A) and CENP-C recruitment. Cell Rep 11:22–32

    Article  CAS  PubMed  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61

    Article  CAS  PubMed  Google Scholar 

  • Talbert PB, Ahmad K, Almouzni G, Ausio J, Berger F et al (2012) A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 5:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang MC, Jacobs SA, Wong LH, Mann JR (2013) Conditional allelic replacement applied to genes encoding the histone variant H3.3 in the mouse. Genesis 51:142–146

    Article  CAS  PubMed  Google Scholar 

  • Tang MC, Jacobs SA, Mattiske DM, Soh YM, Graham AN et al (2015) Contribution of the two genes encoding histone variant h3.3 to viability and fertility in mice. PLoS Genet 11:e1004964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50:455–461

    Article  CAS  PubMed  Google Scholar 

  • Tran V, Lim C, Xie J, Chen X (2012) Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338:679–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402:555–560

    Article  CAS  PubMed  Google Scholar 

  • Unhavaithaya Y, Orr-Weaver TL (2013) Centromere proteins CENP-C and CAL1 functionally interact in meiosis for centromere clustering, pairing, and chromosome segregation. Proc Natl Acad Sci USA 110:19878–19883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urban MK, Zweidler A (1983) Changes in nucleosomal core histone variants during chicken development and maturation. Dev Biol 95:421–428

    Article  CAS  PubMed  Google Scholar 

  • Valente LP, Silva MC, Jansen LE (2012) Temporal control of epigenetic centromere specification. Chromosome Res 20:481–492

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH et al (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden GW, Derijck AA, Posfai E, Giele M, Pelczar P et al (2007) Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39:251–258

    Article  PubMed  CAS  Google Scholar 

  • Voon HP, Hughes JR, Rode C, De La Rosa-Velazquez IA, Jenuwein T et al (2015) ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes. Cell Rep 11:405–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  • Wang MY, Guo QH, Du XZ, Zhou L, Luo Q et al (2014) HIRA is essential for the development of gibel carp. Fish Physiol Biochem 40:235–244

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Watson LA, Solomon LA, Li JR, Jiang Y, Edwards M et al (2013) Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span. J Clin Invest 123:2049–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen D, Banaszynski LA, Liu Y, Geng F, Noh KM et al (2014a) Histone variant H3.3 is an essential maternal factor for oocyte reprogramming. Proc Natl Acad Sci USA 111:7325–7330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen D, Banaszynski LA, Rosenwaks Z, Allis CD, Rafii S (2014b) H3.3 replacement facilitates epigenetic reprogramming of donor nuclei in somatic cell nuclear transfer embryos. Nucleus 5:369–375

    Article  PubMed  Google Scholar 

  • Wu Q, Qian YM, Zhao XL, Wang SM, Feng XJ et al (2012) Expression and prognostic significance of centromere protein A in human lung adenocarcinoma. Lung Cancer 77:407–414

    Article  PubMed  Google Scholar 

  • Yang JH, Choi JH, Jang H, Park JY, Han JW et al (2011a) Histone chaperones cooperate to mediate Mef2-targeted transcriptional regulation during skeletal myogenesis. Biochem Biophys Res Commun 407:541–547

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Song Y, Seol JH, Park JY, Yang YJ et al (2011b) Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition. Proc Natl Acad Sci USA 108:85–90

    Article  PubMed  Google Scholar 

  • Yang BX, El Farran CA, Guo HC, Yu T, Fang HT et al (2015) Systematic identification of factors for provirus silencing in embryonic stem cells. Cell 163:230–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeitlin SG, Patel S, Kavli B, Slupphaug G (2005) Xenopus CENP-A assembly into chromatin requires base excision repair proteins. DNA Repair (Amst) 4:760–772

    Article  CAS  Google Scholar 

  • Zhao ZK, Li W, Wang MY, Zhou L, Wang JL, Wang YF (2011) The role of HIRA and maternal histones in sperm nucleus decondensation in the gibel carp and color crucian carp. Mol Reprod Dev 78:139–147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize for not having been able to acknowledge all the colleagues who contributed to this work. This work was supported by la Ligue Nationale contre le Cancer (Equipe labellisée Ligue), the European Commission Network of Excellence EpiGeneSys (HEALTH-F4-2010-257082), ERC Advanced Grant 2009-AdG_20090506 “Eccentric”, the European Commission large-scale integrating project FP7_HEALTH-2010-259743 “MODHEP”, ANR-11-LABX-0044_DEEP and ANR-10-IDEX-0001-02 PSL, ANR “CHAPINHIB” ANR-12-BSV5-0022-02, ANR “Epicure” ANR-14-CE16-0009, ANR “CELLECTCHIP” ANR-14-CE10-0013 and Aviesan-ITMO cancer project “Epigenomics of breast cancer”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Almouzni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Müller, S., Filipescu, D., Almouzni, G. (2016). Developmental Roles of Histone H3 Variants and Their Chaperones. In: Bazett-Jones, D., Dellaire, G. (eds) The Functional Nucleus. Springer, Cham. https://doi.org/10.1007/978-3-319-38882-3_17

Download citation

Publish with us

Policies and ethics