Skip to main content

Role of PACAP in Astrocytes and Astrocytic Tumors

  • Chapter
  • First Online:
Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

  • 547 Accesses

Abstract

In the central nervous system (CNS), astrocytes are the most numerous among glial cells and have diverse physiological functions. These cells also play an important role in many CNS disorders and pathologies. Pituitary adenylate cyclase activating polypeptide (PACAP) is abundantly expressed in the CNS, acting as a neuroprotectant against various neurological threats. PACAP also has been studied as an astrocytic regulator from diversified aspects. PACAP receptor expression has dynamically changed in pathological condition. In this chapter, we summarize the expression and function of PACAP and PACAP receptors in astrocytes and astrocytic tumors, and discuss the role of PACAP in physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia. 2014;62:1377–91.

    Article  PubMed  Google Scholar 

  2. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol (Berl). 2010;119:7–35.

    Article  Google Scholar 

  3. Sovrea AS, Bosca AB. Astrocytes reassessment—an evolving concept part one: embryology, biology, morphology and reactivity. J Mol Psychiatry. 2013;1:18.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Phatnani H, Maniatis T. Astrocytes in neurodegenerative disease. Cold Spring Harb Perspect Biol. 2015;7(6).

    Google Scholar 

  5. Jha MK, Suk K. Management of glia-mediated neuroinflammation and related patents. Recent Pat Inflamm Allergy Drug Discov. 2014;8:118–24.

    Article  CAS  PubMed  Google Scholar 

  6. Bekar LK, He W, Nedergaard M. Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo. Cereb Cortex. 2008;18:2789–95.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Caruso C, Carniglia L, Durand D, Scimonelli TN, Lasaga M. Astrocytes: new targets of melanocortin 4 receptor actions. J Mol Endocrinol. 2013;51:R33–50.

    Article  CAS  PubMed  Google Scholar 

  8. Nakamachi T, Farkas J, Watanabe J, Ohtaki H, Dohi K, Arata S, et al. Role of PACAP in neural stem/progenitor cell and astrocyte—from neural development to neural repair. Curr Pharm Des. 2011;17:973–84.

    Article  CAS  PubMed  Google Scholar 

  9. Masmoudi-Kouki O, Gandolfo P, Castel H, Leprince J, Fournier A, Dejda A, et al. Role of PACAP and VIP in astroglial functions. Peptides. 2007;28:1753–60.

    Article  CAS  PubMed  Google Scholar 

  10. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989;164:567–74.

    Article  CAS  PubMed  Google Scholar 

  11. Arimura A, Shioda S. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction. Front Neuroendocrinol. 1995;16:53–88.

    Article  CAS  PubMed  Google Scholar 

  12. Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev. 2000;21:619–70.

    CAS  PubMed  Google Scholar 

  13. Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, et al. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev. 1998;50:265–70.

    CAS  PubMed  Google Scholar 

  14. Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, et al. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol. 2012;166:4–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tatsuno I, Gottschall PE, Koves K, Arimura A. Demonstration of specific binding sites for pituitary adenylate cyclase activating polypeptide (PACAP) in rat astrocytes. Biochem Biophys Res Commun. 1990;168:1027–33.

    Article  CAS  PubMed  Google Scholar 

  16. Tatsuno I, Gottschall PE, Arimura A. Specific binding sites for pituitary adenylate cyclase activating polypeptide (PACAP) in rat cultured astrocytes: molecular identification and interaction with vasoactive intestinal peptide (VIP). Peptides. 1991;12:617–21.

    Article  CAS  PubMed  Google Scholar 

  17. Grimaldi M, Cavallaro S. Functional and molecular diversity of PACAP/VIP receptors in cortical neurons and type I astrocytes. Eur J Neurosci. 1999;11:2767–72.

    Article  CAS  PubMed  Google Scholar 

  18. Grimaldi M, Cavallaro S. Expression and coupling of PACAP/VIP receptors in cortical neurons and type I astrocytes. Ann N Y Acad Sci. 2000;921:312–6.

    Article  CAS  PubMed  Google Scholar 

  19. Hashimoto H, Kunugi A, Arakawa N, Shintani N, Fujita T, Kasai A, et al. Possible involvement of a cyclic AMP-dependent mechanism in PACAP-induced proliferation and ERK activation in astrocytes. Biochem Biophys Res Commun. 2003;311:337–43.

    Article  CAS  PubMed  Google Scholar 

  20. Chi-Wei L, Chang SL, Weng CF. Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates the expression of PACAP in cultured tilapia astrocytes. Exp Biol Med. 2007;232:262–76.

    Google Scholar 

  21. Joo KM, Chung YH, Kim MK, Nam RH, Lee BL, Lee KH, et al. Distribution of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC1, VPAC2, and PAC1 receptor) in the rat brain. J Comp Neurol. 2004;476:388–413.

    Article  CAS  PubMed  Google Scholar 

  22. Nakamachi T, Ohtaki H, Yofu S, Dohi K, Watanabe J, Hayashi D, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) co-localizes with activity-dependent neuroprotective protein (ADNP) in the mouse brains. Regul Pept. 2008;145:88–95.

    Article  CAS  PubMed  Google Scholar 

  23. Nakamachi T, Nakamura K, Oshida K, Kagami N, Mori H, Watanabe J, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates proliferation of reactive astrocytes in vitro. J Mol Neurosci. 2011;43:16–21.

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki R, Arata S, Nakajo S, Ikenaka K, Kikuyama S, Shioda S. Expression of the receptor for pituitary adenylate cyclase-activating polypeptide (PAC1-R) in reactive astrocytes. Brain Res Mol Brain Res. 2003;115:10–20.

    Article  CAS  PubMed  Google Scholar 

  25. Tsuchikawa D, Nakamachi T, Tsuchida M, Wada Y, Hori M, Farkas J, et al. Neuroprotective effect of endogenous pituitary adenylate cyclase-activating polypeptide on spinal cord injury. J Mol Neurosci. 2012;48:508–17.

    Article  CAS  PubMed  Google Scholar 

  26. Nakamachi T, Tsuchida M, Kagami N, Yofu S, Wada Y, Hori M, et al. IL-6 and PACAP receptor expression and localization after global brain ischemia in mice. J Mol Neurosci. 2012;48:518–25.

    Article  CAS  PubMed  Google Scholar 

  27. Nakamachi T, Farkas J, Kagami N, Wada Y, Hori M, Tsuchikawa D, et al. Expression and distribution of pituitary adenylate cyclase-activating polypeptide receptor in reactive astrocytes induced by global brain ischemia in mice. Acta Neurochir Suppl. 2013;118:55–9.

    PubMed  Google Scholar 

  28. Nishimoto M, Miyakawa H, Wada K, Furuta A. Activation of the VIP/VPAC2 system induces reactive astrocytosis associated with increased expression of glutamate transporters. Brain Res. 2011;1383:43–53.

    Article  CAS  PubMed  Google Scholar 

  29. Tatsuno I, Morio H, Tanaka T, Uchida D, Hirai A, Tamura Y, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulator of astrocytes: PACAP stimulates proliferation and production of interleukin 6 (IL-6), but not nerve growth factor (NGF), in cultured rat astrocyte. Ann N Y Acad Sci. 1996;805:482–8.

    Article  CAS  PubMed  Google Scholar 

  30. Moroo I, Tatsuno I, Uchida D, Tanaka T, Saito J, Saito Y, et al. Pituitary adenylate cyclase activating polypeptide (PACAP) stimulates mitogen-activated protein kinase (MAPK) in cultured rat astrocytes. Brain Res. 1998;795:191–6.

    Article  CAS  PubMed  Google Scholar 

  31. Nakatani M, Seki T, Shinohara Y, Taki C, Nishimura S, Takaki A, et al. Pituitary adenylate cyclase-activating peptide (PACAP) stimulates production of interleukin-6 in rat Muller cells. Peptides. 2006;27:1871–6.

    Article  CAS  PubMed  Google Scholar 

  32. Dejda A, Sokolowska P, Nowak JZ. Neuroprotective potential of three neuropeptides PACAP. VIP PHI Pharmacol Rep. 2005;57:307–20.

    CAS  PubMed  Google Scholar 

  33. Ohtaki H, Nakamachi T, Dohi K, Shioda S. Role of PACAP in ischemic neural death. J Mol Neurosci. 2008;36:16–25.

    Article  CAS  PubMed  Google Scholar 

  34. Nakamachi T, Ohtaki H, Yofu S, Dohi K, Watanabe J, Mori H, et al. Endogenous pituitary adenylate cyclase activating polypeptide is involved in suppression of edema in the ischemic brain. Acta Neurochir Suppl. 2010;106:43–6.

    Article  PubMed  Google Scholar 

  35. Somogyvari-Vigh A, Reglodi D. Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide. Curr Pharm Des. 2004;10:2861–89.

    Article  CAS  PubMed  Google Scholar 

  36. Endo K, Nakamachi T, Seki T, Kagami N, Wada Y, Nakamura K, et al. Neuroprotective effect of PACAP against NMDA-induced retinal damage in the mouse. J Mol Neurosci. 2011;43:22–9.

    Article  CAS  PubMed  Google Scholar 

  37. Masmoudi-Kouki O, Douiri S, Hamdi Y, Kaddour H, Bahdoudi S, Vaudry D, et al. Pituitary adenylate cyclase-activating polypeptide protects astroglial cells against oxidative stress-induced apoptosis. J Neurochem. 2011;117:403–11.

    Article  CAS  PubMed  Google Scholar 

  38. Jozwiak-Bebenista M, Kowalczyk E, Nowak JZ. The cyclic AMP effects and neuroprotective activities of PACAP and VIP in cultured astrocytes and neurons exposed to oxygen-glucose deprivation. Pharmacol Rep. 2015;67:332–8.

    Article  CAS  PubMed  Google Scholar 

  39. Shioda S, Ohtaki H, Nakamachi T, Dohi K, Watanabe J, Nakajo S, et al. Pleiotropic functions of PACAP in the CNS: neuroprotection and neurodevelopment. Ann N Y Acad Sci. 2006;1070:550–60.

    Article  CAS  PubMed  Google Scholar 

  40. Kong LY, Maderdrut JL, Jeohn GH, Hong JS. Reduction of lipopolysaccharide-induced neurotoxicity in mixed cortical neuron/glia cultures by femtomolar concentrations of pituitary adenylate cyclase-activating polypeptide. Neuroscience. 1999;91:493–500.

    Article  CAS  PubMed  Google Scholar 

  41. Li M, David C, Kikuta T, Somogyvari-Vigh A, Arimura A. Signaling cascades involved in neuroprotection by subpicomolar pituitary adenylate cyclase-activating polypeptide 38. J Mol Neurosci. 2005;27:91–105.

    Article  PubMed  Google Scholar 

  42. Sofroniew MV. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist. 2014;20:160–72.

    Article  CAS  PubMed  Google Scholar 

  43. Loddick SA, Turnbull AV, Rothwell NJ. Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1998;18:176–9.

    Article  CAS  PubMed  Google Scholar 

  44. Tatsuno I, Somogyvari-Vigh A, Mizuno K, Gottschall PE, Hidaka H, Arimura A. Neuropeptide regulation of interleukin-6 production from the pituitary: stimulation by pituitary adenylate cyclase activating polypeptide and calcitonin gene-related peptide. Endocrinology. 1991;129:1797–804.

    Article  CAS  PubMed  Google Scholar 

  45. Nagashima AC, Giacomini D, Castro CP, Pereda MP, Renner U, Stalla GK, et al. Transcriptional regulation of interleukin-6 in pituitary folliculo-stellate TtT/GF cells. Mol Cell Endocrinol. 2003;201:47–56.

    Article  CAS  PubMed  Google Scholar 

  46. Matsumoto H, Koyama C, Sawada T, Koike K, Hirota K, Miyake A, et al. Pituitary folliculo-stellate-like cell line (TtT/GF) responds to novel hypophysiotropic peptide (pituitary adenylate cyclase-activating peptide), showing increased adenosine 3′,5′-monophosphate and interleukin-6 secretion and cell proliferation. Endocrinology. 1993;133:2150–5.

    CAS  PubMed  Google Scholar 

  47. Gottschall PE, Tatsuno I, Arimura A. Regulation of interleukin-6 (IL-6) secretion in primary cultured rat astrocytes: synergism of interleukin-1 (IL-1) and pituitary adenylate cyclase activating polypeptide (PACAP). Brain Res. 1994;637:197–203.

    Article  CAS  PubMed  Google Scholar 

  48. Ohtaki H, Nakamachi T, Dohi K, Aizawa Y, Takaki A, Hodoyama K, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proc Natl Acad Sci U S A. 2006;103:7488–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brenneman DE. Neuroprotection: a comparative view of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Peptides. 2007;28:1720–6.

    Article  CAS  PubMed  Google Scholar 

  50. Brenneman DE, Hauser JM, Spong C, Phillips TM. Chemokine release is associated with the protective action of PACAP-38 against HIV envelope protein neurotoxicity. Neuropeptides. 2002;36:271–80.

    Article  CAS  PubMed  Google Scholar 

  51. Sanchez A, Tripathy D, Grammas P. RANTES release contributes to the protective action of PACAP38 against sodium nitroprusside in cortical neurons. Neuropeptides. 2009;43:315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bassan M, Zamostiano R, Davidson A, Pinhasov A, Giladi E, Perl O, et al. Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J Neurochem. 1999;72:1283–93.

    Article  CAS  PubMed  Google Scholar 

  53. Gozes I, Divinsky I, Pilzer I, Fridkin M, Brenneman DE, Spier AD. From vasoactive intestinal peptide (VIP) through activity-dependent neuroprotective protein (ADNP) to NAP: a view of neuroprotection and cell division. J Mol Neurosci. 2003;20:315–22.

    Article  CAS  PubMed  Google Scholar 

  54. Gozes I. Activity-dependent neuroprotective protein: from gene to drug candidate. Pharmacol Ther. 2007;114:146–54.

    Article  CAS  PubMed  Google Scholar 

  55. Gozes I. NAP (davunetide) provides functional and structural neuroprotection. Curr Pharm Des. 2011;17:1040–4.

    Article  CAS  PubMed  Google Scholar 

  56. Nakamachi T, Li M, Shioda S, Arimura A. Signaling involved in pituitary adenylate cyclase-activating polypeptide-stimulated ADNP expression. Peptides. 2006;27:1859–64.

    Article  CAS  PubMed  Google Scholar 

  57. Masmoudi O, Gandolfo P, Leprince J, Vaudry D, Fournier A, Patte-Mensah C, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates endozepine release from cultured rat astrocytes via a PKA-dependent mechanism. FASEB J. 2003;17:17–27.

    Article  CAS  PubMed  Google Scholar 

  58. Masmoudi-Kouki O, Gandolfo P, Leprince J, Vaudry D, Pelletier G, Fournier A, et al. PACAP stimulates biosynthesis and release of endozepines from rat astrocytes. Ann N Y Acad Sci. 2006;1070:411–6.

    Article  CAS  PubMed  Google Scholar 

  59. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;61:215–25.

    Article  PubMed  Google Scholar 

  60. Ahmed R, Oborski MJ, Hwang M, Lieberman FS, Mountz JM. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag Res. 2014;6:149–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Robberecht P, Woussen-Colle MC, Vertongen P, De Neef P, Hou X, Salmon I, et al. Expression of pituitary adenylate cyclase activating polypeptide (PACAP) receptors in human glial cell tumors. Peptides. 1994;15:661–5.

    Article  CAS  PubMed  Google Scholar 

  62. Vertongen P, Camby I, Darro F, Kiss R, Robberecht P. VIP and pituitary adenylate cyclase activating polypeptide (PACAP) have an antiproliferative effect on the T98G human glioblastoma cell line through interaction with VIP2 receptor. Neuropeptides. 1996;30:491–6.

    Article  CAS  PubMed  Google Scholar 

  63. Sharma A, Walters J, Gozes Y, Fridkin M, Brenneman D, Gozes I, et al. A vasoactive intestinal peptide antagonist inhibits the growth of glioblastoma cells. J Mol Neurosci. 2001;17:331–9.

    Article  CAS  PubMed  Google Scholar 

  64. Dufes C, Alleaume C, Montoni A, Olivier JC, Muller JM. Effects of the vasoactive intestinal peptide (VIP) and related peptides on glioblastoma cell growth in vitro. J Mol Neurosci. 2003;21:91–102.

    Article  CAS  PubMed  Google Scholar 

  65. Nakamachi T, Sugiyama K, Watanabe J, Imai N, Kagami N, Hori M, et al. Comparison of expression and proliferative effect of pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors on human astrocytoma cell lines. J Mol Neurosci. 2014;54:388–94.

    Article  CAS  PubMed  Google Scholar 

  66. Matyash V, Kettenmann H. Heterogeneity in astrocyte morphology and physiology. Brain Res Rev. 2010;63:2–10.

    Article  CAS  PubMed  Google Scholar 

  67. Oberheim NA, Goldman SA, Nedergaard M. Heterogeneity of astrocytic form and function. Methods Mol Biol. 2012;814:23–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rusnakova V, Honsa P, Dzamba D, Stahlberg A, Kubista M, Anderova M. Heterogeneity of astrocytes: from development to injury—single cell gene expression. PLoS One. 2013;8:e69734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI 23249079, 15K15670, 15H04394 and by a research grant from Toyama First Bank Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Nakamachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nakamachi, T. (2016). Role of PACAP in Astrocytes and Astrocytic Tumors. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_27

Download citation

Publish with us

Policies and ethics