Skip to main content

Iron Biofortification of Cereals Grown Under Calcareous Soils: Problems and Solutions

  • Chapter
  • First Online:
Soil Science: Agricultural and Environmental Prospectives

Abstract

Iron (Fe) deficiency is a prevalent nutritional deficiency throughout the world, affecting an estimated 3.7 billion people. Increasing Fe concentration in foodcrops is an important global challenge due to the high incidence of Fe deficiency in human population. Further, cereals grown on calcareous soil are low in Fe contents. High pH, high temperature, low organic matter and poorly managed soil with respect to fertility are the factors which cause low Fe availability to cereal crops in calcareous soil. Iron fertilization in calcareous soil is not effective due to their rapid conversion into unavailable forms and poor mobility of Fe in phloem. Iron-organic compounds in manure are effective in maintaining Fe availability to plants. Fe bioavailability inhibitors such as polyphenols and phytate inhibit iron absorption but it was concluded that their inhibitory effect on iron absorption can be limited by increasing iron content. Ferritin, an iron storage protein, can deposit thousands of iron atoms asnon-toxic form and ferritin iron is bioavailable to humans as ferrous sulphate. Improving both concentration and bioavailability of Fe in cereal grains is, therefore, an important challenge and a high-priority research area. Hence, there is a need for effective strategies to overcome Fe deficiency in cereals and to increase Fe bioavailabilty in cereals grains. Biofortification of food crops with Fe to combat iron deficiency problems in humans, is a cost-effective and sustainable agricultural strategy to alleviate malnutrition. We hypothesized that Fe nutrition management in calcareous soil can increase growth, yield and Fe bioavailability from cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El Rahaman SM, El Maki HB, Idris WH, Hassan AB, Babiker EE, El Tinay AH (2007) Antinutritional factors content and hydrochloric acid extractability of minerals in pearl millet cultivars as affected by germination. Int J Food Sci Nutr 58:6–17

    Article  CAS  Google Scholar 

  • Abd El-Haleem AA (1996) Iron availability as affected by CaCO3 Particle size and Fe:P ratio in Fe-P-containing compounds. Egypt J Appl Sci 11:308–327

    Google Scholar 

  • Aggelides SM, Londra PA (2000) Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresour Technol 71:253–259

    Article  CAS  Google Scholar 

  • Aggett PJ, Hathcock J, Jukes D, Richardson DP, Calder PC, Bischoff-Ferrari H, Nicklas T, Mu¨hlebach S, Kwon O, Lewis J, Lugard MJF, Prock P (2012) Nutrition issues in Codex: health claims, nutrient reference values and WTO agreements: a conference report. Eur J Nutr 51:1–7

    Article  CAS  PubMed Central  Google Scholar 

  • Akinrinde EA (2006) Issues of optimum nutrient supply for sustainable crop production in tropical developing countries. Pak J Nutr 5:387–397

    Article  Google Scholar 

  • Alcantara E, Romera FJ, Canete M, Guardia MD (2002) Effect of bicarbonate andiron supply on Fe (III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock nema guard. J Plant Nutr 23:1607–1617

    Article  Google Scholar 

  • Al-Rejaie SS, Aleisa AM, Sayed-Ahmed MM, Al-Shabanah OA, Abuohashish HM, Ahmed MM, Al-Hosaini KA, Hafez MM (2013) Protective effect of rutin on the antioxidant genes expres-sion in hypercholestrolemic male Westar rat. BMC Complement Altern Med 13:136–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aly SSM, Soliman SM (1998) Impact of some organic acids on correcting iron chlorosis in two soybean geneotypes grown in calcareous soil. Nutr Cycl Agroecosyst 51:185–191

    Article  CAS  Google Scholar 

  • Ambe S, Ambe F, Nozuki T (1987) Mossbauer study of iron in soybean seeds. J Agric Food Chem 35:292–296

    Article  CAS  Google Scholar 

  • Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599

    Article  CAS  PubMed  Google Scholar 

  • Aung MS, Masuda H, Kobayashi T, Nakanishi H, Yamakawa T, Nishizawa NK (2013) Iron biofortification of Myanmar rice. Front Plant Sci 4:158. doi:10.3389/fpls.2013.00158

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey RL, West KP Jr, Black RE (2015) The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66:22–33

    Article  CAS  PubMed  Google Scholar 

  • Barikmoa I, Ouattara F, Oshaug A (2007) Differences in micronutrients content found in cereals from various parts of Mali. J Food Comp Anal 20:681–687

    Article  CAS  Google Scholar 

  • BaÅŸar H (2000) Factors affecting iron chlorosis observed in peach trees in the Bursa region. Turk J Agric 24:237–245

    Google Scholar 

  • BaÅŸar H (2003) Analytical methods for evaluating iron chlorosis in peach trees. Commun Soil Sci Plant Anal 34:327–341

    Article  CAS  Google Scholar 

  • BaÅŸar H (2005) Methods for estimating soil iron availability to chlorotic peach trees. Commun Soil Sci Plant Anal 36:1187–1198

    Article  CAS  Google Scholar 

  • Bashir K, Takahashi R, Nakanishi H, Nishizawa NK (2013) The road to micronutrient biofortification of rice: progressand prospects. Front Plant Sci 4:15. doi:10.3389/fpls.2013.00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckwith RS, Tiiier KG, Suwadji E (1975) The effect of flooding on the availability of trace metals to tice in soils of differing organic matter status. Trac Elem Soil Plant Anim Syst 4:128–135

    Google Scholar 

  • Benoist BD, Mclean E, Anderrson M, Rogers L (2008) Iodine deficiency in 2007: global progress since, 2003

    Google Scholar 

  • Besharati H, Salehrastin N (1999) The effect of sulfur inoculated with Thiobacillus bacteria to increase P uptake. J Soil Water Sci 13:23–39

    Google Scholar 

  • Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, Mathers C, Rivera J (2008) Maternal and child under nutrition: global and regional exposures and health consequences. Lancet 371:243–260

    Article  PubMed  Google Scholar 

  • Bloom PR, Inskeep WP (1988) Factors affecting bicarbonate chemistry and iron chlorosis in soils. J Plant Nutr 9:215–228

    Article  Google Scholar 

  • Bothwell TH, MacPhail AP (2004) The potential role of NaFeEDTA as aniron fortificant. Food Chem Toxicol 74:421–434

    CAS  Google Scholar 

  • Bothwell T, Cori H, Glahn R, Hertrampf E, Kratky Z, Miller D, Rodenstein M, Streekstra H, Teucher B, Turner E, Yeung CK, Zimmerman MB (2004) Enhancing the absorption of fortification iron – a sustain task force report. Int J Vitam Nutr Res 74:387–401

    Article  PubMed  CAS  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification: a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:20–32

    Article  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:31–40

    Article  Google Scholar 

  • Briat JF, Lobréaux S (1997) Iron transport and storage in plants. Trend Plant Sci 2:187–193

    Article  Google Scholar 

  • Briat JF, Fobis-Loisy I, Grignon N, Lobreaux S, Pascal N, Savino G, Thoiron S, Wiren NV, Wuytswinkel OV (1995) Cellular and molecular aspects of iron metabolism in plants. Biol Cell 84:69–81

    Article  CAS  Google Scholar 

  • Briat JF, Duc C, Ravet K, Gaymard F (2010a) Ferritins and iron storage in plants. Biochim Biophys Acta 1800:806–814

    Article  CAS  PubMed  Google Scholar 

  • Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F (2010b) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105:811–822

    Article  CAS  PubMed  Google Scholar 

  • Brinch-Pedersen H, Borg S, Tauris B, Holm PB (2007) Molecular genetic approaches to increasing mineral availability and vitamin content of cereals. J Cereal Sci 46:308–326

    Article  CAS  Google Scholar 

  • Brzóska MM, GalaË™zyn-Sidorczuk M, Dzwilewska I (2012) Ethanol consumption modifiesthe body turnover of cadmium: a study in a rat model of human exposure. J Appl Toxicol 33:784–798

    Article  PubMed  CAS  Google Scholar 

  • Bujoczek G, Oleszkiewicz J, Sparling R, Cenkowski S (2000) High solid anaerobic digestion of chicken manure. J Agric Eng Res 76:51–60

    Article  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Cao H, Han ZH, Xu XF, Zhang Y (2002) Iron nutrition in higher plants. Plant Physiol Commun 38:180–186

    CAS  Google Scholar 

  • Carlson D, Nørgaard JV, Torun B, Cakmak I, Poulsen HD (2012) Bioavailability of trace elements in beans and zinc-biofortified wheat in pigs. Biol Trace Elem Res 150:147–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Celik H, Katkat AV (2007) Some parameters in relation to iron nutrition status of peach orchards. J Biol Environ Sci 1:111–115

    Google Scholar 

  • Chatterjee C, Gopal R, Dube BK (2006) Impact of iron stress on biomass, yield, metabolism and quality of potato (Solanumtuberosum L.). Scr Hortic 108:1–6

    Article  CAS  Google Scholar 

  • Cifuentes FR, Lindemann WC (1993) Organic matter stimulation of elemental sulfur oxidation in a calcareous soil. Soil Sci Soc Am J 57:727–731

    Article  CAS  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-liketransporters. Ann Bot Lond 103:1–11

    Article  CAS  Google Scholar 

  • de Cesare Barbosa GM, de Oliveira JF, Miyazawa M, Ruiz DB, Filho JT (2015) Aggregation and clay dispersion of an oxisol treated with swine and poultry manures. Soil Till Res 146:279–285

    Article  Google Scholar 

  • del Campillo M, Barron CV, Oglesias J, Dalmao R, Marce X (1998) Fertilization with iron (II) phosphate effectively prevents iron chlorosis in pear trees. 2–7 August 2008. In: Abstract XXV international horticulture congress ISHS, Bruxelles

    Google Scholar 

  • Del Pozo-Insfran D, Percival SS, Talcott ST (2006) Acai (Euterpe oleracea Mart.) polyphenolics in their glycoside and aglycone forms induce apoptosis of HL-60 leukemia cells. J Agric Food Chem 54:1222–1229

    Article  PubMed  CAS  Google Scholar 

  • Deluca TH, Skogley EO, Engle RE (1989) Band-applied elemental sulfur to enhance the phytoavailability of phosphorus in alkaline calcareous soils. Biol Fertile Soil 7:346–350

    Google Scholar 

  • Demir K, Sahin O, Kadioglu YK, Pilbeam DJ, Gunes A (2010) Essential and non-essential element composition of tomato plants fertilized with poultry manure. Sci Hort 127:16–22

    Article  Google Scholar 

  • Doria E, Galleschi L, Calucci L, Pinzino C, Pilu R, Cassani E (2009) Phyticacid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant. J Exp Bot 60:967–978

    Article  CAS  PubMed  Google Scholar 

  • Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FM (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985

    Article  PubMed  CAS  Google Scholar 

  • Dudley LM, McNeazl BL, Baham JE (1986) Time-dependent changes in soluble organics, copper, nickel and zinc from sludge amended soils. J Environ Qual 15:188–192

    Article  CAS  Google Scholar 

  • Duque X, Martinez H, Vilchis-Gil J, Mendoza E, Flores-Hernández S, Morán S, Navarro F, Roque-Evangelista V, Serrano A, Mera RM (2014) Effect of supplementation with ferrous sulfate or iron bis-glycinate chelate on ferritin concentration in Mexican school children: a randomized controlled trial. Nutr J 13:71–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fageria NK, Aligar VCB, Clark RB (2002) Micronutrients in crop production. Adv Agric 77:85–268

    Google Scholar 

  • Fairweather-Tait S, Lynch S, Hotz CH, Hurrell R, Abrahamse L, Beebe S (2005) The usefulness of in vitro models to predict the bioavailability of ironand zinc: a consensus statement from the harvest plus expert consultation. Int J Vitam Nutr Res 75:371–374

    Article  CAS  PubMed  Google Scholar 

  • Fan JL, Hu ZY, Ziadi N, Xia X, Wu CYH (2010) Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativaL.). Environ Pollut 158:409–415

    Article  CAS  PubMed  Google Scholar 

  • FAO (2015) The State of food insecurity in the world 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO, Rome

    Google Scholar 

  • Fardet A, Rock E, Remesy C (2008) Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci 48:258–276

    Article  CAS  Google Scholar 

  • Frossard E, Bucher M, Ma-chler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn, and Ca in plants for human nutrition. J Sci Food Agric 80:861–879

    Article  CAS  Google Scholar 

  • Gao MX, Hu ZY, Wang GD (2010) Effect of elemental sulfur supply on cadmium uptake into rice seedlings when cultivated in low and excess cadmium soils. Commun Soil Sci Plant Anal 41:990–1003

    Article  CAS  Google Scholar 

  • Garcia ER, Hernandez EG, Villanova BG (1999) Phytic acid content in milled cereal products and breads. Food Res Int 32:217–221

    Article  Google Scholar 

  • Garcia-Mina J, Cantera GR, Zamarreno A (2003) Interaction of different iron chelates with and alkaline and calcaresous soil: a complementaty methodology to evaluate the performance of iron compounds in the correction of iron chlorosis. J Plnat Nutr 26:1943–1954

    Article  CAS  Google Scholar 

  • Gardiner DT, Miller RW, Badamchian B, Azzari AS, Sisso DR (1995) Effects of repeated sewage sludge applications on plant accumulation of heavy metals. Agric Ecosyst Environ 55:1–6

    Article  Google Scholar 

  • Gautam S, Patel K, Srinivasan K (2010) Higher bioaccessibility of iron and zinc from food grains in the presence of garlic and onion. J Agric Food Chem 58:8426–8429

    Article  CAS  PubMed  Google Scholar 

  • Gibson RS, Bailey KB, Gibbs M, Ferguson EL (2010) A review of phytate, iron, zinc, and calcium concentrationsin plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr Bull 31:134–146

    Article  Google Scholar 

  • Golub MS, Hogrefe CE, Widaman KF, Capitanio JP (2009) Iron deficiency anemia and affective response in rhesus monkey infants. Dev Psychobiol 51:47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman BA (1987) The characterization of Fe complexes with soil organic matter. pp. 677–687. In: Stucki JW, Goodman BA, Schwertmann U (eds) Iron in soil and clay minerals. Reidel, Dordrecht

    Google Scholar 

  • Goto F, Yoshihara T (2001) Improvement of micronutrient contents by genetic engineering – development of high iron content crops. Plant Biotechnol 18:7–15

    Article  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  PubMed  Google Scholar 

  • Graber ER, Tsechansky L, Lew B, Cohen E (2014) Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe. Eur J Soil Sci 65:162–172

    Article  CAS  Google Scholar 

  • Graham RD (2003) Biofortification: a global challenge. Int Rice Res Notes 28:4–8

    Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Gupta G, Gardner W (2005) Use of clay mineral (montmorillonite) for reducing poultry litter leachate toxicity (EC50). J Hazard Mater 118:81–83

    Article  CAS  PubMed  Google Scholar 

  • Habib M (2009) Effect of foliar application of Zn and Fe on wheat yield and quality. Afr J Biotechnol 8:6795–6798

    Article  CAS  Google Scholar 

  • Hansen NC, Jolley VD, Naeve SL, Goos RJ (2004) Iron deficiency of soybean in the north central US and associated soil properties. Soil Sci Plant Nutr 50:983–987

    Article  CAS  Google Scholar 

  • Hass JD, Beard JL, Murray-Kolb LE, del Mundo AM, Felix A, Gregorio GB (2005) Iron-biofortified rice improves the iron stores of non-anemic Filipino women. J Nutr 135:2823–2830

    Google Scholar 

  • Hassan NA, Olson RA (1966) Influence of applied sulphur on availability of soil nutrients for corn nutrition. Soil Sci Am Proc 30:286–288

    Article  Google Scholar 

  • Heydarnezhad F, Shahinrokhsa P, Vahed HS, Besharati H (2012) Influence of elemental sulfur and sulfur oxidizing bacteria on some nutrient deficiency in calcareous soils. Int J Agric Crop Sci 4:735–739

    Google Scholar 

  • Holden MJ, Luster DG, Chaney RL, Buckout TJ, Robinson C (1991) Fe3+-chelate reducates activity of plasma membranes isolated from tomato (Lycopersicon esculentum Mill.) roots. Plant Physiol 197:537–544

    Article  Google Scholar 

  • Hu ZY, Xu CK (2002) Soil sulfur and environmental quality. In: Chen HM (ed) Behaviors of chemical sub-stances in soils and environmental quality. Science Press, Beijing, pp 283–307

    Google Scholar 

  • Hu ZY, Zhu YG, Li M, Zhang LG, Cao ZH, Smith FA (2007) Sulfur (S)–induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativaL.) seedlings. Environ Pollut 147:387–393

    Article  CAS  PubMed  Google Scholar 

  • Hunt J (2003) Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr 78:633–639

    Google Scholar 

  • Hurrell RF (2002) Fortification: overcoming technical and practical barriers. J Nutr 132:806–812

    Google Scholar 

  • Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91:1461–1467

    Article  CAS  Google Scholar 

  • Hurrell RF, Reddy MB, Juillerat MA, Cook JD (2003) Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am J Clin Nutr 77:1213–1219

    CAS  PubMed  Google Scholar 

  • Ibrahim W, Lee US, Yeh CC, Szabo J, Bruckner G, Chow CK (1997) Oxidative stress and antioxidant status in mouse liver: effects of dietary lipid, vitamin E and iron. J Nutr 127:1401–1406

    CAS  PubMed  Google Scholar 

  • Idris WH, Abd El Rahaman SM, El Maki HB, Babiker EE, El Tinay AH (2006) Effect of malt pretreatment on phytate and tannin level of two sorghum (Sorghum bicolor) cultivars. Int J Food Sci Technol 41:1229–1233

    Article  CAS  Google Scholar 

  • Imdad A, Bhutta ZA (2012) Routine iron/folate supplementation during pregnancy: effect on maternal anaemia and birth outcomes. Paediatr Perinat Epidemiol 26(s1):168–177

    Article  PubMed  Google Scholar 

  • Iqbal M, Puschenreiter M, Oburger E, Santner J, Wenzel WW (2012) Sulfur-aided phytoextraction of Cd and Zn by Salix smithiana combined with in situ metal immobilization by gravel sludge and red mud. Environ Pollut 170:222–231

    Article  CAS  PubMed  Google Scholar 

  • Jeffery S, Bezemer TM, Cornelissen G, Kuyper TW, Lehmann J, Mommer L, Sohi SP, van de Voorde TFJ, Wardle DA, Van Groenigen JW (2015) The way forward in biochar research: targeting trade-offs between the potential wins. Glob Chang Biol Bioenergy 7:1–13

    Article  CAS  Google Scholar 

  • Jeong J, Guerinot ML (2008) Biofortified and bioavailable: the gold standard for plant-based diets. Proc Natl Acad Sci U S A 105:1777–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin CW, Yu XH, Zhao SJ (2005) Latent function of microorganisms on plant iron acquisition. Plant Nutr Fertil Sci 11:688–695

    Google Scholar 

  • Jou MY, Du X, Hotz C, Lönnerdal B (2012) Biofortification of rice with zinc: assessment of the relative bioavailability of zinc in a Caco-2 cell model and suckling Rat Pups. J Agric Food Chem 60:3650–3657

    Article  CAS  PubMed  Google Scholar 

  • Kabir AH, Paltridge NG, Rossener U, Stangoulis JCR (2013) Mechanisms associated with Fe-deficiency tolerance and signalling in shoots of Pisum sativum L. Physiol Planta 147:381–395

    Article  CAS  Google Scholar 

  • Kalbasi M, Sharimatmadari H (1993) Blood powder, a source of iron for plants. J Plant Nutr 16:2213–2223

    Article  CAS  Google Scholar 

  • Kaplan M, Orman S (1998) Effect of elemental sulfur and sulfur containing waste in a calcareous soil in Turkey. J Plant Nutr 21:1655–1665

    Google Scholar 

  • Kappler A, Wuestner ML, Ruecker A, Harter J, Halama M, Behrens S (2014) Biochar: as an electron shuttle between bacteria and Fe (III) minerals. Environ Sci Technol Lett 1:339–344

    Article  CAS  Google Scholar 

  • Katkat AV, Ozgumus A, Basar H, Altınel B (1994) Iron, manganese, zinc and copper nutrition of peach trees growing in the Bursa region. Turk J Agric For 18:447–456

    CAS  Google Scholar 

  • Kavamura VN, Santos SN, Silva JL, Parma MM, Avila LA, Visconti A, Zucchi TD, Taketani RG, Andreote FD, Melo IS (2013) Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol Res 168:183–191

    Article  CAS  PubMed  Google Scholar 

  • Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi JM, Riha S, Verchot L, Recha JW, Pell AN (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Ironuptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    Article  CAS  PubMed  Google Scholar 

  • Kosegarten H, Hoffmann B, Rroco E, Grolig F, Glusenkamp K, Mengel K (2004) Apoplastie pH and Fe3+ reduction in young sunflower (Helianthus annuus) roots. Physiol Plant 122:95–106

    Article  CAS  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442

    Article  CAS  Google Scholar 

  • Latimer WM (1952) The oxidation status of elements and their potentials in aqueous solutions, 2nd edn. Prentice, Hall Inc, New York

    Google Scholar 

  • Lawrence JR, Germida JJ (1988) Relationship between microbial biomass and elemental sulfur oxidation in agricultural soils. Soil Sci Soc Am J 52:672–677

    Article  CAS  Google Scholar 

  • Lee S, Jeon JS, An G (2012) Iron homeostasis and fortification in rice. J Plant Biol 55:261–267

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota: a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Lewu MN, Adebola PO, Afolayan AJ (2010) Effect of cooking on the mineral contents and anti-nutritional factors in seven accessions of Colocasia esculenta (L.) Schott growing in South Africa. J Food Comp Anal 23:389–393

    Article  CAS  Google Scholar 

  • Lindemann WC, Aburtto JJ, Haffner WM, Bono AA (1991) Effect of sulfur source on sulfur oxidation. Soil Sci Soc Am J 55:85–90

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibrium in soil. Wileyinter-science, New York

    Google Scholar 

  • Lindsay WL (1995) Chemical reactions in soils that affect iron availability to plants: a quantitative approach. In: Abadia J (ed) Iron nutrition in soil and plants. Kulwer Academic Publishers, Dordrecht, pp 7–14

    Chapter  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Liu WJ, Zhu YG (2005) Iron and Mn plaques on the surface of roots of wetland plants. Acta Ecol Sin 25:358–363

    Google Scholar 

  • Liyana-Pathirana CM, Shahidi F (2005) Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem 93:47–56

    Article  CAS  Google Scholar 

  • Loeppert RH (1988) Chemistry of iron in calcareous systems. In: Stucki JW et al (eds) Iron in soils and clay minerals. D. Reidel, College Station, pp 689–713

    Google Scholar 

  • Lonnerdal B (2007) The importance and bioavailability of phytoferritin- bound iron in cereals and legume foods. Int J Vitam Nutr Res 77:152–157

    Article  CAS  PubMed  Google Scholar 

  • Lonnerdal B, Bryant A, Xiaofeng L, Theil L (2006) Iron absorption from soybean ferritin in nonanemic women. Am J Clin Nutr 83:103–107

    CAS  PubMed  Google Scholar 

  • Lorenz K, Lal R (2014) Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J Plant Nutr Soil Sci 177:651–670

    Article  CAS  Google Scholar 

  • Lozoff B, Georgieff MK (2006) Iron deficiency and brain development. Semin Pediatr Neurol 13:158–165

    Article  PubMed  Google Scholar 

  • Malakouti MJ, Gheibi N (1988) Determine the critical nutrients strategic and proper fertilizer recommendations in the country. Publication of Agricultural Education, Training and Equipping the Human Resources Department of Tat, The Ministry of Agriculture, Karaj

    Google Scholar 

  • Malakouti MJ, Riazi Hamedani SAH (1991) Fertilizer and Fertility. University of Tehran press

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press Inc, San Diego

    Google Scholar 

  • Martínez C, Borrero J, Taboada R, Viana JL, Neves P, Narvaez L (2010) Rice cultivars with enhanced iron and zinc content to improve human nutrition. Paper Presenteda the 28th international rice research conference, Hanoi

    Google Scholar 

  • Masuda H, Suzuki M, Morikawa KC, Kobayashi T, Nakanishi H, Takahashi M (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1:100–108

    Article  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:1–7

    Google Scholar 

  • Masuda H, Kobayashi T, Ishimaru Y, Takahashi M, Aung MS, Nakanishi H, Mori S, Nishizawa NK (2013) Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front Plant Sci 4:132:1–12

    Google Scholar 

  • Mata CG, Lamattina L, Cassia RO (2001) Involvement of iron and ferritin in the potato- Phytophera infestans interaction. Eur J Plant Pathol 107:557–562

    Article  CAS  Google Scholar 

  • May L, Morris ER, Ellis R (1980) Chemical identity of iron in wheat by Mossbauer spectroscopy. J Agric Food Chem 28:1004–1006

    Article  CAS  PubMed  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  CAS  PubMed  Google Scholar 

  • McCauley A, Jones C, Jacobsen J (2009) Soil pH and organic matter. (Nutrient management modules 8, #4449-8). Montana State University Extension Service, Bozeman, Montana, pp 1–12

    Google Scholar 

  • McDonagh MS, Blazina I, Dana T, Cantor A, Bougatsos C (2015) Screening and routine supplementation for iron deficiency anemia: a systematic review. Pediatrics 135:723–733

    Article  PubMed  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition, 4th edn. International Potash Institute, Bern

    Google Scholar 

  • Mimura ÉCM, Breganó JW, Dichi JB, Gregório EP, DichiI (2008) Comparison of ferrous sulfate and ferrous glycinate chelate for the treatment of iron deficiency anemia in gastrectomized patients. Nutrition 24:663–668

    Article  CAS  PubMed  Google Scholar 

  • Min L, Li-gan Z, Zheng-yi H (2007) Elemental sulphur oxidation in the rhizosphere of rice and its impact on iron, manganese, phosphorus, and sulphur uptake in rice. J Anhui Agric Univ 34:426–431

    Google Scholar 

  • Modaihsh S, Al-mustafa WA, Metwally AE (1989) Effect of elemental sulfur on chemical changes and nutrient availability in calcareous soils. Plant Soil 116:95–101

    Article  CAS  Google Scholar 

  • Moore PA, Daniel TC, Sharpley AN, Wood CW (1995) Poultry manure management: environmentally sound options. J Soil Water Conserv 50:321–327

    Google Scholar 

  • Mortvedt JJ (2000) Bioavailability of micronutrients. In: M. E. Sumer (ed) Handbook of soil science. Boca Raton, CRC press, pp 78–81

    Google Scholar 

  • Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2008) A specific transporter for iron (III)- phytosiderophore in barley roots. Plant J 46:563–572

    Article  CAS  Google Scholar 

  • Murray-Kolb LE, Beard JL (2009) Iron deficiency and child and maternal health. Am J Clin Nutr 89:946–950

    Article  CAS  Google Scholar 

  • Murray-Kolb L, Takaiwa F, Goto F (2002) Transgenic rice is a source of iron for iron-depleted rats. J Nutr 132:957–960

    CAS  PubMed  Google Scholar 

  • Murray-Kolb LE, Welch R, Theil EC, Beard JL (2003) Women with low iron stores absorb iron from soybeans. Am J Clin Nutr 77:180–184

    CAS  PubMed  Google Scholar 

  • Na GN, Salt DE (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72:18–25

    Article  CAS  Google Scholar 

  • Nagesh RV, Usharani G, Dayakar RT (2012) Heterosis studies for grain iron and zinc content in rice (Oryza sativa L.). Ann Biol Res 3:179–184

    CAS  Google Scholar 

  • Ngo PT, Rumpel C, Thu TD, Tureaux THD, Dang DK, Jouquet P (2014) Use of organic substrates for increasing soil organic matter quality and carbon sequestration of tropical degraded soil: a 3-year mesocosms experiment. Carbon Manage 5:155–168

    Article  CAS  Google Scholar 

  • Nyamangara J (1998) Use of sequential extraction to evaluate zinc and copper in a soil amended with sewage sludge and inorganic metal salts. Agric Ecosyst Environ 69:135–141

    Article  CAS  Google Scholar 

  • Oliva N, Chadha-Mohanty P, Poletti S, Abrigo E, Atienza G, Torrizo L (2014) Large scale production and evaluation of marker-free indica riceIR64 expressing phytoferritin genes. Mol Breed 33:23–37

    Article  CAS  PubMed  Google Scholar 

  • Osman MA (2011) Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. J Saudi Soc Agric Sci 10:1–6

    CAS  Google Scholar 

  • Pahlavan-Rad M, Pessarakli M (2009) Response of wheat plants to zinc, iron, and manganese applications and uptake and concentration of zinc, iron, and manganese in wheat grains. Commun Soil Sci Plant Anal 40:1322–1332

    Article  CAS  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Kramer U, Borg S, Schjorriing JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  CAS  PubMed  Google Scholar 

  • Perez-Jimenez J, Saura-Calixto F (2005) Literature data may underestimate the actual antioxidant capacity of cereals. J Agric Food Chem 53:5036–5040

    Article  CAS  PubMed  Google Scholar 

  • Pestana M, de Vsrennes A, Faria EA (2003) Diagnosis and correction of iron chlorosis in fruit tress: a review. Food Agric Environ 1:46–51

    Google Scholar 

  • Powell JJ, Cook WB, Hutchinson C, Tolkien Z, Chatfield M, Pereira DI, Lomer MCE (2013) Dietary fortificant iron intake is negatively associated with quality of life in patients with mildly active inflammatory bowel disease. Nutr Metab 10:9–22

    Article  CAS  Google Scholar 

  • Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PPN, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1–1 and low phytic acid 2–1. Plant Physiol 124:355–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid A, Ryan J (2004) Micronutrient constraints to crop production in soils with Mediterranean-type characteristics: review. J Plant Nutr 27:959–975

    Article  CAS  Google Scholar 

  • Rodrıguez-Lucena P, Ropero E, Hernandez-Apaolaza L, Lucena JJ (2010) Iron supply to soybean plants through the foliar application of IDHA/Fe3+ effect of plant nutritional status and adjuvants. J Sci Food Agric 90:2633–2640

    Article  PubMed  CAS  Google Scholar 

  • Rosado R, del Campillo MC, Torrent J (2000) Long term effectiveness of vivinaite in reducing iron chlorois in olive trees. Plant Soil 241:139–144

    Article  Google Scholar 

  • Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH (2013) Biofortification: progress toward a more nourishing future. Glob Food Secur 2:9–17. doi:10.1016/j.gfs.2012.12.003

    Article  Google Scholar 

  • Scholz-Ahrens KE, Schrezenmeir J (2007) Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J Nutr 137:2513–2523

    Google Scholar 

  • Schulte EE, Kelling KA (2004) Understanding plant nutrients: soil and applied sulfur. University of Wisconsin-Extension, Cooperative Extension Publications, Lancaster

    Google Scholar 

  • Schwertmann U (1991) Solubility and dissolution of iron-oxide. Plant Soil 130:1–25

    Article  CAS  Google Scholar 

  • Schwertmann U, Taylor RM (1989) Iron-oxides. In: Dixon JB, Weed SB (eds) Minerals in soil environment. SSSA, ASA, Madison, pp 379–438

    Google Scholar 

  • Sharma A, Kapoor AC (1997) Effect of processing on the nutritional quality of pearl millet. J Food Sci Technol 34:50–53

    Google Scholar 

  • Singh M, Dahiya SS (1975) Effect of calcium carbonate and iron on availability of iron in a light textured soil. J Ind Soc Soil Sci 23:247–252

    CAS  Google Scholar 

  • Soumare M, Tack FMG, Verloo MG (2003) Ryegrass response to mineral fertilization and organic amendment with municipal waste compost in two tropical agricultural soils of Mali. J Plant Nutr 26:1169–1188

    Article  CAS  Google Scholar 

  • Soumare M, Tack FMG, Verloo MG (2007) Redistribution and availability of iron, manganese, zinc, and copper in four Malian agricultural soils amended with solid municipal waste compost. Commun Soil Sci Plant Anal 38:2567–2579

    Article  CAS  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Waldow VA, Fett JP (2012) Iron biofortification in rice: it’s a long way to the top. Plant Sci 190:24–39

    Article  CAS  PubMed  Google Scholar 

  • Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335:133–154

    Article  CAS  Google Scholar 

  • Tagliavini M, Rambola AD (2001) Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur J Agron 15:71–92

    Article  CAS  Google Scholar 

  • Taglivaini M, Rombola AD, Marangoni B (1995) Response to iron-deficiency stress of pear and quince genotypes. J Plant Nutr 18:2465–2482

    Article  Google Scholar 

  • Taglivaini M, Zavalioni C, Romola AD, Quartieri M, Malahuti D, Mazzanti F, Millard P, and Marangoni B (2000) Mineral nutrients partitioning to fruits of deciduous tres. In: Proceedings XXV international horticultural congress ISHS, Bruxelles, Belgium, 2–7 August 1998 Acta Hortic 512:131–140

    Google Scholar 

  • Tako E, Glahn RP (2011) White beans provide more bioavailable iron than redbeans: studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2model. Int J Vitam Nutr Res 81:1–14

    Google Scholar 

  • Tako E, Hoekenga OA, Kochian LV, Glahn RP (2013) High bioavailability iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). Nutr J 12. doi:10.1186/1475-2891-12-3

  • Theil EC, Briat JF (2004) Plant ferritin and non-heme iron nutrition in humans. International Food Policy Research Institute and International Center for Tropical Agriculture, Washington, DC

    Google Scholar 

  • Theil EC, Huber A, Poulos R, Weighards T (2001) Ferritin. Handbook of metalloproteins. Messerschmidt Wiley, Chichester, pp 771–781

    Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD, Havlin JL (1993) Soil fertility and fertilizers, 5th edn. Mcmillon publishing co, New York

    Google Scholar 

  • Toulon V, Sentenac H, Davidian JC, Moulineau C, Grignon C (1992) Role of apoplast acidification by the H+pump: effect on the sensitivity to pH and CO2 of iron reduction by roots of Brassica napus L. Planta 186:551–556

    Article  Google Scholar 

  • Trost LB, Bergfeld WF, Calogeras E (2006) The diagnosis and treatment of iron deficiency and its potential relationship to hair loss. J Am Acad Dermatol 54:824–844

    Article  PubMed  Google Scholar 

  • United Nation System Standing Committee on Nutrition (UNSSCN) (2010) 6th Report on the World 20 Nutrition Situation, Geneva

    Google Scholar 

  • United Nations (2012) World population prospects: the 2010 revision

    Google Scholar 

  • Wallace A (1991) Rational approaches to control iron deficiency other than plant breeding and choice of resistant cultivars. Plant Soil 130:281–288

    Article  CAS  Google Scholar 

  • Wallace GA, Wallace A (1986) Correction of iron deficiency in tress by injection with ferric ammonium citrate solution. J Plant Nutr 9:981–986

    Article  CAS  Google Scholar 

  • Wei Y, Shohag M, Yang X, Zhang Y (2012) Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability. J Agric Food Chem 60:11433–11439

    Article  CAS  PubMed  Google Scholar 

  • Welch R (2002) The impact of mineral nutrients in food crops on global human health. Plant Soil 247:83–90

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • Wen JC, Zhang ZL, Jin SL, Tang L, Xu J, Tan XL (2005) Iron and zinc contents in Iaponica hybrid rice based on CMS-D1 system. Sci Agric Sin 38:l182–l1187

    Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trend Plant Sci 10:586–593

    Article  CAS  Google Scholar 

  • WHO (2004) Iron, vitamin and mineral requirement in human. 12 nutrition, 2nd edn. World Health Organization, Geneva, pp 246–272

    Google Scholar 

  • WHO (2007) Micronutrient deficiencies: iron deficiency anaemia. WHO, Geneva

    Google Scholar 

  • WHO (2010) Progress on the health-related Millennium Development Goals MDGs

    Google Scholar 

  • Wiersma JV (2005) High rates of Fe-EDDHA and seed iron concentration suggest partial solutions to iron deficiency in soybean. Agron J 97:924–934

    Article  CAS  Google Scholar 

  • Winichagoon P (2002) Prevention and control of anemia: Thailand Experiences. J Nutr 132:862–866

    Google Scholar 

  • Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S (2009) Rice endosperm ironbiofortification by target edandsynergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:631–644

    Article  CAS  PubMed  Google Scholar 

  • Wu CYH, Lu J, Hu ZY (2014) Influence of sulfur supply on the iron accumulation in rice plants. Commun Soil Sci Plant Anal 45:1149–1161

    Article  CAS  Google Scholar 

  • Xu G, Wei LL, Sun JN, Shao HB, Chang SX (2013) What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: direct or indirect mechanism? Ecol Eng 52:119–124

    Article  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid- free) rice endosperm. Science 87:303–305

    Article  Google Scholar 

  • Zhao G (2010) Phytoferritin and its implications for human health and nutrition. Biochim Biophys Acta 1800:815–823

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Cheng Z, Ai C, Jiang X, Bei X, Zheng Y (2010) Nico-tianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 5:e10190. doi:10.1371/jour-nal.pone.0010190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou H, Peng X, Perfect E, Xiao T, Peng G (2013) Effects of organic and inorganic fertilization on soil aggregation in an ultisol as characterized by synchrotron based X-ray micro-computed tomography. Geoderma 195–196:23–30

    Article  CAS  Google Scholar 

  • ZieliÅ„ska-Dawidziak M, Hertig I, Piasecka-Kwiatkowska D, Staniek H, Nowak KW, Twardowski T (2012) Study on iron availability from prepared soybean sprouts using an iron-deficient rat model. Food Chem 135:2622–2627

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann MB, Hurrell R (2002) Improving iron, zinc and vitamin A nutrition through plant biotechnology. Curr Opin Biotechnol 13:142–145

    Article  CAS  PubMed  Google Scholar 

  • Zuo Y, Zhang F (2011) Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339:83–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia Muhammad Adnan Ramzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ramzani, P.M.A., Khalid, M., Naveed, M., Irum, A., Khan, WuD., Kausar, S. (2016). Iron Biofortification of Cereals Grown Under Calcareous Soils: Problems and Solutions. In: Hakeem, K., Akhtar, J., Sabir, M. (eds) Soil Science: Agricultural and Environmental Prospectives. Springer, Cham. https://doi.org/10.1007/978-3-319-34451-5_10

Download citation

Publish with us

Policies and ethics