Skip to main content

Phospho-Inositol-3-Kinase Activity and Dysregulation in Pediatric Leukemia and Lymphoma

  • Chapter
  • First Online:
PI3K-mTOR in Cancer and Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 901 Accesses

Abstract

Although pediatric leukemias and lymphomas currently have reasonably high cure rates, persistent cases of relapsed and refractory disease are still observed. Additionally, as a consequence of the chemotherapy and radiotherapy that produce the high cure rates, children commonly experience undesirable toxicities including end organ damage, infertility, and secondary malignancies. Therefore, the work of several researchers and clinicians continues to concentrate on identifying specific molecular targets that can be inhibited to provide effective therapy while avoiding detrimental side-effects. A key signaling pathway commonly dysregulated in pediatric leukemias and lymphomas is the phospho-inositol-3-kinase (PI3K)-AKT pathway. PI3K activity is increased due to somatic mutations PI3K regulatory or catalytic subunit genes, to increased protein expression of PI3K catalytic subunits, or to excess signaling from upstream oncogenic proteins. In parallel with clarification of the roles of various PI3K regulatory and catalytic subunits in pediatric disease, pharmaceutical companies have developed highly potent and specific inhibitors for the various PI3K catalytic subunits. This review will highlight the studies that have defined the role of the various PI3K regulatory and catalytic subunits in childhood hematologic malignancies, and address how these findings are now being translated in murine pre-clinical and human clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36(4):277–285. doi:10.1016/j.ctrv.2010.02.003

    Article  PubMed  Google Scholar 

  2. Zhao L, Vogt PK (2008) Class I PI3K in oncogenic cellular transformation. Oncogene 27(41):5486–5496. doi:10.1038/onc.2008.244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657. doi:10.1126/science.296.5573.1655

    Article  CAS  PubMed  Google Scholar 

  4. Corvera S, Czech MP (1998) Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol 8(11):442–446

    Article  CAS  PubMed  Google Scholar 

  5. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269

    Article  CAS  PubMed  Google Scholar 

  6. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of AKT/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101. doi:10.1126/science.1106148

    Article  CAS  PubMed  Google Scholar 

  7. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A (2005) Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 4(10):1533–1540. doi:10.1158/1535-7163.MCT-05-0068

    Article  CAS  PubMed  Google Scholar 

  8. Walker EH, Perisic O, Ried C, Stephens L, Williams RL (1999) Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402(6759):313–320. doi:10.1038/46319

    Article  CAS  PubMed  Google Scholar 

  9. Fruman DA (2010) Regulatory subunits of class IA PI3K. Curr Top Microbiol Immunol 346:225–244. doi:10.1007/82_2010_39

    CAS  PubMed  Google Scholar 

  10. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM (1998) Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 18(3):1379–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luo J, Field SJ, Lee JY, Engelman JA, Cantley LC (2005) The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J Cell Biol 170(3):455–464. doi:10.1083/jcb.200503088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luo J, Cantley LC (2005) The negative regulation of phosphoinositide 3-kinase signaling by p85 and it’s implication in cancer. Cell Cycle 4(10):1309–1312

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370(6490):527–532. doi:10.1038/370527a0

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J (1996) Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J 15(10):2442–2451

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan TO, Rodeck U, Chan AM, Kimmelman AC, Rittenhouse SE, Panayotou G, Tsichlis PN (2002) Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell 1(2):181–191

    Article  CAS  PubMed  Google Scholar 

  16. Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins PT, Stephens L, Eccleston JF, Williams RL (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103(6):931–943

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez-Viciana P, Marte BM, Warne PH, Downward J (1996) Phosphatidylinositol 3′ kinase: one of the effectors of Ras. Philos Trans R Soc Lond B, Biol Sci 351(1336):225–231. doi:10.1098/rstb.1996.0020 (discussion 231–222)

    Article  CAS  Google Scholar 

  18. Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-AKT pathway in human cancer: rationale and promise. Cancer Cell 4(4):257–262

    Article  CAS  PubMed  Google Scholar 

  19. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. doi:10.1038/nrc839

    Article  CAS  PubMed  Google Scholar 

  20. Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133(3):403–414. doi:10.1016/j.cell.2008.04.013

    Article  CAS  PubMed  Google Scholar 

  21. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554. doi:10.1126/science.1096502

    Article  CAS  PubMed  Google Scholar 

  22. Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS, Prie N, Verdier F, Vanhaesebroeck B, Muller O, Pesce F, Ifrah N, Hunault-Berger M, Berthou C, Villemagne B, Jourdan E, Audhuy B, Solary E, Witz B, Harousseau JL, Himberlin C, Lamy T, Lioure B, Cahn JY, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2005) Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 106(3):1063–1066. doi:10.1182/blood-2004-08-3225

    Article  CAS  PubMed  Google Scholar 

  23. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO, Wasik MA, Tsichlis PN, Calabretta B (1997) Transformation of hematopoietic cells by BCR/ABL requires activation of a PI3k/AKT-dependent pathway. EMBO J 16(20):6151–6161. doi:10.1093/emboj/16.20.6151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hickey FB, Cotter TG (2006) BCR-ABL regulates phosphatidylinositol 3-kinase-p110gamma transcription and activation and is required for proliferation and drug resistance. J Biol Chem 281(5):2441–2450. doi:10.1074/jbc.M511173200

    Article  CAS  PubMed  Google Scholar 

  25. Angulo I, Vadas O, Garcon F, Banham-Hall E, Plagnol V, Leahy TR, Baxendale H, Coulter T, Curtis J, Wu C, Blake-Palmer K, Perisic O, Smyth D, Maes M, Fiddler C, Juss J, Cilliers D, Markelj G, Chandra A, Farmer G, Kielkowska A, Clark J, Kracker S, Debre M, Picard C, Pellier I, Jabado N, Morris JA, Barcenas-Morales G, Fischer A, Stephens L, Hawkins P, Barrett JC, Abinun M, Clatworthy M, Durandy A, Doffinger R, Chilvers ER, Cant AJ, Kumararatne D, Okkenhaug K, Williams RL, Condliffe A, Nejentsev S (2013) Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science 342(6160):866–871. doi:10.1126/science.1243292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, Avery DT, Moens L, Cannons JL, Biancalana M, Stoddard J, Ouyang W, Frucht DM, Rao VK, Atkinson TP, Agharahimi A, Hussey AA, Folio LR, Olivier KN, Fleisher TA, Pittaluga S, Holland SM, Cohen JI, Oliveira JB, Tangye SG, Schwartzberg PL, Lenardo MJ, Uzel G (2013) Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol. doi:10.1038/ni.2771

    PubMed  PubMed Central  Google Scholar 

  27. Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784(1):159–185. doi:10.1016/j.bbapap.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  28. Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, Pearce W, Meek SE, Salpekar A, Waterfield MD, Smith AJ, Vanhaesebroeck B (2002) Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297(5583):1031–1034. doi:10.1126/science.1073560

    CAS  PubMed  Google Scholar 

  29. Rommel C (2010) Taking PI3Kdelta and PI3Kgamma one step ahead: dual active PI3Kdelta/gamma inhibitors for the treatment of immune-mediated inflammatory diseases. Curr Top Microbiol Immunol 346:279–299. doi:10.1007/82_2010_79

    CAS  PubMed  Google Scholar 

  30. Cushing TD, Metz DP, Whittington DA, McGee LR (2012) PI3Kdelta and PI3Kgamma as targets for autoimmune and inflammatory diseases. J Med Chem 55(20):8559–8581. doi:10.1021/jm300847w

    Article  CAS  PubMed  Google Scholar 

  31. Castillo JJ, Furman M, Winer ES (2012) CAL-101: a phosphatidylinositol-3-kinase p110-delta inhibitor for the treatment of lymphoid malignancies. Expert Opin Investig Drugs 21(1):15–22. doi:10.1517/13543784.2012.640318

    Article  CAS  PubMed  Google Scholar 

  32. Ikeda H, Hideshima T, Fulciniti M, Perrone G, Miura N, Yasui H, Okawa Y, Kiziltepe T, Santo L, Vallet S, Cristea D, Calabrese E, Gorgun G, Raje NS, Richardson P, Munshi NC, Lannutti BJ, Puri KD, Giese NA, Anderson KC (2010) PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood 116(9):1460–1468. doi:10.1182/blood-2009-06-222943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, Jones J, Andritsos L, Puri KD, Lannutti BJ, Giese NA, Zhang X, Wei L, Byrd JC, Johnson AJ (2010) Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 116(12):2078–2088. doi:10.1182/blood-2010-02-271171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, Byrd JC, Tyner JW, Loriaux MM, Deininger M, Druker BJ, Puri KD, Ulrich RG, Giese NA (2011) CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117(2):591–594. doi:10.1182/blood-2010-03-275305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Papakonstanti EA, Zwaenepoel O, Bilancio A, Burns E, Nock GE, Houseman B, Shokat K, Ridley AJ, Vanhaesebroeck B (2008) Distinct roles of class IA PI3K isoforms in primary and immortalised macrophages. J Cell Sci 121(Pt 24):4124–4133. doi:10.1242/jcs.032763

    Article  CAS  PubMed  Google Scholar 

  36. Fruman DA, Rommel C (2011) PI3Kdelta inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discovery 1(7):562–572. doi:10.1158/2159-8290.CD-11-0249

    Article  CAS  PubMed  Google Scholar 

  37. Berndt A, Miller S, Williams O, Le DD, Houseman BT, Pacold JI, Gorrec F, Hon WC, Liu Y, Rommel C, Gaillard P, Ruckle T, Schwarz MK, Shokat KM, Shaw JP, Williams RL (2010) The p110delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Nat Chem Biol 6(3):244. doi:10.1038/nchembio0310-244b

    Article  CAS  PubMed  Google Scholar 

  38. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND, Spurgeon SE, Kahl BS, Bello C, Webb HK, Johnson DM, Peterman S, Li D, Jahn TM, Lannutti BJ, Ulrich RG, Yu AS, Miller LL, Furman RR (2014) Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood 123(22):3390–3397. doi:10.1182/blood-2013-11-535047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flinn IW, Kahl BS, Leonard JP, Furman RR, Brown JR, Byrd JC, Wagner-Johnston ND, Coutre SE, Benson DM, Peterman S, Cho Y, Webb HK, Johnson DM, Yu AS, Ulrich RG, Godfrey WR, Miller LL, Spurgeon SE (2014) Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-delta, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood 123(22):3406–3413. doi:10.1182/blood-2013-11-538546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, Flinn IW, Flowers CR, Martin P, Viardot A, Blum KA, Goy AH, Davies AJ, Zinzani PL, Dreyling M, Johnson D, Miller LL, Holes L, Li D, Dansey RD, Godfrey WR, Salles GA (2014) PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 370(11):1008–1018. doi:10.1056/NEJMoa1314583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, Barrientos JC, Zelenetz AD, Kipps TJ, Flinn I, Ghia P, Eradat H, Ervin T, Lamanna N, Coiffier B, Pettitt AR, Ma S, Stilgenbauer S, Cramer P, Aiello M, Johnson DM, Miller LL, Li D, Jahn TM, Dansey RD, Hallek M, O’Brien SM (2014) Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 370(11):997–1007. doi:10.1056/NEJMoa1315226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fruman DA, Cantley LC (2014) Idelalisib–a PI3Kdelta inhibitor for B-cell cancers. N Engl J Med 370(11):1061–1062. doi:10.1056/NEJMe1400055

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kahl BS, Spurgeon SE, Furman RR, Flinn IW, Coutre SE, Brown JR, Benson DM, Byrd JC, Peterman S, Cho Y, Yu A, Godfrey WR, Wagner-Johnston ND (2014) A phase 1 study of the PI3Kdelta inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL). Blood 123(22):3398–3405. doi:10.1182/blood-2013-11-537555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Denley A, Kang S, Karst U, Vogt PK (2008) Oncogenic signaling of class I PI3K isoforms. Oncogene 27(18):2561–2574. doi:10.1038/sj.onc.1210918

    Article  CAS  PubMed  Google Scholar 

  45. Zhao L, Vogt PK (2008) Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci USA 105(7):2652–2657. doi:10.1073/pnas.0712169105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Subramaniam PS, Whye DW, Efimenko E, Chen J, Tosello V, De Keersmaecker K, Kashishian A, Thompson MA, Castillo M, Cordon-Cardo C, Dave UP, Ferrando A, Lannutti BJ, Diacovo TG (2012) Targeting nonclassical oncogenes for therapy in T-ALL. Cancer Cell 21(4):459–472. doi:10.1016/j.ccr.2012.02.029

    Article  CAS  PubMed  Google Scholar 

  47. Younes A, Samad N (2011) Utility of mTOR inhibition in hematologic malignancies. Oncologist 16(6):730–741. doi:10.1634/theoncologist.2010-0318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chapuis N, Tamburini J, Green AS, Willems L, Bardet V, Park S, Lacombe C, Mayeux P, Bouscary D (2010) Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 24(10):1686–1699. doi:10.1038/leu.2010.170

    Article  CAS  Google Scholar 

  49. Barrett D, Brown VI, Grupp SA, Teachey DT (2012) Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Paediatr Drugs 14(5):299–316. doi:10.2165/11594740-000000000-00000

    PubMed  PubMed Central  Google Scholar 

  50. Martelli AM, Evangelisti C, Chiarini F, McCubrey JA (2010) The phosphatidylinositol 3-kinase/AKT/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget 1(2):89–103

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lo Nigro L (2013) Biology of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 35(4):245–252. doi:10.1097/MPH.0b013e31828f8746

    Article  CAS  PubMed  Google Scholar 

  52. Hales EC, Taub JW, Matherly LH (2013) New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: Targeted therapy of gamma-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal. doi:10.1016/j.cellsig.2013.09.021

    PubMed  Google Scholar 

  53. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, Bhagat G, Agarwal AM, Basso G, Castillo M, Nagase S, Cordon-Cardo C, Parsons R, Zuniga-Pflucker JC, Dominguez M, Ferrando AA (2007) Mutational loss of PTEN induces resistance to Notch1 inhibition in T-cell leukemia. Nat Med 13(10):1203–1210. doi:10.1038/nm1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hales EC, Orr SM, Larson Gedman A, Taub JW, Matherly LH (2013) Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells. J Biol Chem 288(31):22836–22848. doi:10.1074/jbc.M113.451625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sanda T, Li X, Gutierrez A, Ahn Y, Neuberg DS, O’Neil J, Strack PR, Winter CG, Winter SS, Larson RS, von Boehmer H, Look AT (2010) Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia. Blood 115(9):1735–1745. doi:10.1182/blood-2009-07-235143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gonzalez-Garcia S, Garcia-Peydro M, Martin-Gayo E, Ballestar E, Esteller M, Bornstein R, de la Pompa JL, Ferrando AA, Toribio ML (2009) CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7R{alpha} gene expression in early human thymopoiesis and leukemia. J Exp Med 206(4):779–791. doi:10.1084/jem.20081922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barata JT, Silva A, Brandao JG, Nadler LM, Cardoso AA, Boussiotis VA (2004) Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med 200(5):659–669. doi:10.1084/jem.20040789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Medyouf H, Gusscott S, Wang H, Tseng JC, Wai C, Nemirovsky O, Trumpp A, Pflumio F, Carboni J, Gottardis M, Pollak M, Kung AL, Aster JC, Holzenberger M, Weng AP (2011) High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. J Exp Med 208(9):1809–1822. doi:10.1084/jem.20110121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M, Tritapoe J, Hixon JA, Silveira AB, Cardoso BA, Sarmento LM, Correia N, Toribio ML, Kobarg J, Horstmann M, Pieters R, Brandalise SR, Ferrando AA, Meijerink JP, Durum SK, Yunes JA, Barata JT (2011) Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 43(10):932–939. doi:10.1038/ng.924

    Article  CAS  PubMed  Google Scholar 

  60. Shochat C, Tal N, Bandapalli OR, Palmi C, Ganmore I, te Kronnie G, Cario G, Cazzaniga G, Kulozik AE, Stanulla M, Schrappe M, Biondi A, Basso G, Bercovich D, Muckenthaler MU, Izraeli S (2011) Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med 208(5):901–908. doi:10.1084/jem.20110580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zuurbier L, Petricoin EF 3rd, Vuerhard MJ, Calvert V, Kooi C, Buijs-Gladdines JG, Smits WK, Sonneveld E, Veerman AJ, Kamps WA, Horstmann M, Pieters R, Meijerink JP (2012) The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia. Haematologica 97(9):1405–1413. doi:10.3324/haematol.2011.059030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, Dahlberg S, Neuberg D, Moreau LA, Winter SS, Larson R, Zhang J, Protopopov A, Chin L, Pandolfi PP, Silverman LB, Hunger SP, Sallan SE, Look AT (2009) High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 114(3):647–650. doi:10.1182/blood-2009-02-206722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bressanin D, Evangelisti C, Ricci F, Tabellini G, Chiarini F, Tazzari PL, Melchionda F, Buontempo F, Pagliaro P, Pession A, McCubrey JA, Martelli AM (2012) Harnessing the PI3K/AKT/mTOR pathway in T-cell acute lymphoblastic leukemia: eliminating activity by targeting at different levels. Oncotarget 3(8):811–823

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schult C, Dahlhaus M, Glass A, Fischer K, Lange S, Freund M, Junghanss C (2012) The dual kinase inhibitor NVP-BEZ235 in combination with cytotoxic drugs exerts anti-proliferative activity towards acute lymphoblastic leukemia cells. Anticancer Res 32(2):463–474

    CAS  PubMed  Google Scholar 

  65. Chiarini F, Grimaldi C, Ricci F, Tazzari PL, Evangelisti C, Ognibene A, Battistelli M, Falcieri E, Melchionda F, Pession A, Pagliaro P, McCubrey JA, Martelli AM (2010) Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res 70(20):8097–8107. doi:10.1158/0008-5472.CAN-10-1814

    Article  CAS  PubMed  Google Scholar 

  66. Levy DS, Kahana JA, Kumar R (2009) AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood 113(8):1723–1729. doi:10.1182/blood-2008-02-137737

    Article  CAS  PubMed  Google Scholar 

  67. Cullion K, Draheim KM, Hermance N, Tammam J, Sharma VM, Ware C, Nikov G, Krishnamoorthy V, Majumder PK, Kelliher MA (2009) Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood 113(24):6172–6181. doi:10.1182/blood-2008-02-136762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu KN, Zhao YM, He Y, Wang BS, Du KL, Fu S, Hu KM, Zhang LF, Liu LZ, Hu YX, Wang YJ, Huang H (2013) Rapamycin interacts synergistically with idarubicin to induce T-leukemia cell apoptosis in vitro and in a mesenchymal stem cell simulated drug-resistant microenvironment via AKT/mammalian target of rapamycin and extracellular signal-related kinase signaling pathways. Leuk Lymphoma. doi:10.3109/10428194.2013.811579

    PubMed Central  Google Scholar 

  69. Evangelisti C, Ricci F, Tazzari P, Chiarini F, Battistelli M, Falcieri E, Ognibene A, Pagliaro P, Cocco L, McCubrey JA, Martelli AM (2011) Preclinical testing of the AKT inhibitor triciribine in T-cell acute lymphoblastic leukemia. J Cell Physiol 226(3):822–831. doi:10.1002/jcp.22407

    Article  CAS  PubMed  Google Scholar 

  70. Morishita N, Tsukahara H, Chayama K, Ishida T, Washio K, Miyamura T, Yamashita N, Oda M, Morishima T (2012) Activation of AKT is associated with poor prognosis and chemotherapeutic resistance in pediatric B-precursor acute lymphoblastic leukemia. Pediatr Blood Cancer 59(1):83–89. doi:10.1002/pbc.24034

    Article  PubMed  Google Scholar 

  71. Hunger SP (2011) Tyrosine kinase inhibitor use in pediatric Philadelphia chromosome-positive acute lymphoblastic anemia. Hematol Educ Prog Am Soc Hematol Am Soc Hematol Educ Prog 2011:361–365. doi:10.1182/asheducation-2011.1.361

    Google Scholar 

  72. Montiel-Duarte C, Cordeu L, Agirre X, Roman-Gomez J, Jimenez-Velasco A, Jose-Eneriz ES, Garate L, Andreu EJ, Calasanz MJ, Heiniger A, Torres A, Prosper F (2008) Resistance to Imatinib Mesylate-induced apoptosis in acute lymphoblastic leukemia is associated with PTEN down-regulation due to promoter hypermethylation. Leuk Res 32(5):709–716. doi:10.1016/j.leukres.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  73. Quentmeier H, Eberth S, Romani J, Zaborski M, Drexler HG (2011) BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance. J Hematol Oncol 4:6. doi:10.1186/1756-8722-4-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kharas MG, Janes MR, Scarfone VM, Lilly MB, Knight ZA, Shokat KM, Fruman DA (2008) Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells. J Clin Investig 118(9):3038–3050. doi:10.1172/JCI33337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Janes MR, Vu C, Mallya S, Shieh MP, Limon JJ, Li LS, Jessen KA, Martin MB, Ren P, Lilly MB, Sender LS, Liu Y, Rommel C, Fruman DA (2013) Efficacy of the investigational mTOR kinase inhibitor MLN0128/INK128 in models of B-cell acute lymphoblastic leukemia. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 27(3):586–594. doi:10.1038/leu.2012.276

    Article  CAS  Google Scholar 

  76. Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA, Vu C, Lilly MB, Mallya S, Ong ST, Konopleva M, Martin MB, Ren P, Liu Y, Rommel C, Fruman DA (2010) Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 16(2):205–213. doi:10.1038/nm.2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fuka G, Kantner HP, Grausenburger R, Inthal A, Bauer E, Krapf G, Kaindl U, Kauer M, Dworzak MN, Stoiber D, Haas OA, Panzer-Grumayer R (2012) Silencing of ETV6/RUNX1 abrogates PI3K/AKT/mTOR signaling and impairs reconstitution of leukemia in xenografts. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 26(5):927–933. doi:10.1038/leu.2011.322

    Article  CAS  Google Scholar 

  78. Spijkers-Hagelstein JA, Pinhancos SS, Schneider P, Pieters R, Stam RW (2013) Chemical genomic screening identifies LY294002 as a modulator of glucocorticoid resistance in MLL-rearranged infant ALL. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK. doi:10.1038/leu.2013.245

    Google Scholar 

  79. Shalapour S, Hof J, Kirschner-Schwabe R, Bastian L, Eckert C, Prada J, Henze G, von Stackelberg A, Seeger K (2011) High VLA-4 expression is associated with adverse outcome and distinct gene expression changes in childhood B-cell precursor acute lymphoblastic leukemia at first relapse. Haematologica 96(11):1627–1635. doi:10.3324/haematol.2011.047993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mullighan CG, Collins-Underwood JR, Phillips LA, Loudin MG, Liu W, Zhang J, Ma J, Coustan-Smith E, Harvey RC, Willman CL, Mikhail FM, Meyer J, Carroll AJ, Williams RT, Cheng J, Heerema NA, Basso G, Pession A, Pui CH, Raimondi SC, Hunger SP, Downing JR, Carroll WL, Rabin KR (2009) Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet 41(11):1243–1246. doi:10.1038/ng.469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Harvey RC, Mullighan CG, Chen IM, Wharton W, Mikhail FM, Carroll AJ, Kang H, Liu W, Dobbin KK, Smith MA, Carroll WL, Devidas M, Bowman WP, Camitta BM, Reaman GH, Hunger SP, Downing JR, Willman CL (2010) Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, hispanic/latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 115(26):5312–5321. doi:10.1182/blood-2009-09-245944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tasian SK, Doral MY, Borowitz MJ, Wood BL, Chen IM, Harvey RC, Gastier-Foster JM, Willman CL, Hunger SP, Mullighan CG, Loh ML (2012) Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood 120(4):833–842. doi:10.1182/blood-2011-12-389932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kelly KM, Hodgson D, Appel B, Chen L, Cole PD, Horton T, Keller FG (2013) Children’s Oncology Group’s 2013 blueprint for research: Hodgkin lymphoma. Pediatr Blood Cancer 60(6):972–978. doi:10.1002/pbc.24423

    Article  PubMed  Google Scholar 

  84. Bollard CM, Lim MS, Gross TG (2013) Children’s Oncology Group’s 2013 blueprint for research: non-Hodgkin lymphoma. Pediatr Blood Cancer 60(6):979–984. doi:10.1002/pbc.24416

    Article  PubMed  Google Scholar 

  85. Yung L, Linch D (2003) Hodgkin’s lymphoma. Lancet 361(9361):943–951. doi:10.1016/S0140-6736(03)12777-8

    Article  PubMed  Google Scholar 

  86. Dawson CW, Tramountanis G, Eliopoulos AG, Young LS (2003) Epstein–Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/AKT pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 278(6):3694–3704. doi:10.1074/jbc.M209840200

    Article  CAS  PubMed  Google Scholar 

  87. Swart R, Ruf IK, Sample J, Longnecker R (2000) Latent membrane protein 2A-mediated effects on the phosphatidylinositol 3-Kinase/AKT pathway. J Virol 74(22):10838–10845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morrison JA, Gulley ML, Pathmanathan R, Raab-Traub N (2004) Differential signaling pathways are activated in the Epstein–Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res 64(15):5251–5260. doi:10.1158/0008-5472.CAN-04-0538

    Article  CAS  PubMed  Google Scholar 

  89. Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG (2005) Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving AKT kinase and mTOR. J Pathol 205(4):498–506. doi:10.1002/path.1725

    Article  CAS  PubMed  Google Scholar 

  90. Georgakis GV, Li Y, Rassidakis GZ, Medeiros LJ, Mills GB, Younes A (2006) Inhibition of the phosphatidylinositol-3 kinase/AKT promotes G1 cell cycle arrest and apoptosis in Hodgkin lymphoma. Br J Haematol 132(4):503–511. doi:10.1111/j.1365-2141.2005.05881.x

    CAS  PubMed  Google Scholar 

  91. Meadows SA, Vega F, Kashishian A, Johnson D, Diehl V, Miller LL, Younes A, Lannutti BJ (2012) PI3Kdelta inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood 119(8):1897–1900. doi:10.1182/blood-2011-10-386763

    Article  CAS  PubMed  Google Scholar 

  92. Evans LS, Hancock BW (2003) Non-Hodgkin lymphoma. Lancet 362(9378):139–146. doi:10.1016/S0140-6736(03)13868-8

    Article  CAS  PubMed  Google Scholar 

  93. Sander S, Calado DP, Srinivasan L, Kochert K, Zhang B, Rosolowski M, Rodig SJ, Holzmann K, Stilgenbauer S, Siebert R, Bullinger L, Rajewsky K (2012) Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell 22(2):167–179. doi:10.1016/j.ccr.2012.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cen O, Longnecker R (2011) Rapamycin reverses splenomegaly and inhibits tumor development in a transgenic model of Epstein–Barr virus-related Burkitt’s lymphoma. Mol Cancer Ther 10(4):679–686. doi:10.1158/1535-7163.MCT-10-0833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Spender LC, Inman GJ (2012) Phosphoinositide 3-kinase/AKT/mTORC1/2 signaling determines sensitivity of Burkitt’s lymphoma cells to BH3 mimetics. Mol Cancer Res MCR 10(3):347–359. doi:10.1158/1541-7786.MCR-11-0394

    Article  CAS  PubMed  Google Scholar 

  96. Uddin S, Hussain AR, Siraj AK, Manogaran PS, Al-Jomah NA, Moorji A, Atizado V, Al-Dayel F, Belgaumi A, El-Solh H, Ezzat A, Bavi P, Al-Kuraya KS (2006) Role of phosphatidylinositol 3′-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood 108(13):4178–4186. doi:10.1182/blood-2006-04-016907

    Article  CAS  PubMed  Google Scholar 

  97. Zhao MY, Auerbach A, D’Costa AM, Rapoport AP, Burger AM, Sausville EA, Stass SA, Jiang F, Sands AM, Aguilera N, Zhao XF (2009) Phospho-p70S6K/p85S6K and cdc2/cdk1 are novel targets for diffuse large B-cell lymphoma combination therapy. Clin Cancer Res Official J Am Assoc Cancer Res 15(5):1708–1720. doi:10.1158/1078-0432.CCR-08-1543

    Article  CAS  Google Scholar 

  98. Tjin EP, Groen RW, Vogelzang I, Derksen PW, Klok MD, Meijer HP, van Eeden S, Pals ST, Spaargaren M (2006) Functional analysis of HGF/MET signaling and aberrant HGF-activator expression in diffuse large B-cell lymphoma. Blood 107(2):760–768. doi:10.1182/blood-2005-05-1929

    Article  CAS  PubMed  Google Scholar 

  99. Uddin S, Bu R, Ahmed M, Hussain AR, Ajarim D, Al-Dayel F, Bavi P, Al-kuraya KS (2010) Leptin receptor expression and its association with PI3K/AKT signaling pathway in diffuse large B-cell lymphoma. Leuk Lymphoma 51(7):1305–1314. doi:10.3109/10428191003802365

    Article  CAS  PubMed  Google Scholar 

  100. Huang X, Shen Y, Liu M, Bi C, Jiang C, Iqbal J, McKeithan TW, Chan WC, Ding SJ, Fu K (2012) Quantitative proteomics reveals that miR-155 regulates the PI3K-AKT pathway in diffuse large B-cell lymphoma. Am J Pathol 181(1):26–33. doi:10.1016/j.ajpath.2012.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xu ZZ, Xia ZG, Wang AH, Wang WF, Liu ZY, Chen LY, Li JM (2013) Activation of the PI3K/AKT/mTOR pathway in diffuse large B cell lymphoma: clinical significance and inhibitory effect of rituximab. Ann Hematol 92(10):1351–1358. doi:10.1007/s00277-013-1770-9

    Article  CAS  PubMed  Google Scholar 

  102. Zang C, Eucker J, Liu H, Muller A, Possinger K, Scholz CW (2013) Concurrent inhibition of PI3-kinase and mTOR induces cell death in diffuse large B cell lymphomas, a mechanism involving down regulation of Mcl-1. Cancer Lett 339(2):288–297. doi:10.1016/j.canlet.2012.11.013

    Article  CAS  PubMed  Google Scholar 

  103. Zang C, Eucker J, Liu H, Coordes A, Lenarz M, Possinger K, Scholz CW (2013) Inhibition of pan-class I phosphatidyl-inositol-3-kinase by NVP-BKM120 effectively blocks proliferation and induces cell death in diffuse large B-cell lymphoma. Leuk Lymphoma. doi:10.3109/10428194.2013.806800

    PubMed  Google Scholar 

  104. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263(5151):1281–1284

    Article  CAS  PubMed  Google Scholar 

  105. Thakral C, Hutchison RE, Shrimpton A, Barrett D, Laver J, Link M, Halleran DR, Hudson S (2012) ALK+ anaplastic large cell lymphoma exhibits phosphatidylinositol-3 kinase/AKT activity with retained but inactivated PTEN–a report from the Children’s Oncology Group. Pediatr Blood Cancer 59(3):440–447. doi:10.1002/pbc.24153

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J (2000) Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/AKT antiapoptotic signaling pathway. Blood 96(13):4319–4327

    CAS  PubMed  Google Scholar 

  107. Slupianek A, Nieborowska-Skorska M, Hoser G, Morrione A, Majewski M, Xue L, Morris SW, Wasik MA, Skorski T (2001) Role of phosphatidylinositol 3-kinase-AKT pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res 61(5):2194–2199

    CAS  PubMed  Google Scholar 

  108. Polgar D, Leisser C, Maier S, Strasser S, Ruger B, Dettke M, Khorchide M, Simonitsch I, Cerni C, Krupitza G (2005) Truncated ALK derived from chromosomal translocation t(2;5)(p23;q35) binds to the SH3 domain of p85-PI3K. Mutat Res 570(1):9–15. doi:10.1016/j.mrfmmm.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  109. Rassidakis GZ, Feretzaki M, Atwell C, Grammatikakis I, Lin Q, Lai R, Claret FX, Medeiros LJ, Amin HM (2005) Inhibition of AKT increases p27Kip1 levels and induces cell cycle arrest in anaplastic large cell lymphoma. Blood 105(2):827–829. doi:10.1182/blood-2004-06-2125

    Article  CAS  PubMed  Google Scholar 

  110. Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L, Claret FX, Rassidakis GZ (2006) Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 66(13):6589–6597. doi:10.1158/0008-5472.CAN-05-3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Marzec M, Kasprzycka M, Liu X, El-Salem M, Halasa K, Raghunath PN, Bucki R, Wlodarski P, Wasik MA (2007) Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene 26(38):5606–5614. doi:10.1038/sj.onc.1210346

    Article  CAS  PubMed  Google Scholar 

  112. Moore AS, Kearns PR, Knapper S, Pearson AD, Zwaan CM (2013) Novel therapies for children with acute myeloid leukaemia. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 27(7):1451–1460. doi:10.1038/leu.2013.106

    CAS  Google Scholar 

  113. Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK, Lee ST, Lee MH, Hahn JS, Ko YW (2003) Constitutive phosphorylation of AKT/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 17(5):995–997. doi:10.1038/sj.leu.2402874

    Article  CAS  Google Scholar 

  114. Bardet V, Tamburini J, Ifrah N, Dreyfus F, Mayeux P, Bouscary D, Lacombe C (2006) Single cell analysis of phosphoinositide 3-kinase/AKT and ERK activation in acute myeloid leukemia by flow cytometry. Haematologica 91(6):757–764

    CAS  PubMed  Google Scholar 

  115. Tamburini J, Elie C, Bardet V, Chapuis N, Park S, Broet P, Cornillet-Lefebvre P, Lioure B, Ugo V, Blanchet O, Ifrah N, Witz F, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2007) Constitutive phosphoinositide 3-kinase/AKT activation represents a favorable prognostic factor in de novo acute myelogenous leukemia patients. Blood 110(3):1025–1028. doi:10.1182/blood-2006-12-061283

    Article  CAS  PubMed  Google Scholar 

  116. Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B, Ferraro F, Mercier F, Singh H, Brumme KM, Acharya SS, Scholl C, Tothova Z, Attar EC, Frohling S, DePinho RA, Armstrong SA, Gilliland DG, Scadden DT (2011) AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 146(5):697–708. doi:10.1016/j.cell.2011.07.032

    Article  CAS  PubMed  Google Scholar 

  117. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279(5350):577–580

    Article  CAS  PubMed  Google Scholar 

  118. Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E, Mecucci C (2000) C-kit mutations in core binding factor leukemias. Blood 95(2):726–727

    CAS  PubMed  Google Scholar 

  119. Goemans BF, Zwaan CM, Miller M, Zimmermann M, Harlow A, Meshinchi S, Loonen AH, Hahlen K, Reinhardt D, Creutzig U, Kaspers GJ, Heinrich MC (2005) Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 19(9):1536–1542. doi:10.1038/sj.leu.2403870

    Article  CAS  Google Scholar 

  120. Nagata H, Worobec AS, Oh CK, Chowdhury BA, Tannenbaum S, Suzuki Y, Metcalfe DD (1995) Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA 92(23):10560–10564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Feger F, Ribadeau Dumas A, Leriche L, Valent P, Arock M (2002) Kit and c-kit mutations in mastocytosis: a short overview with special reference to novel molecular and diagnostic concepts. Int Arch Allergy Immunol 127(2):110–114. doi:10.1159/000048179

    Article  CAS  PubMed  Google Scholar 

  122. Munugalavadla V, Sims EC, Borneo J, Chan RJ, Kapur R (2007) Genetic and pharmacologic evidence implicating the p85 alpha, but not p85 beta, regulatory subunit of PI3K and Rac2 GTPase in regulating oncogenic KIT-induced transformation in acute myeloid leukemia and systemic mastocytosis. Blood 110(5):1612–1620. doi:10.1182/blood-2006-10-053058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ma Y, Zeng S, Metcalfe DD, Akin C, Dimitrijevic S, Butterfield JH, McMahon G, Longley BJ (2002) The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood 99(5):1741–1744

    Article  CAS  PubMed  Google Scholar 

  124. Akin C, Brockow K, D’Ambrosio C, Kirshenbaum AS, Ma Y, Longley BJ, Metcalfe DD (2003) Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated c-kit. Exp Hematol 31(8):686–692

    Article  CAS  PubMed  Google Scholar 

  125. Pardanani A, Elliott M, Reeder T, Li CY, Baxter EJ, Cross NC, Tefferi A (2003) Imatinib for systemic mast-cell disease. Lancet 362(9383):535–536

    Article  CAS  PubMed  Google Scholar 

  126. Cammenga J, Horn S, Bergholz U, Sommer G, Besmer P, Fiedler W, Stocking C (2005) Extracellular KIT receptor mutants, commonly found in core binding factor AML, are constitutively active and respond to imatinib mesylate. Blood 106(12):3958–3961. doi:10.1182/blood-2005-02-0583

    Article  CAS  PubMed  Google Scholar 

  127. Raimondi SC, Chang MN, Ravindranath Y, Behm FG, Gresik MV, Steuber CP, Weinstein HJ, Carroll AJ (1999) Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood 94(11):3707–3716

    CAS  PubMed  Google Scholar 

  128. Edwards H, Xie C, LaFiura KM, Dombkowski AA, Buck SA, Boerner JL, Taub JW, Matherly LH, Ge Y (2009) RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia. Blood 114(13):2744–2752. doi:10.1182/blood-2008-09-179812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Care RS, Valk PJ, Goodeve AC, Abu-Duhier FM, Geertsma-Kleinekoort WM, Wilson GA, Gari MA, Peake IR, Lowenberg B, Reilly JT (2003) Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 121(5):775–777

    Article  CAS  PubMed  Google Scholar 

  130. Nanri T, Matsuno N, Kawakita T, Suzushima H, Kawano F, Mitsuya H, Asou N (2005) Mutations in the receptor tyrosine kinase pathway are associated with clinical outcome in patients with acute myeloblastic leukemia harboring t(8;21)(q22;q22). Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 19(8):1361–1366. doi:10.1038/sj.leu.2403803

    Article  CAS  Google Scholar 

  131. Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB, Colapietro P, Nichelatti M, Pezzetti L, Lunghi M, Cuneo A, Viola A, Ferrara F, Lazzarino M, Rodeghiero F, Pizzolo G, Larizza L, Morra E (2006) Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 107(9):3463–3468. doi:10.1182/blood-2005-09-3640

    Article  CAS  PubMed  Google Scholar 

  132. Shimada A, Taki T, Tabuchi K, Tawa A, Horibe K, Tsuchida M, Hanada R, Tsukimoto I, Hayashi Y (2006) KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood 107(5):1806–1809. doi:10.1182/blood-2005-08-3408

    Article  CAS  PubMed  Google Scholar 

  133. Gari M, Goodeve A, Wilson G, Winship P, Langabeer S, Linch D, Vandenberghe E, Peake I, Reilly J (1999) c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br J Haematol 105(4):894–900

    Article  CAS  PubMed  Google Scholar 

  134. Wang YY, Zhou GB, Yin T, Chen B, Shi JY, Liang WX, Jin XL, You JH, Yang G, Shen ZX, Chen J, Xiong SM, Chen GQ, Xu F, Liu YW, Chen Z, Chen SJ (2005) AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA 102(4):1104–1109. doi:10.1073/pnas.0408831102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Beghini A, Ripamonti CB, Cairoli R, Cazzaniga G, Colapietro P, Elice F, Nadali G, Grillo G, Haas OA, Biondi A, Morra E, Larizza L (2004) KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica 89(8):920–925

    CAS  PubMed  Google Scholar 

  136. Larizza L, Magnani I, Beghini A (2005) The Kasumi-1 cell line: a t(8;21)-kit mutant model for acute myeloid leukemia. Leuk Lymphoma 46(2):247–255. doi:10.1080/10428190400007565

    Article  CAS  PubMed  Google Scholar 

  137. Munugalavadla V, Sims EC, Chan RJ, Lenz SD, Kapur R (2008) Requirement for p85alpha regulatory subunit of class IA PI3K in myeloproliferative disease driven by an activation loop mutant of KIT. Exp Hematol 36(3):301–308. doi:10.1016/j.exphem.2007.11.008

    CAS  PubMed  Google Scholar 

  138. Mali RS, Ramdas B, Ma P, Shi J, Munugalavadla V, Sims E, Wei L, Vemula S, Nabinger SC, Goodwin CB, Chan RJ, Traina F, Visconte V, Tiu RV, Lewis TA, Stern AM, Wen Q, Crispino JD, Boswell HS, Kapur R (2011) Rho kinase regulates the survival and transformation of cells bearing oncogenic forms of KIT, FLT3, and BCR-ABL. Cancer Cell 20(3):357–369. doi:10.1016/j.ccr.2011.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Buet D, Gallais I, Lauret E, Denis N, Lombard B, Guillonneau F, Kosmider O, Loew D, Dusanter-Fourt I, Guillouf C, Mayeux P, Moreau-Gachelin F (2012) Cotargeting signaling pathways driving survival and cell cycle circumvents resistance to Kit inhibitors in leukemia. Blood 119(18):4228–4241. doi:10.1182/blood-2011-07-368316

    Article  CAS  PubMed  Google Scholar 

  140. Corbacioglu S, Kilic M, Westhoff MA, Reinhardt D, Fulda S, Debatin KM (2006) Newly identified c-KIT receptor tyrosine kinase ITD in childhood AML induces ligand-independent growth and is responsive to a synergistic effect of imatinib and rapamycin. Blood 108(10):3504–3513. doi:10.1182/blood-2006-05-021691

    Article  CAS  PubMed  Google Scholar 

  141. Gilliland DG, Griffin JD (2002) Role of FLT3 in leukemia. Curr Opin Hematol 9(4):274–281

    Article  PubMed  Google Scholar 

  142. Zhang S, Mantel C, Broxmeyer HE (1999) Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. J Leukoc Biol 65(3):372–380

    CAS  PubMed  Google Scholar 

  143. Zhang S, Broxmeyer HE (1999) p85 subunit of PI3 kinase does not bind to human Flt3 receptor, but associates with SHP2, SHIP, and a tyrosine-phosphorylated 100-kDa protein in Flt3 ligand-stimulated hematopoietic cells. Biochem Biophys Res Commun 254(2):440–445. doi:10.1006/bbrc.1998.9959

    Article  CAS  PubMed  Google Scholar 

  144. Grundler R, Miething C, Thiede C, Peschel C, Duyster J (2005) FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 105(12):4792–4799. doi:10.1182/blood-2004-11-4430

    Article  CAS  PubMed  Google Scholar 

  145. Nabinger SC, Li XJ, Ramdas B, He Y, Zhang X, Zeng L, Richine B, Bowling JD, Fukuda S, Goenka S, Liu Z, Feng GS, Yu M, Sandusky GE, Boswell HS, Zhang ZY, Kapur R, Chan RJ (2013) The protein tyrosine phosphatase, Shp2, positively contributes to FLT3-ITD-induced hematopoietic progenitor hyperproliferation and malignant disease in vivo. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 27(2):398–408. doi:10.1038/leu.2012.308

    Article  CAS  Google Scholar 

  146. Xu F, Taki T, Yang HW, Hanada R, Hongo T, Ohnishi H, Kobayashi M, Bessho F, Yanagisawa M, Hayashi Y (1999) Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol 105(1):155–162

    Article  CAS  PubMed  Google Scholar 

  147. Iwai T, Yokota S, Nakao M, Okamoto T, Taniwaki M, Onodera N, Watanabe A, Kikuta A, Tanaka A, Asami K, Sekine I, Mugishima H, Nishimura Y, Koizumi S, Horikoshi Y, Mimaya J, Ohta S, Nishikawa K, Iwai A, Shimokawa T, Nakayama M, Kawakami K, Gushiken T, Hyakuna N, Fujimoto T et al (1999) Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children’s Cancer and Leukemia Study Group, Japan. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 13(1):38–43

    Article  CAS  Google Scholar 

  148. Kondo M, Horibe K, Takahashi Y, Matsumoto K, Fukuda M, Inaba J, Kato K, Kojima S, Matsuyama T (1999) Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 33(6):525–529

    Article  CAS  PubMed  Google Scholar 

  149. Scheijen B, Ngo HT, Kang H, Griffin JD (2004) FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 23(19):3338–3349. doi:10.1038/sj.onc.1207456

    Article  CAS  PubMed  Google Scholar 

  150. Zeng Z, Samudio IJ, Zhang W, Estrov Z, Pelicano H, Harris D, Frolova O, Hail N Jr, Chen W, Kornblau SM, Huang P, Lu Y, Mills GB, Andreeff M, Konopleva M (2006) Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res 66(7):3737–3746. doi:10.1158/0008-5472.CAN-05-1278

    Article  CAS  PubMed  Google Scholar 

  151. Kim KT, Levis M, Small D (2006) Constitutively activated FLT3 phosphorylates BAD partially through pim-1. Br J Haematol 134(5):500–509. doi:10.1111/j.1365-2141.2006.06225.x

    Article  CAS  PubMed  Google Scholar 

  152. Blanco-Aparicio C, Collazo AM, Oyarzabal J, Leal JF, Albaran MI, Lima FR, Pequeno B, Ajenjo N, Becerra M, Alfonso P, Reymundo MI, Palacios I, Mateos G, Quinones H, Corrionero A, Carnero A, Pevarello P, Lopez AR, Fominaya J, Pastor J, Bischoff JR (2011) Pim 1 kinase inhibitor ETP-45299 suppresses cellular proliferation and synergizes with PI3K inhibition. Cancer Lett 300(2):145–153. doi:10.1016/j.canlet.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  153. Weisberg E, Banerji L, Wright RD, Barrett R, Ray A, Moreno D, Catley L, Jiang J, Hall-Meyers E, Sauveur-Michel M, Stone R, Galinsky I, Fox E, Kung AL, Griffin JD (2008) Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL- and mutant FLT3-expressing cells. Blood 111(7):3723–3734. doi:10.1182/blood-2007-09-114454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Papa V, Tazzari PL, Chiarini F, Cappellini A, Ricci F, Billi AM, Evangelisti C, Ottaviani E, Martinelli G, Testoni N, McCubrey JA, Martelli AM (2008) Proapoptotic activity and chemosensitizing effect of the novel AKT inhibitor perifosine in acute myelogenous leukemia cells. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 22(1):147–160. doi:10.1038/sj.leu.2404980

    Article  CAS  Google Scholar 

  155. Billottet C, Grandage VL, Gale RE, Quattropani A, Rommel C, Vanhaesebroeck B, Khwaja A (2006) A selective inhibitor of the p110delta isoform of PI3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 25(50):6648–6659. doi:10.1038/sj.onc.1209670

    Article  CAS  PubMed  Google Scholar 

  156. Chen W, Drakos E, Grammatikakis I, Schlette EJ, Li J, Leventaki V, Staikou-Drakopoulou E, Patsouris E, Panayiotidis P, Medeiros LJ, Rassidakis GZ (2010) mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells. Mol Cancer 9:292. doi:10.1186/1476-4598-9-292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Kadia TM, Kantarjian H, Kornblau S, Borthakur G, Faderl S, Freireich EJ, Luthra R, Garcia-Manero G, Pierce S, Cortes J, Ravandi F (2012) Clinical and proteomic characterization of acute myeloid leukemia with mutated RAS. Cancer 118(22):5550–5559. doi:10.1002/cncr.27596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S (2006) Implications of NRAS mutations in AML: a study of 2502 patients. Blood 107(10):3847–3853. doi:10.1182/blood-2005-08-3522

    Article  CAS  PubMed  Google Scholar 

  159. Bos JL, Verlaan-de Vries M, van der Eb AJ, Janssen JW, Delwel R, Lowenberg B, Colly LP (1987) Mutations in N-ras predominate in acute myeloid leukemia. Blood 69(4):1237–1241

    CAS  PubMed  Google Scholar 

  160. Bowen DT, Frew ME, Hills R, Gale RE, Wheatley K, Groves MJ, Langabeer SE, Kottaridis PD, Moorman AV, Burnett AK, Linch DC (2005) RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood 106(6):2113–2119. doi:10.1182/blood-2005-03-0867

    Article  CAS  PubMed  Google Scholar 

  161. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, Asou N, Kuriyama K, Jinnai I, Shimazaki C, Akiyama H, Saito K, Oh H, Motoji T, Omoto E, Saito H, Ohno R, Ueda R (1999) Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 93(9):3074–3080

    CAS  PubMed  Google Scholar 

  162. Neubauer A, Dodge RK, George SL, Davey FR, Silver RT, Schiffer CA, Mayer RJ, Ball ED, Wurster-Hill D, Bloomfield CD et al (1994) Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood 83(6):1603–1611

    CAS  PubMed  Google Scholar 

  163. Liang DC, Shih LY, Fu JF, Li HY, Wang HI, Hung IJ, Yang CP, Jaing TH, Chen SH, Liu HC (2006) K-Ras mutations and N-Ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer 106(4):950–956. doi:10.1002/cncr.21687

    Article  CAS  PubMed  Google Scholar 

  164. Pulikkan JA, Madera D, Xue L, Bradley P, Landrette SF, Kuo YH, Abbas S, Zhu LJ, Valk P, Castilla LH (2012) Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling. Blood 120(4):868–879. doi:10.1182/blood-2012-03-414649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang SJ, Shi JY, Zhu YM, Shi ZZ, Yan S, Gu BW, Bai XT, Shen ZX, Li JY (2006) The investigation of mutation and single nucleotide polymorphism of receptor tyrosine kinases and downstream scaffold molecules in acute myeloid leukemia. Leuk Lymphoma 47(12):2610–2616. doi:10.1080/10428190600948048

    Article  CAS  PubMed  Google Scholar 

  166. Gilby DC, Goodeve AC, Winship PR, Valk PJ, Delwel R, Reilly JT (2007) Gene structure, expression profiling and mutation analysis of the tumour suppressor SHIP1 in Caucasian acute myeloid leukaemia. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 21(11):2390–2393. doi:10.1038/sj.leu.2404864

    Article  CAS  Google Scholar 

  167. Brauer H, Strauss J, Wegner W, Muller-Tidow C, Horstmann M, Jucker M (2012) Leukemia-associated mutations in SHIP1 inhibit its enzymatic activity, interaction with the GM-CSF receptor and Grb2, and its ability to inactivate PI3K/AKT signaling. Cell Signal 24(11):2095–2101. doi:10.1016/j.cellsig.2012.07.017

    Article  CAS  PubMed  Google Scholar 

  168. Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, Maris JM, Richardson A, Bardelli A, Sugarbaker DJ, Richards WG, Du J, Girard L, Minna JD, Loh ML, Fisher DE, Velculescu VE, Vogelstein B, Meyerson M, Sellers WR, Neel BG (2004) Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64(24):8816–8820

    Article  CAS  PubMed  Google Scholar 

  169. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai MH, Blanchard KL, Thomas JE (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448(7152):439–444. doi:10.1038/nature05933

    Article  CAS  PubMed  Google Scholar 

  170. Tibes R, Kornblau SM, Qiu Y, Mousses SM, Robbins C, Moses T, Carpten JD (2008) PI3K/AKT pathway activation in acute myeloid leukaemias is not associated with AKT1 pleckstrin homology domain mutation. Br J Haematol 140(3):344–347. doi:10.1111/j.1365-2141.2007.06920.x

    Article  CAS  PubMed  Google Scholar 

  171. Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH (2005) PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 24(8):1477–1480. doi:10.1038/sj.onc.1208304

    Article  CAS  PubMed  Google Scholar 

  172. Horn S, Bergholz U, Jucker M, McCubrey JA, Trumper L, Stocking C, Basecke J (2008) Mutations in the catalytic subunit of class IA PI3K confer leukemogenic potential to hematopoietic cells. Oncogene 27(29):4096–4106. doi:10.1038/onc.2008.40

    Article  CAS  PubMed  Google Scholar 

  173. Xing Y, Gerhard B, Hogge DE (2012) Selective small molecule inhibitors of p110alpha and delta isoforms of phosphoinosityl-3-kinase are cytotoxic to human acute myeloid leukemia progenitors. Exp Hematol 40(11):922–933. doi:10.1016/j.exphem.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  174. Xing Y, Hogge DE (2013) Combined inhibition of the phosphoinosityl-3-kinase (PI3Kinase) P110delta subunit and mitogen-extracellular activated protein kinase (MEKinase) shows synergistic cytotoxicity against human acute myeloid leukemia progenitors. Leuk Res 37(6):697–704. doi:10.1016/j.leukres.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  175. Liu TC, Lin PM, Chang JG, Lee JP, Chen TP, Lin SF (2000) Mutation analysis of PTEN/MMAC1 in acute myeloid leukemia. Am J Hematol 63(4):170–175

    Article  CAS  PubMed  Google Scholar 

  176. Aggerholm A, Gronbaek K, Guldberg P, Hokland P (2000) Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorders. Eur J Haematol 65(2):109–113

    Article  CAS  PubMed  Google Scholar 

  177. Cheong JW, Eom JI, Maeng HY, Lee ST, Hahn JS, Ko YW, Min YH (2003) Phosphatase and tensin homologue phosphorylation in the C-terminal regulatory domain is frequently observed in acute myeloid leukaemia and associated with poor clinical outcome. Br J Haematol 122(3):454–456

    Article  CAS  PubMed  Google Scholar 

  178. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, van Waalwijk Barjesteh, van Doorn-Khosrovani S, Boer JM, Beverloo HB, Moorhouse MJ, van der Spek PJ, Lowenberg B, Delwel R (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350(16):1617–1628. doi:10.1056/NEJMoa040465

    Article  CAS  PubMed  Google Scholar 

  179. Yoshimi A, Goyama S, Watanabe-Okochi N, Yoshiki Y, Nannya Y, Nitta E, Arai S, Sato T, Shimabe M, Nakagawa M, Imai Y, Kitamura T, Kurokawa M (2011) Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood 117(13):3617–3628. doi:10.1182/blood-2009-12-261602

    Article  CAS  PubMed  Google Scholar 

  180. Li Y, Gao L, Luo X, Wang L, Gao X, Wang W, Sun J, Dou L, Li J, Xu C, Zhou M, Jiang M, Zhou J, Caligiuri MA, Nervi C, Bloomfield CD, Marcucci G, Yu L (2013) Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood 121(3):499–509. doi:10.1182/blood-2012-07-444729

    Article  CAS  PubMed  Google Scholar 

  181. Tazzari PL, Cappellini A, Ricci F, Evangelisti C, Papa V, Grafone T, Martinelli G, Conte R, Cocco L, McCubrey JA, Martelli AM (2007) Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/AKT signal transduction network in human acute myelogenous leukemia blasts. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 21(3):427–438. doi:10.1038/sj.leu.2404523

    Article  CAS  Google Scholar 

  182. Doepfner KT, Spertini O, Arcaro A (2007) Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/AKT pathway. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 21(9):1921–1930. doi:10.1038/sj.leu.2404813

    Article  CAS  Google Scholar 

  183. Chapuis N, Tamburini J, Cornillet-Lefebvre P, Gillot L, Bardet V, Willems L, Park S, Green AS, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2010) Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/AKT activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica 95(3):415–423. doi:10.3324/haematol.2009.010785

    Article  CAS  PubMed  Google Scholar 

  184. Neri LM, Borgatti P, Tazzari PL, Bortul R, Cappellini A, Tabellini G, Bellacosa A, Capitani S, Martelli AM (2003) The phosphoinositide 3-kinase/AKT1 pathway involvement in drug and all-trans-retinoic acid resistance of leukemia cells. Mol Cancer Res: MCR 1(3):234–246

    CAS  PubMed  Google Scholar 

  185. Tamburini J, Chapuis N, Bardet V, Park S, Sujobert P, Willems L, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2008) Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/AKT by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood 111(1):379–382. doi:10.1182/blood-2007-03-080796

    Article  CAS  PubMed  Google Scholar 

  186. Xia L, Wurmbach E, Waxman S, Jing Y (2006) Upregulation of Bfl-1/A1 in leukemia cells undergoing differentiation by all-trans retinoic acid treatment attenuates chemotherapeutic agent-induced apoptosis. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 20(6):1009–1016. doi:10.1038/sj.leu.2404198

    Article  CAS  Google Scholar 

  187. Chomienne C, Ballerini P, Balitrand N, Daniel MT, Fenaux P, Castaigne S, Degos L (1990) All-trans retinoic acid in acute promyelocytic leukemias. II. In vitro studies: structure-function relationship. Blood 76(9):1710–1717

    CAS  PubMed  Google Scholar 

  188. Drach J, Lopez-Berestein G, McQueen T, Andreeff M, Mehta K (1993) Induction of differentiation in myeloid leukemia cell lines and acute promyelocytic leukemia cells by liposomal all-trans-retinoic acid. Cancer Res 53(9):2100–2104

    CAS  PubMed  Google Scholar 

  189. Lal L, Li Y, Smith J, Sassano A, Uddin S, Parmar S, Tallman MS, Minucci S, Hay N, Platanias LC (2005) Activation of the p70 S6 kinase by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood 105(4):1669–1677. doi:10.1182/blood-2004-06-2078

    Article  CAS  PubMed  Google Scholar 

  190. Billottet C, Banerjee L, Vanhaesebroeck B, Khwaja A (2009) Inhibition of class I phosphoinositide 3-kinase activity impairs proliferation and triggers apoptosis in acute promyelocytic leukemia without affecting atra-induced differentiation. Cancer Res 69(3):1027–1036. doi:10.1158/0008-5472.CAN-08-2608

    Article  CAS  PubMed  Google Scholar 

  191. Bortul R, Tazzari PL, Billi AM, Tabellini G, Mantovani I, Cappellini A, Grafone T, Martinelli G, Conte R, Martelli AM (2005) Deguelin, A PI3K/AKT inhibitor, enhances chemosensitivity of leukaemia cells with an active PI3K/AKT pathway. Br J Haematol 129(5):677–686. doi:10.1111/j.1365-2141.2005.05504.x

    Article  CAS  PubMed  Google Scholar 

  192. Kojima K, Shimanuki M, Shikami M, Samudio IJ, Ruvolo V, Corn P, Hanaoka N, Konopleva M, Andreeff M, Nakakuma H (2008) The dual PI3 kinase/mTOR inhibitor PI-103 prevents p53 induction by Mdm2 inhibition but enhances p53-mediated mitochondrial apoptosis in p53 wild-type AML. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 22(9):1728–1736. doi:10.1038/leu.2008.158

    Article  CAS  Google Scholar 

  193. Park S, Chapuis N, Bardet V, Tamburini J, Gallay N, Willems L, Knight ZA, Shokat KM, Azar N, Viguie F, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2008) PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 22(9):1698–1706. doi:10.1038/leu.2008.144

    Article  CAS  Google Scholar 

  194. Chapuis N, Tamburini J, Green AS, Vignon C, Bardet V, Neyret A, Pannetier M, Willems L, Park S, Macone A, Maira SM, Ifrah N, Dreyfus F, Herault O, Lacombe C, Mayeux P, Bouscary D (2010) Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin Cancer Res Official J Am Assoc Cancer Res 16(22):5424–5435. doi:10.1158/1078-0432.CCR-10-1102

    Article  CAS  Google Scholar 

  195. Rosen DB, Harrington KH, Cordeiro JA, Leung LY, Putta S, Lacayo N, Laszlo GS, Gudgeon CJ, Hogge DE, Hawtin RE, Cesano A, Walter RB (2013) AKT signaling as a novel factor associated with in vitro resistance of human AML to gemtuzumab ozogamicin. PLoS ONE 8(1):e53518. doi:10.1371/journal.pone.0053518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Rahmani M, Aust MM, Attkisson E, Williams DC Jr, Ferreira-Gonzalez A, Grant S (2013) Dual inhibition of Bcl-2 and Bcl-xL strikingly enhances PI3K inhibition-induced apoptosis in human myeloid leukemia cells through a GSK3- and Bim-dependent mechanism. Cancer Res 73(4):1340–1351. doi:10.1158/0008-5472.CAN-12-1365

    Article  CAS  PubMed  Google Scholar 

  197. Jin L, Tabe Y, Kojima K, Shikami M, Benito J, Ruvolo V, Wang RY, McQueen T, Ciurea SO, Miida T, Andreeff M, Konopleva M (2013) PI3K inhibitor GDC-0941 enhances apoptotic effects of BH-3 mimetic ABT-737 in AML cells in the hypoxic bone marrow microenvironment. J Mol Med (Berl) 91(12):1383–1397. doi:10.1007/s00109-013-1076-3

    Article  CAS  Google Scholar 

  198. Carter BZ, Milella M, Tsao T, McQueen T, Schober WD, Hu W, Dean NM, Steelman L, McCubrey JA, Andreeff M (2003) Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 17(11):2081–2089. doi:10.1038/sj.leu.2403113

    Article  CAS  Google Scholar 

  199. Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M, Estrov Z, Mills GB, Andreeff M (2004) Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 18(2):267–275. doi:10.1038/sj.leu.2403220

    Article  CAS  Google Scholar 

  200. Tabellini G, Cappellini A, Tazzari PL, Fala F, Billi AM, Manzoli L, Cocco L, Martelli AM (2005) Phosphoinositide 3-kinase/AKT involvement in arsenic trioxide resistance of human leukemia cells. J Cell Physiol 202(2):623–634. doi:10.1002/jcp.20153

    Article  CAS  PubMed  Google Scholar 

  201. Rahmani M, Anderson A, Habibi JR, Crabtree TR, Mayo M, Harada H, Ferreira-Gonzalez A, Dent P, Grant S (2009) The BH3-only protein Bim plays a critical role in leukemia cell death triggered by concomitant inhibition of the PI3K/AKT and MEK/ERK1/2 pathways. Blood 114(20):4507–4516. doi:10.1182/blood-2008-09-177881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Abrams SL, Steelman LS, Shelton JG, Wong EW, Chappell WH, Basecke J, Stivala F, Donia M, Nicoletti F, Libra M, Martelli AM, McCubrey JA (2010) The Raf/MEK/ERK pathway can govern drug resistance, apoptosis and sensitivity to targeted therapy. Cell Cycle 9(9):1781–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wang X, Wang C, Yan SK, Gao YR (2007) XIAP is upregulated in HL-60 cells cocultured with stromal cells by direct cell contact. Leuk Res 31(8):1125–1129. doi:10.1016/j.leukres.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  204. Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, McQueen T, Priebe W, Mills GB, Ohsaka A, Nagaoka I, Andreeff M, Konopleva M (2007) Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res 67(2):684–694. doi:10.1158/0008-5472.CAN-06-3166

    Article  CAS  PubMed  Google Scholar 

  205. Katsumi A, Kiyoi H, Abe A, Tanizaki R, Iwasaki T, Kobayashi M, Matsushita T, Kaibuchi K, Senga T, Kojima T, Kohno T, Hamaguchi M, Naoe T (2011) FLT3/ ITD regulates leukaemia cell adhesion through alpha4beta1 integrin and Pyk2 signalling. Eur J Haematol 86(3):191–198. doi:10.1111/j.1600-0609.2010.01556.x

    Article  CAS  PubMed  Google Scholar 

  206. Jin L, Tabe Y, Lu H, Borthakur G, Miida T, Kantarjian H, Andreeff M, Konopleva M (2013) Mechanisms of apoptosis induction by simultaneous inhibition of PI3K and FLT3-ITD in AML cells in the hypoxic bone marrow microenvironment. Cancer Lett 329(1):45–58. doi:10.1016/j.canlet.2012.09.020

    Article  CAS  PubMed  Google Scholar 

  207. Zeng Z, Shi YX, Tsao T, Qiu Y, Kornblau SM, Baggerly KA, Liu W, Jessen K, Liu Y, Kantarjian H, Rommel C, Fruman DA, Andreeff M, Konopleva M (2012) Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment. Blood 120(13):2679–2689. doi:10.1182/blood-2011-11-393934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Maloney KW, Giller R, Hunger SP (2012) Recent advances in the understanding and treatment of pediatric leukemias. Adv Pediatr 59(1):329–358. doi:10.1016/j.yapd.2012.04.010

    Article  PubMed  Google Scholar 

  209. Druker BJ (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112(13):4808–4817. doi:10.1182/blood-2008-07-077958

    Article  CAS  PubMed  Google Scholar 

  210. Deininger M, Buchdunger E, Druker BJ (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105(7):2640–2653. doi:10.1182/blood-2004-08-3097

    Article  CAS  PubMed  Google Scholar 

  211. Suttorp M, Millot F (2010) Treatment of pediatric chronic myeloid leukemia in the year 2010: use of tyrosine kinase inhibitors and stem-cell transplantation. Hematol Educ Prog Am Soc Hematol Am Soc Educ Prog 2010:368–376. doi:10.1182/asheducation-2010.1.368

    Google Scholar 

  212. Andolina JR, Neudorf SM, Corey SJ (2012) How I treat childhood CML. Blood 119(8):1821–1830. doi:10.1182/blood-2011-10-380774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Muramatsu H, Takahashi Y, Sakaguchi H, Shimada A, Nishio N, Hama A, Doisaki S, Yagasaki H, Matsumoto K, Kato K, Kojima S (2011) Excellent outcomes of children with CML treated with imatinib mesylate compared to that in pre-imatinib era. Int J Hematol 93(2):186–191. doi:10.1007/s12185-010-0764-9

    Article  CAS  PubMed  Google Scholar 

  214. Mariani S, Giona F, Basciani S, Brama M, Gnessi L (2008) Low bone density and decreased inhibin-B/FSH ratio in a boy treated with imatinib during puberty. Lancet 372(9633):111–112. doi:10.1016/S0140-6736(08)61023-5

    Article  PubMed  Google Scholar 

  215. Schmid H, Jaeger BA, Lohse J, Suttorp M (2009) Longitudinal growth retardation in a prepuberal girl with chronic myeloid leukemia on long-term treatment with imatinib. Haematologica 94(8):1177–1179. doi:10.3324/haematol.2009.008359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kimoto T, Inoue M, Kawa K (2009) Growth deceleration in a girl treated with imatinib. Int J Hematol 89(2):251–252. doi:10.1007/s12185-008-0251-8

    Article  PubMed  Google Scholar 

  217. Narayanan KR, Bansal D, Walia R, Sachdeva N, Bhansali A, Varma N, Marwaha RK (2013) Growth failure in children with chronic myeloid leukemia receiving imatinib is due to disruption of GH/IGF-1 axis. Pediatr Blood Cancer 60(7):1148–1153. doi:10.1002/pbc.24397

    Article  CAS  PubMed  Google Scholar 

  218. Bansal D, Shava U, Varma N, Trehan A, Marwaha RK (2012) Imatinib has adverse effect on growth in children with chronic myeloid leukemia. Pediatr Blood Cancer 59(3):481–484. doi:10.1002/pbc.23389

    Article  PubMed  Google Scholar 

  219. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293(5531):876–880. doi:10.1126/science.1062538

    Article  CAS  PubMed  Google Scholar 

  220. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K, Herrmann R, Lynch KP, Hughes TP (2002) High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 99(9):3472–3475

    Article  CAS  PubMed  Google Scholar 

  221. von Bubnoff N, Schneller F, Peschel C, Duyster J (2002) BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359(9305):487–491. doi:10.1016/S0140-6736(02)07679-1

    Article  Google Scholar 

  222. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T, Hanfstein B, Schoch C, Cross NC, Berger U, Gschaidmeier H, Druker BJ, Hehlmann R (2002) Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 16(11):2190–2196. doi:10.1038/sj.leu.2402741

    Article  CAS  Google Scholar 

  223. Kawauchi K, Ogasawara T, Yasuyama M, Ohkawa S (2003) Involvement of AKT kinase in the action of STI571 on chronic myelogenous leukemia cells. Blood Cells Mol Dis 31(1):11–17

    Article  CAS  PubMed  Google Scholar 

  224. Klejman A, Rushen L, Morrione A, Slupianek A, Skorski T (2002) Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of STI571. Oncogene 21(38):5868–5876. doi:10.1038/sj.onc.1205724

    Article  CAS  PubMed  Google Scholar 

  225. Sattler M, Salgia R, Okuda K, Uemura N, Durstin MA, Pisick E, Xu G, Li JL, Prasad KV, Griffin JD (1996) The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3′ kinase pathway. Oncogene 12(4):839–846

    CAS  PubMed  Google Scholar 

  226. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K, Gesbert F, Iwasaki H, Li S, Van Etten RA, Gu H, Griffin JD, Neel BG (2002) Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 1(5):479–492

    Article  CAS  PubMed  Google Scholar 

  227. Hirano I, Nakamura S, Yokota D, Ono T, Shigeno K, Fujisawa S, Shinjo K, Ohnishi K (2009) Depletion of Pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 by Bcr-Abl promotes chronic myelogenous leukemia cell proliferation through continuous phosphorylation of AKT isoforms. J Biol Chem 284(33):22155–22165. doi:10.1074/jbc.M808182200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Naughton R, Quiney C, Turner SD, Cotter TG (2009) Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 23(8):1432–1440. doi:10.1038/leu.2009.49

    Article  CAS  Google Scholar 

  229. Keeshan K, Cotter TG, McKenna SL (2003) Bcr-Abl upregulates cytosolic p21WAF-1/CIP-1 by a phosphoinositide-3-kinase (PI3K)-independent pathway. Br J Haematol 123(1):34–44

    Article  CAS  PubMed  Google Scholar 

  230. Andreu EJ, Lledo E, Poch E, Ivorra C, Albero MP, Martinez-Climent JA, Montiel-Duarte C, Rifon J, Perez-Calvo J, Arbona C, Prosper F, Perez-Roger I (2005) BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells. Cancer Res 65(8):3264–3272. doi:10.1158/0008-5472.CAN-04-1357

    CAS  PubMed  Google Scholar 

  231. Chen JY, Wang MC, Hung WC (2009) Transcriptional activation of Skp2 by BCR-ABL in K562 chronic myeloid leukemia cells. Leuk Res 33(11):1520–1524. doi:10.1016/j.leukres.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  232. Sugimoto Y, Nakamura S, Okinaka K, Hirano I, Ono T, Shigeno K, Shinjo K, Ohnishi K (2008) HOXA10 expression induced by Abl kinase inhibitors enhanced apoptosis through PI3K pathway in CML cells. Leuk Res 32(6):962–971. doi:10.1016/j.leukres.2007.11.034

    Article  CAS  PubMed  Google Scholar 

  233. Fang ZH, Dong CL, Chen Z, Zhou B, Liu N, Lan HF, Liang L, Liao WB, Zhang L, Han ZC (2009) Transcriptional regulation of survivin by c-Myc in BCR/ABL-transformed cells: implications in anti-leukaemic strategy. J Cell Mol Med 13(8B):2039–2052. doi:10.1111/j.1582-4934.2008.00549.x

    Article  PubMed  Google Scholar 

  234. Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Muller-Brusselbach S, Ottmann OG, Duyster J, Hochhaus A, Neubauer A (2005) Compensatory PI3-kinase/AKT/mTor activation regulates imatinib resistance development. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 19(10):1774–1782. doi:10.1038/sj.leu.2403898

    Article  CAS  Google Scholar 

  235. Mancini M, Corradi V, Petta S, Martinelli G, Barbieri E, Santucci MA (2010) mTOR inhibitor RAD001 (Everolimus) enhances the effects of imatinib in chronic myeloid leukemia by raising the nuclear expression of c-ABL protein. Leuk Res 34(5):641–648. doi:10.1016/j.leukres.2009.07.012

    Article  CAS  PubMed  Google Scholar 

  236. Wohrle FU, Halbach S, Aumann K, Schwemmers S, Braun S, Auberger P, Schramek D, Penninger JM, Lassmann S, Werner M, Waller CF, Pahl HL, Zeiser R, Daly RJ, Brummer T (2013) Gab2 signaling in chronic myeloid leukemia cells confers resistance to multiple Bcr-Abl inhibitors. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 27(1):118–129. doi:10.1038/leu.2012.222

    Article  CAS  Google Scholar 

  237. Hui RC, Gomes AR, Constantinidou D, Costa JR, Karadedou CT, Fernandez de Mattos S, Wymann MP, Brosens JJ, Schulze A, Lam EW (2008) The forkhead transcription factor FOXO3a increases phosphoinositide-3 kinase/AKT activity in drug-resistant leukemic cells through induction of PIK3CA expression. Mol Cell Biol 28(19):5886–5898. doi:10.1128/MCB.01265-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Loh ML (2011) Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br J Haematol 152(6):677–687. doi:10.1111/j.1365-2141.2010.08525.x

    Article  CAS  PubMed  Google Scholar 

  239. Emanuel PD (2008) Juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 22(7):1335–1342. doi:10.1038/leu.2008.162

    Article  CAS  Google Scholar 

  240. Chan RJ, Cooper T, Kratz CP, Weiss B, Loh ML (2009) Juvenile myelomonocytic leukemia: a report from the 2nd international JMML symposium. Leuk Res 33(3):355–362. doi:10.1016/j.leukres.2008.08.022

    Article  PubMed  Google Scholar 

  241. Niemeyer CM, Kratz CP (2008) Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. Br J Haematol 140(6):610–624. doi:10.1111/j.1365-2141.2007.06958.x

    Article  CAS  PubMed  Google Scholar 

  242. Bergstraesser E, Hasle H, Rogge T, Fischer A, Zimmermann M, Noellke P, Niemeyer CM (2007) Non-hematopoietic stem cell transplantation treatment of juvenile myelomonocytic leukemia: a retrospective analysis and definition of response criteria. Pediatr Blood Cancer 49(5):629–633

    Article  PubMed  Google Scholar 

  243. Emanuel PD, Bates LJ, Castleberry RP, Gualtieri RJ, Zuckerman KS (1991) Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 77(5):925–929

    CAS  PubMed  Google Scholar 

  244. Locatelli F, Nollke P, Zecca M, Korthof E, Lanino E, Peters C, Pession A, Kabisch H, Uderzo C, Bonfim CS, Bader P, Dilloo D, Stary J, Fischer A, Revesz T, Fuhrer M, Hasle H, Trebo M, van den Heuvel-Eibrink MM, Fenu S, Strahm B, Giorgiani G, Bonora MR, Duffner U, Niemeyer CM (2005) Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood 105(1):410–419

    Article  CAS  PubMed  Google Scholar 

  245. Yoshimi A, Mohamed M, Bierings M, Urban C, Korthof E, Zecca M, Sykora KW, Duffner U, Trebo M, Matthes-Martin S, Sedlacek P, Klingebiel T, Lang P, Fuhrer M, Claviez A, Wossmann W, Pession A, Arvidson J, O’Marcaigh AS, van den Heuvel-Eibrink MM, Stary J, Hasle H, Nollke P, Locatelli F, Niemeyer CM (2007) Second allogeneic hematopoietic stem cell transplantation (HSCT) results in outcome similar to that of first HSCT for patients with juvenile myelomonocytic leukemia. Leuk Official J Leuk Soc Am, Leuk Res Fund, UK 21(3):556–560. doi:10.1038/sj.leu.2404537

    Article  CAS  Google Scholar 

  246. Kalra R, Paderanga DC, Olson K, Shannon KM (1994) Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Blood 84(10):3435–3439

    CAS  PubMed  Google Scholar 

  247. Miyauchi J, Asada M, Sasaki M, Tsunematsu Y, Kojima S, Mizutani S (1994) Mutations of the N-ras gene in juvenile chronic myelogenous leukemia. Blood 83(8):2248–2254

    CAS  PubMed  Google Scholar 

  248. Shannon KM, O’Connell P, Martin GA, Paderanga D, Olson K, Dinndorf P, McCormick F (1994) Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med 330(9):597–601. doi:10.1056/NEJM199403033300903

    Article  CAS  PubMed  Google Scholar 

  249. Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S, Mullighan CG, Chen L, Bergstraesser E, Bueso-Ramos CE, Emanuel PD, Hasle H, Issa JP, van den Heuvel-Eibrink MM, Locatelli F, Stary J, Trebo M, Wlodarski M, Zecca M, Shannon KM, Niemeyer CM (2009) Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 114(9):1859–1863. doi:10.1182/blood-2009-01-198416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, Hahlen K, Hasle H, Licht JD, Gelb BD (2003) Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 34(2):148–150

    Article  CAS  PubMed  Google Scholar 

  251. Shiba N, Ohki K, Park MJ, Sotomatsu M, Kudo K, Ito E, Sako M, Arakawa H, Hayashi Y (2013) SETBP1 mutations in juvenile myelomonocytic leukaemia and myelodysplastic syndrome but not in paediatric acute myeloid leukaemia. Br J Haematol. doi:10.1111/bjh.12595

    Google Scholar 

  252. Sakaguchi H, Okuno Y, Muramatsu H, Yoshida K, Shiraishi Y, Takahashi M, Kon A, Sanada M, Chiba K, Tanaka H, Makishima H, Wang X, Xu Y, Doisaki S, Hama A, Nakanishi K, Takahashi Y, Yoshida N, Maciejewski JP, Miyano S, Ogawa S, Kojima S (2013) Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat Genet 45(8):937–941. doi:10.1038/ng.2698

    Article  CAS  PubMed  Google Scholar 

  253. Stieglitz E, Troup CB, Gelston LC, Haliburton J, Chow ED, Yu KB, Akutagawa J, Taylor-Weiner AN, Liu YL, Wang YD, Beckman K, Emanuel PD, Braun BS, Abate A, Gerbing RB, Alonzo TA, Loh ML (2015) Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia. Blood 125(3):516–524. doi:10.1182/blood-2014-09-601690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Chan RJ, Leedy MB, Munugalavadla V, Voorhorst CS, Li Y, Yu M, Kapur R (2005) Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood 105(9):3737–3742. doi:10.1182/blood-2004-10-4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S, Morgan K, Boulton C, Shigematsu H, Keilhack H, Akashi K, Gilliland DG, Neel BG (2005) Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 7(2):179–191. doi:10.1016/j.ccr.2005.01.010

    Article  CAS  PubMed  Google Scholar 

  256. Schubbert S, Lieuw K, Rowe SL, Lee CM, Li X, Loh ML, Clapp DW, Shannon KM (2005) Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood 106(1):311–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Perugini M, Brown AL, Salerno DG, Booker GW, Stojkoski C, Hercus TR, Lopez AF, Hibbs ML, Gonda TJ, D’Andrea RJ (2010) Alternative modes of GM-CSF receptor activation revealed using activated mutants of the common beta-subunit. Blood 115(16):3346–3353. doi:10.1182/blood-2009-08-235846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Yang Z, Li Y, Yin F, Chan RJ (2008) Activating PTPN11 mutants promote hematopoietic progenitor cell-cycle progression and survival. Exp Hematol 36(10):1285–1296. doi:10.1016/j.exphem.2008.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Goodwin CB, Yang Z, Yin F, Yu M, Chan RJ (2012) Genetic disruption of the PI3K regulatory subunits, p85alpha, p55alpha, and p50alpha, normalizes mutant PTPN11-induced hypersensitivity to GM-CSF. Haematologica 97(7):1042–1047. doi:10.3324/haematol.2011.046896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Yu WM, Daino H, Chen J, Bunting KD, Qu CK (2006) Effects of a leukemia-associated gain-of-function mutation of SHP-2 phosphatase on interleukin-3 signaling. J Biol Chem 281(9):5426–5434. doi:10.1074/jbc.M507622200

    Article  CAS  PubMed  Google Scholar 

  261. Goodwin CB, Li XJ, Mali RS, Chan G, Kang M, Liu Z, Vanhaesebroeck B, Neel BG, Loh ML, Lannutti BJ, Kapur R, Chan RJ (2014) PI3K p110delta uniquely promotes gain-of-function Shp2-induced GM-CSF hypersensitivity in a model of JMML. Blood 123(18):2838–2842. doi:10.1182/blood-2013-10-535104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Gritsman K, Yuzugullu H, Von T, Yan H, Clayton L, Fritsch C, Maira SM, Hollingworth G, Choi C, Khandan T, PAKTinat M, Okabe RO, Roberts TM, Zhao JJ (2014) Hematopoiesis and RAS-driven myeloid leukemia differentially require PI3K isoform p110alpha. J Clin Investig 124(4):1794–1809. doi:10.1172/JCI69927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Neel BG, Gu H, Pao L (2003) The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28(6):284–293. doi:10.1016/S0968-0004(03)00091-4

    Article  CAS  PubMed  Google Scholar 

  264. Chan G, Kalaitzidis D, Neel BG (2008) The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev 27(2):179–192. doi:10.1007/s10555-008-9126-y

    Article  CAS  PubMed  Google Scholar 

  265. Pulsipher MA, Langholz B, Wall DA, Schultz KR, Bunin N, Carroll WL, Raetz E, Gardner S, Gastier-Foster JM, Howrie D, Goyal RK, Douglas JG, Borowitz M, Barnes Y, Teachey DT, Taylor C, Grupp SA (2014) The addition of sirolimus to tacrolimus/methotrexate GVHD prophylaxis in children with ALL: a phase 3 Children’s Oncology Group/Pediatric Blood and Marrow Transplant Consortium trial. Blood 123(13):2017–2025. doi:10.1182/blood-2013-10-534297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Gojo I, Perl A, Luger S, Baer MR, Norsworthy KJ, Bauer KS, Tidwell M, Fleckinger S, Carroll M, Sausville EA (2013) Phase I study of UCN-01 and perifosine in patients with relapsed and refractory acute leukemias and high-risk myelodysplastic syndrome. Invest New Drugs 31(5):1217–1227. doi:10.1007/s10637-013-9937-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Friedman DR, Lanasa MC, Davis PH, Allgood SD, Matta KM, Brander DM, Chen Y, Davis ED, Volkheimer AD, Moore JO, Gockerman JP, Sportelli P, Weinberg JB (2014) Perifosine treatment in chronic lymphocytic leukemia: results of a phase II clinical trial and in vitro studies. Leuk Lymphoma 55(5):1067–1075. doi:10.3109/10428194.2013.824080

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by and the U.S. National Institutes of Health (HL104867, CBG; CA134777, RJC), the Riley Children’s Foundation, and the IUPUI Office of the Vice Chancellor for Research. The authors gratefully acknowledge the administrative assistance of Marilyn L. Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca J. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodwin, C.B., Chan, R.J. (2016). Phospho-Inositol-3-Kinase Activity and Dysregulation in Pediatric Leukemia and Lymphoma. In: Dey, N., De, P., Leyland-Jones, B. (eds) PI3K-mTOR in Cancer and Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-34211-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34211-5_7

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-34209-2

  • Online ISBN: 978-3-319-34211-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics