Skip to main content

Cell Signaling in Tenocytes: Response to Load and Ligands in Health and Disease

  • Chapter
  • First Online:
Metabolic Influences on Risk for Tendon Disorders

Abstract

Signaling in tenocytes during development, homeostasis and injury involves multiple and redundant pathways. Given that tendons transmit mechanical forces from muscle to bone to effect movement, a key function for tenocytes is the detection of and response to mechanical stimulation. Mechanotransduction involves matrix-integrin-cytoskeleton to nucleus signaling, gap junction intercellular communication, changes in intracellular calcium (Ca2+), activation of receptors and their pathways, and responses to biochemical factors such as hormones, growth factors, adenosine triphosphate (ATP) and its derivatives, and neuromodulators. The primary cilium also plays a key role in the detection of mechanical signals. During development, transforming growth factor-β (TGF-β), bone morphogenetic protein (BMP), and hedgehog (Hh) signaling modulate tendon differentiation and formation. The response to injury is complex and varied involving not only inflammatory mediators such as interleukin-1β but also mechanosensing. This chapter reviews the signaling pathways tenocytes use during mechanotransduction, development and in response to injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ascenzi MG, Lenox M, Farnum C (2007) Analysis of the orientation of primary cilia in growth plate cartilage: a mathematical method based on multiphoton microscopical images. J Struct Biol 158(3):293–306

    Article  CAS  PubMed  Google Scholar 

  2. Al-Sadi O, Schulze-Tanzil G, Kohl B, Lohan A, Lemke M, Ertel W, John T (2012) Tenocytes, pro-inflammatory cytokines and leukocytes: a relationship? Muscles Ligaments Tendons J 1(3):68–76

    PubMed  PubMed Central  Google Scholar 

  3. Archambault JM, Jelinsky SA, Lake SP, Hill AA, Glaser DL, Soslowsky LJ (2007) Rat supraspinatus tendon expresses cartilage markers with overuse. J Orthop Res 25(5):617–624

    Article  CAS  PubMed  Google Scholar 

  4. Arnoczky S, Lavagnino M, Gardner K, Tian T, Vaupel ZM, Stick JA (2004) Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. J Orthop Res 22:328–333

    Article  CAS  PubMed  Google Scholar 

  5. Arnoczky SP, Lavagnino M, Egerbacher M, Caballero O, Gardner K, Shender MA (2008) Loss of homeostatic strain alters mechanostat “set point” of tendon cells in vitro. Clin Orthop Relat Res 466:1583–1591. doi:10.1007/s11999-008-0264-x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arnoczky SP, Lavagnino M, Whallon JH, Hoonjan A (2002) In situ cell nucleus deformation in tendons under tensile load; a morphological analysis using confocal laser microscopy. J Orthop Res 20:29–35

    Article  PubMed  Google Scholar 

  7. Arnoczky SP, Tian T, Lavagnino M, Gardner K, Schuler P, Morse P (2002) Activation of stress-activated protein kinases (SAPK) in tendon cell following cyclic strain: the effects of strain frequency, strain magnitude, and cytosolic calcium. J Orthop Res 20:947–952

    Article  CAS  PubMed  Google Scholar 

  8. Backman LJ, Andersson G, Fong G, Alfredson H, Scott A, Danielson P (2013) Alpha-2 adrenergic stimulation triggers Achilles tenocyte hypercellularity: comparison between two model systems. Scand J Med Sci Sports 23(6):687–696. doi:10.1111/j.1600-0838.2011.01442.x

    Article  CAS  PubMed  Google Scholar 

  9. Baffi MO, Slattery E, Sohn P, Moses HL, Chytil A, Serra R (2004) Conditional deletion of the TGF-β type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev Biol 276(1):124–142. doi:10.1016/j.ydbio.2004.08.027

    Article  CAS  PubMed  Google Scholar 

  10. Bagchi RA, Czubryt MP (2012) Synergistic roles of scleraxis and smads in the regulation of collagen 1α2 gene expression. Biochim Biophys Acta Mol Cell Res 1823(10):1936–1944. doi:10.1016/j.bbamcr.2012.07.002

    Article  CAS  Google Scholar 

  11. Banes AJ, Enterline D, Bevin AG, Salisbury RE (1981) Repair of flexor tendon: effects of trauma and devascularization on collagen synthesis. J Trauma 21:505–512

    Article  CAS  PubMed  Google Scholar 

  12. Banes AJ, Horesovsky G, Tsuzaki M, Boitano S, Lawrence WT, Brown T, Weinhold P, Kenamond C, Benjamin M, Ralphs JR, McNeilly C, Burt J, Miller L (1999) The connexin 43 gap junction is a mechanosensitive gene in avian flexor tendon cells. In: Caterson B, Archer C, Benjamin M, Ralphs J (eds) The biology of the synovial joint. Harwood Academic Publishers, Amsterdam, pp 279–299

    Google Scholar 

  13. Banes AJ, Hu P, Xiao H, Sanderson MJ, Boitano S, Brigman B, Fischer T, Tsuzaki M, Brown TD, Almekinders LC, Lawrence WT (1995) Tendon cells of the epitenon and internal tendon compartment communicate mechanical signals through gap junctions and respond differentially to mechanical load and growth factors. In: Gordon SL, Blair SJ, Fine LJ (eds) Repetitive motion disorders of the upper extremity. American Academy of Orthopaedic Surgeons, Rosemont, pp 231–245

    Google Scholar 

  14. Banes AJ, Lee G, Graff R, Otey C, Archambault J, Tsuzaki M, Elfervig M, Qi J (2001) Mechanical forces and signaling in connective tissue cells: cellular mechanisms of detection, transduction, and responses to mechanical deformation. Curr Opin Orthop 12:389–396

    Article  Google Scholar 

  15. Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T, Miller L (1995) Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol 73(7–8):349–365

    Article  CAS  PubMed  Google Scholar 

  16. Banes AJ, Tsuzaki M, Yang X, Faber J, Bottlang M, Pederson D, Brown T (1998) Equibiaxial strain activates AP-1 and CRE transcription factors but not NF-κB or SSRE and up regulates Cx43 mRNA in tendon cells in vitro [abstract]. Transactions of the 44th annual meeting of the Orthopaedic Research Society 23:182

    Google Scholar 

  17. Banes AJ, Weinhold P, Yang X, Tsuzaki M, Bynum D, Bottlang M, Brown T (1999) Gap junctions regulate responses of tendon cells ex vivo to mechanical loading. Clin Orthop Relat Res 367:S356–S370

    Article  PubMed  Google Scholar 

  18. Bénazet J, Pignatti E, Nugent A, Unal E, Laurent F, Zeller R (2012) Smad4 is required to induce digit ray primordia and to initiate the aggregation and differentiation of chondrogenic progenitors in mouse limb buds. Development (Cambridge) 139(22):4250–4260. doi:10.1242/dev.084822

    Article  CAS  Google Scholar 

  19. Berthet E, Chen C, Butcher K, Schneider RA, Alliston T, Amirtharajah M (2013) Smad3 binds scleraxis and mohawk and regulates tendon matrix organization. J Orthop Res 31(9):1475–1483. doi:10.1002/jor.22382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13(10):1219–1227. doi:10.1038/nm1630

    Article  CAS  PubMed  Google Scholar 

  21. Bjurholm A, Kreicbergs A, Schultzberg M, Lerner UH (1988) Parathyroid hormone and noradrenaline-induced enhancement of cyclic AMP in a cloned osteogenic sarcoma cell line (UMR 106) is inhibited by neuropeptide Y. Acta Physiol Scand 134:451–452

    Article  CAS  PubMed  Google Scholar 

  22. Blitz E, Sharir A, Akiyama H, Zelzer E (2013) Tendon-bone attachment unit is formed modularly by a distinct pool of scx-and Sox9-positive progenitors. Development (Cambridge) 140(13):2680–2690. doi:10.1242/dev.093906

    Article  CAS  Google Scholar 

  23. Blitz E, Viukov S, Sharir A, Shwartz Y, Galloway JL, Pryce BA, Johnson RL, Tabin CJ, Schweitzer R, Zelzer E (2009) Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev Cell 17(6):861–873. doi:10.1016/j.devcel.2009.10.010

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bodle JC, Rubenstein CD, Phillips ME, Bernacki SH, Qi J, Banes AJ, Loboa EG (2013) Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis. PLoS One 8(5), e62554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boitano S, Dirksen ER, Sanderson MJ (1992) Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258:292–295

    Article  CAS  PubMed  Google Scholar 

  26. Breidenbach AP, Aschbacher-Smith L, Lu Y, Dyment NA, Liu CF, Liu H, Wylie C, Rao M, Shearn JT, Rowe DW, Kadler KE, Jiang R, Butler DL (2015) Ablating hedgehog signaling in tenocytes during development impairs biomechanics and matrix organization of the adult murine patellar tendon enthesis. J Orthop Res 33(8):1142–1151. doi:10.1002/jor.22899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238:1–27

    Article  CAS  PubMed  Google Scholar 

  28. Charles A (1998) Intercellular calcium waves in glia. Glia 24:39–49

    Article  CAS  PubMed  Google Scholar 

  29. Chen S, Yuan W, Mori Y, Levenson A, Trojanowska M, Varga J (1999) Stimulation of type I collagen transcription in human skin fibroblasts by TGF-β: Involvement of smad 3. J Investig Dermatol 112(1):49–57. doi:10.1046/j.1523-1747.1999.00477.x

    Article  CAS  PubMed  Google Scholar 

  30. Communi D, Govaerts C, Parmentier M, Boeynaems JM (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272(51):31969–31973

    Article  CAS  PubMed  Google Scholar 

  31. Communi D, Janssens R, Suareq-Huerta N, Robaye B, Boeynaems J (2000) Advances in signaling by extracellular nucleotides: the role and transduction mechanisms of P2Y receptors. Cell Signal 12:351–360

    Article  CAS  PubMed  Google Scholar 

  32. Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A 95:15735–15740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Danielson P, Alfredson H, Forsgren S (2007) Studies on the importance of sympathetic innervation, adrenergic receptors, and a possible local catecholamine production in the development of patellar tendinopathy (tendinosis) in man. Microsc Res Tech. doi:10.1002/jemt

    Google Scholar 

  34. Docherty JR (1998) Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur J Pharmacol 361:1–15

    Article  CAS  PubMed  Google Scholar 

  35. Donnelly E, Ascenzi MG, Farnum C (2010) Primary cilia are highly oriented with respect to collagen direction and long axis of extensor tendon. J Orthop Res 28(1):77–82. doi:10.1002/jor.20946

    PubMed  PubMed Central  Google Scholar 

  36. Dyment NA, Breidenbach AP, Schwartz AG, Russell RP, Aschbacher-Smith L, Liu H, Haqiwara Y, Jiang R, Thomopoulos S, Butler D, Rowe DW (2015) Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis. Dev Biol 405(1):96–107. doi:10.1016/j.ydbio.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  37. Dyment NA, Hagiwara Y, Matthews BG, Li Y, Kalajzic I, Rowe DW (2014) Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS ONE 9(4), e96113. doi:10.1371/journal.pone.0096113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48

    Article  PubMed  PubMed Central  Google Scholar 

  39. Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Evans WH, Martin PE (2002) Gap junctions: structure and function. Mol Membr Biol 19:121–136

    Article  CAS  PubMed  Google Scholar 

  41. Farnum CE, Williams RM, Donnelly E (2009) Analyzing primary cilia by multiphoton microscopy. Methods Cell Biol 94:117–135

    Article  CAS  PubMed  Google Scholar 

  42. Farnum CE, Wilsman NJ (2011) Orientation of primary cilia of articular chondrocytes in three-dimensional space. Anat Rec (Hoboken) 294(3):533–549

    Article  Google Scholar 

  43. Ferry ST, Afshari HM, Lee JA, Dahners LE, Weinhold PS (2012) Effect of prostaglandin E2 injection on the structural properties of the rat patellar tendon. Sports Med Arthrosc Rehabil Ther Technol 4(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  44. Francke E, Sood A, Kenamond C, Yang X, Faber J, Boitano S, Bynum D, Sanderson M, Banes AJ (1998) ATP stimulates an increase in intracellular calcium in human tendon cells via purinergic receptors and temporally blocks gap junction signaling [abstract]. Transactions of the 44th annual meeting of the Orthopaedic Research Society 23:91

    Google Scholar 

  45. Gardner K, Arnoczky SP, Lavagnino M (2011) Effect of in vitro stress-deprivation and cyclic loading on the length of tendon cell cilia in situ. J Orthop Res 29:582–587

    Article  PubMed  Google Scholar 

  46. Goldberg S, Lampe PD, Nicholson BJ (1999) Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1:457–459

    Article  CAS  PubMed  Google Scholar 

  47. Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:1–10

    Article  CAS  Google Scholar 

  48. Graham RM, Perez DM, Hwa J, Piascik MT (1996) Alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling. Circ Res 78:737–749

    Article  CAS  PubMed  Google Scholar 

  49. Hart DA, Frank CB, Bray RC (1995) Inflammatory processes in repetitive motion and overuse syndromes: potential role of neurogenic mechanisms in tendons and ligaments. In: Gordon SL, Blair SJ, Fine LJ (eds) Repetitive motion disorders of the upper extremity. American Academy of Orthopaedic Surgeons, Rosemont, pp 247–262

    Google Scholar 

  50. Hoey DA, Tormey S, Ramcharan S, O’Brien FJ, Jacobs CR (2012) Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. Stem Cells 30(11):2561–2570. doi:10.1002/stem.1235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ingber DE, Wang N, Stamenovic D (2014) Tensegrity, cellular biophysics, and the mechanics of living systems. Rep Prog Phys 77(4):046603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jelinsky SA, Li L, Ellis D, Archambault J, Li J, St. Andre M, Morris C, Seeherman H (2011) Treatment with rhBMP12 or rhBMP13 increase the rate and the quality of rat Achilles tendon repair. J Orthop Res 29(10):1604–1612

    Article  CAS  PubMed  Google Scholar 

  53. John T, Lodka D, Kohl B, Ertel W, Jammrath J, Conrad C, Stoll C, Busch C, Schulze-Tanzil G (2010) Effect of pro-inflammatory and immunoregulatory cytokines on human tenocytes. J Orthop Res 28(8):1071–1077

    CAS  PubMed  Google Scholar 

  54. Jones B, Yang X, Koller BH, Banes AJ (2005b) P2Y1/P2Y2-Null tendons exhibit a decreased intracellular calcium response to uniaxial strain and ATP [abstract]. Transactions of the 51st annual meeting of the Orthopaedic Research Society 30:753

    Google Scholar 

  55. Jones BF, Wall ME, Carroll RL, Washburn S, Banes AJ (2005) Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J Biomech 38:1653–1664

    Article  PubMed  Google Scholar 

  56. Jorgensen NR, Geist ST, Civitelli R, Steinberg TH (1997) ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J Cell Biol 139:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jorgensen NR, Henriksen Z, Brot C, Eriksen EF, Sorensen OH, Civitelli R, Steinberg TH (2000) Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms. J Bone Miner Res 15:1024–1032

    Article  CAS  PubMed  Google Scholar 

  58. Klein MB, Yalamanchi N, Pham H, Longaker MT, Chang J (2002) Flexor tendon healing in vitro: effects of TGF-β on tendon cell collagen production. J Hand Surg Am 27A:615–620

    Article  Google Scholar 

  59. Kumagai H, Sakamoto H, Guggino S, Filburn CR, Sacktor B (1989) Neurotransmitter regulation of cytosolic calcium in osteoblast-like bone cells. Calcif Tissue Int 45:251–254

    Article  CAS  PubMed  Google Scholar 

  60. Kuzma-Kuzniarska M, Yapp C, Pearson-Jones TW, Jones AK, Hulley PA (2014) Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching. J Biomed Opt 19(1):15001. doi:10.1117/1.JBO.19.1.015001

    Article  PubMed  CAS  Google Scholar 

  61. Lavagnino M, Arnoczky SP, Gardner K (2011) In situ deflection of tendon cell-cilia in response to tensile loading: an in vitro study. J Orthop Res 29(6):925–930. doi:10.1002/jor.21337

    Article  PubMed  Google Scholar 

  62. Lavagnino M, Arnoczky S (2005) In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells. J Orthop Res 23:1211–1218

    Article  CAS  PubMed  Google Scholar 

  63. Lavagnino M, Arnoczky SP, Tian T, Vaupel Z (2003) Effect of amplitude and frequency of cyclic tensile strain on the inhibition of MMP-1 mRNA expression in tendon cells: an in vitro study. Connect Tissue Res 44:181–187

    Article  CAS  PubMed  Google Scholar 

  64. Lavagnino M, Wall ME, Little D, Banes AJ, Guilak F, Arnoczky SP (2015) Tendon mechanobiology: current knowledge and future research opportunities. J Orthop Res 33(6):813–822. doi:10.1002/jor.22871

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee CH, Lee FY, Tarafder S, Kao K, Jun Y, Yang G, Mao JJ (2015) Harnessing endogenous stem/progenitor cells for tendon regeneration. J Clin Invest 125(7):2690–2701. doi:10.1172/JCI81589

    Article  PubMed  PubMed Central  Google Scholar 

  66. Léjard V, Brideau G, Blais F, Salingcarnboriboon R, Wagner G, Roehrl MH, Noda M, Duprez D, Houillier P, Rossert J (2007) Scleraxis and NFATc regulate the expression of the pro-α1(I) collagen gene in tendon fibroblasts. J Biol Chem 282(24):17665–17675. doi:10.1074/jbc.M610113200

    Article  PubMed  CAS  Google Scholar 

  67. Lin TW, Cardenas L, Glaser DL, Soslowsky LJ (2006) Tendon healing in interleukin-4 and interleukin-6 knockout mice. J Biomech 39(1):61–69

    Article  PubMed  Google Scholar 

  68. Liu C, Breidenbach A, Aschbacher-Smith L, Butler D, Wylie C (2013) A role for hedgehog signaling in the differentiation of the insertion site of the patellar tendon in the mouse. PLoS ONE 8(6), e65411. doi:10.1371/journal.pone.0065411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maeda E, Ohashi T (2015) Mechano-regulation of gap junction communications between tendon cells is dependent on the magnitude of tensile strain. Biochem Biophys Res Commun 465(2):281–286. doi:10.1016/j.bbrc.2015.08.021

    Article  CAS  PubMed  Google Scholar 

  70. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A 104(33):13325–13330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McMurray RJ, Wann AK, Thompson CL, Connelly JT, Knight MM (2013) Surface topography regulates Wnt signaling through control of primary cilia structure in mesenchymal stem cells. Sci Rep 3:3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McNeilly CM, Banes AJ, Benjamin M, Ralphs JR (1996) Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat 189(Pt 3):593–600

    PubMed  PubMed Central  Google Scholar 

  73. Molla-Herman A, Ghossoub R, Blisnick T, Meunier A, Serres C, Silbermann F, Emmerson C, Romeo K, Bourdoncle P, Schmitt A, Saunier S, Spassky N, Bastin P, Benmerah A (2010) The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci 123(Pt 10):1785–1795

    Article  CAS  PubMed  Google Scholar 

  74. Muhammad H, Rais Y, Miosge N, Ornan EM (2012) The primary cilium as a dual sense of mechanochemical signals in chondrocytes. Cell Mol Life Sci 69(13):2101–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nguyen AM, Jacobs CR (2013) Emerging role of primary cilia as mechanosensors in osteocytes. Bone 54(2):196–204

    Article  CAS  PubMed  Google Scholar 

  76. Ni M, Lui PP, Rui YF, Lee YW, Lee YW, Tan Q, Wong YM, Kong SK, Lau PM, Li G, Chan KM (2012) Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. J Orthop Res 30(4):613–619. doi:10.1002/jor.21559

    Article  CAS  PubMed  Google Scholar 

  77. Nourissat G, Berenbaum F, Duprez D (2015) Tendon injury: from biology to tendon repair. Nat Rev Rheumatol 11:223–233

    Article  PubMed  Google Scholar 

  78. Poole CA, Jensen CG, Snyder JA, Gray CG, Hermanutz VL, Wheatley DN (1997) Confocal analysis of primary cilia structure and colocalization with the Golgi apparatus in chondrocytes and aortic smooth muscle cells. Cell Biol Int 21(8):483–494

    Article  CAS  PubMed  Google Scholar 

  79. Poole CA, Flint MH, Beaumont BW (1985) Analysis of the morphology and function of primary cilia in connective tissues: a cellular cybernetic probe? Cell Motil 5(3):175–193

    Article  CAS  PubMed  Google Scholar 

  80. Popov C, Burggraf M, Kreja L, Ignatius A, Schieker M, Docheva D (2015) Mechanical stimulation of human tendon stem/progenitor cells results in upregulation of matrix proteins, integrins and MMPs, and activation of p38 and ERK1/2 kinases. BMC Mol Biol 16:6. doi:10.1186/s12867-015-0036-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Praetorius HA (2015) The primary cilium as sensor of fluid flow: new building blocks to model. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol 308(3):C198–C208

    Article  CAS  PubMed  Google Scholar 

  82. Pryce BA, Watson SS, Murchison ND, Staverosky JA, Dunker N, Schweitzer R (2009) Recruitment and maintenance of tendon progenitors by TGFβ signaling are essential for tendon formation. Development 136:1351–1361. doi:10.1242/dev.027342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qi J, Chi L, Bynum D, Banes AJ (2011) Gap junctions in IL-1β-mediated cell survival response to strain. J Appl Physiol (1985) 110(5):1425–1431. doi:10.1152/japplphysiol.00477.2010

    Article  CAS  Google Scholar 

  84. Qi J, Chi L, Faber J, Koller B, Banes AJ (2007) ATP reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol 102(3):1152–1160

    Article  CAS  PubMed  Google Scholar 

  85. Qi J, Chi L, Wang J, Sumanasinghe R, Tsuzaki M, Bynum D, Banes AJ (2009) Primary cilia are modulated by serum, interleukin-1β and strain in human tenocytes [abstract]. Transactions of the 55th annual meeting of the Orthopaedic Research Society 35

    Google Scholar 

  86. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359–1400

    Article  CAS  PubMed  Google Scholar 

  87. Sanderson MJ, Charles AC, Boitano S, Dirksen ER (1994) Mechanisms and function of intercellular calcium signaling. Mol Cell Endocrinol 98:173–187

    Article  CAS  PubMed  Google Scholar 

  88. Scott A, Cook JL, Hart DA, Walker DC, Duronio V, Khan KM (2007) Tenocyte responses to mechanical loading in vivo: a role for local insulin-like growth factor 1 signaling in early tendinosis in rats. Arthritis Rheum 56(3):871–881

    Article  CAS  PubMed  Google Scholar 

  89. Scott A, Khan KM, Duronio V (2005) IGF-I activates PKB and prevents anoxic apoptosis in Achilles tendon cells. J Orthop Res 23(5):1219–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schwartz AG, Long F, Thomopoulos S (2015) Enthesis fibrocartilage cells originate from a population of hedgehog-responsive cells modulated by the loading environment. Development (Cambridge) 142(1):196–206. doi:10.1242/dev.112714

    Article  CAS  Google Scholar 

  91. Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ (2001) Analysis of the tendon cell fate using scleraxis, a specific marker for tendons and ligaments. Development 128(19):3855–3866

    CAS  PubMed  Google Scholar 

  92. Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313(5787):629–633

    Article  CAS  PubMed  Google Scholar 

  93. Spiesz EM, Thorpe CT, Chaudhry S, Riley GP, Birch HL, Clegg PD, Screen HR (2015) Tendon extracellular matrix damage, degradation and inflammation in response to in vitro overload exercise. J Orthop Res 33(6):889–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sugimoto Y, Takimoto A, Akiyama H, Kist R, Scherer G, Nakamura T, Hiraki Y, Shukunami C (2012) Scx+/Scx9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development (Cambridge) 140(11):2280–2288. doi:10.1242/dev.096354

    Article  CAS  Google Scholar 

  95. Sun HB, Li Y, Fung DT, Majeska RJ, Schaffler MB, Flatow EL (2008) Coordinate regulation of IL-1beta and MMP-13 in rat tendons following subrupture fatigue damage. Clin Orthop Relat Res 466(7):1555–1561

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tsuzaki M, Bynum D, Almekinders L, Faber J, Banes AJ (2005) Mechanical loading stimulates ecto-ATPase activity in human tendon cells. J Cell Biochem 96:117–125

    Article  CAS  PubMed  Google Scholar 

  97. Tsuzaki M, Bynum D, Almekinders L, Yang X, Faber J, Banes AJ (2003) ATP modulates load-inducible IL-1beta, COX 2, and MMP-3 gene expression in human tendon cells. J Cell Biochem 89:556–562

    Article  CAS  PubMed  Google Scholar 

  98. Tummala P, Arnsdorf EJ, Jacobs CR (2010) The Role of primary cilia in mesenchymal stem cell differentiation: a pivotal switch in guiding lineage commitment. Cell Mol Bioeng 3(3):207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Varma DR, Deng XF (2000) Cardiovascular alpha1-adrenoceptor subtypes: functions and signaling. Can J Physiol Pharmacol 78:267–292

    Article  CAS  PubMed  Google Scholar 

  100. Waggett AD, Benjamin M, Ralphs JR (2006) Connexin 32 and 43 gap junctions differentially modulate tenocyte response to cyclic mechanical load. Eur J Cell Biol 85:1145–1154

    Article  CAS  PubMed  Google Scholar 

  101. Wall ME, Banes AJ (2005) Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. J Musculoskelet Neuronal Interact 5:70–84

    CAS  PubMed  Google Scholar 

  102. Wall ME, Faber JE, Yang X, Tsuzaki M, Banes AJ (2004) Norepinephrine-induced calcium signaling and expression of adrenoceptors in avian tendon cells. Am J Physiol Cell Physiol 287:C912–C918

    Article  CAS  PubMed  Google Scholar 

  103. Wall ME, Otey C, Qi J, Banes AJ (2007) Connexin 43 is localized with actin in tenocytes. Cell Motil Cytoskeleton 64(2):121–130

    Article  CAS  PubMed  Google Scholar 

  104. Wall ME, Weinhold PS, Siu T, Brown TD, Banes AJ (2007) Comparison of cellular strain with applied substrate strain in vitro. J Biomech 40(1):173–181

    Article  PubMed  Google Scholar 

  105. Whitfield JF (2008) The solitary (primary) cilium – a mechanosensory toggle switch in bone and cartilage cells. Cell Signal 20(6):1019–1024

    Article  CAS  PubMed  Google Scholar 

  106. Xu Y, Wang Q, Li Y, Gan Y, Li P, Li S, Zhou Y, Zhou Q (2015) Cyclic tensile strain induces tenogenic differentiation of tendon-derived stem cells in bioreactor culture. Biomed Res Int 2015:790804. doi:10.1155/2015/790804

    PubMed  PubMed Central  Google Scholar 

  107. Young NJ, Becker DL, Fleck RA, Goodship AE, Patterson-Kane JC (2009) Maturational alterations in gap junction expression and associated collagen synthesis in response to tendon function. Matrix Biol 28(6):311–323

    Article  CAS  PubMed  Google Scholar 

  108. Yu W, Dahl G, Werner R (1994) The connexin43 gene is responsive to oestrogen. Proc Biol Sci 255:125–132

    Article  CAS  PubMed  Google Scholar 

  109. Zimmerman KW (1898) Beitrage zur kenntnis einiger Drusen und Epithelien. Arch Mikrosk Anat 52:552–706

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle E. Wall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wall, M.E. et al. (2016). Cell Signaling in Tenocytes: Response to Load and Ligands in Health and Disease. In: Ackermann, P., Hart, D. (eds) Metabolic Influences on Risk for Tendon Disorders. Advances in Experimental Medicine and Biology, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-33943-6_7

Download citation

Publish with us

Policies and ethics