Skip to main content

Electroanatomical Mapping Systems. An Epochal Change in Cardiac Electrophysiology

  • Chapter
  • First Online:
Medical Imaging in Clinical Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 651))

  • 1117 Accesses

Abstract

In the last two decades new mathematical and computational models and systems have been applied to the clinical cardiology, which continue to be developed particularly to quantify and simplify anatomy, physio-pathological mechanisms and treatment of many patients with cardiac arrhythmias. The Authors report our large experience on electroanatomical mapping systems and techniques that are currently used to quantify and analyze both anatomy and electrophysiology of the heart. In the last 15 years the Authors have performed more than 15,000 invasive catheter ablation procedures using different non-fluoroscopic three-dimensional (3D) electroanatomical mapping and ablation systems (CARTO, Ensite) to safely and accurately treat many patients with different cardiac arrhythmias particularly those with atrial fibrillation with a median age of 60 years (IQR, 55-64). The Authors have also developed and proposed for the first time a new robotic magnetic system to map and ablate cardiac arrhythmias without use of fluoroscopy (Stereotaxis) in >500 patients. Very recently, epicardial mapping and ablation by electroanatomical systems have been successfully performed to treat Brugada syndrome at risk of sudden death in a series of patients with a median age of 39 years (IQR, 30-42). Our experience indicates that electroanatomic mapping systems integrate several important functionalities. (1) Non-fluoroscopic localization of electrophysiological catheters in three-dimensional space; (2) Analysis and 3D display of cardiac activation sequences computed from local or calculated electrograms, and 3D display of electrogram voltage; (3) Integration of ‘electroanatomic’ data with non-invasive images of the heart, such as computed tomography or magnetic resonance images. The widespread use of such 3D systems is associated with higher success rates, shorter fluoroscopy and procedure times, and accurate visualization of complex cardiac and extra-cardiac anatomical structures needing to be protected during the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dey, N., Bardhan Roy, A., Pal, M., Das, A.: FCM based blood vessel segmentation method for retinal images. Int. J. Comput. Sci. Netw. (IJCSN) 1(3), 148-15 (2012)

    Google Scholar 

  2. Payel Roy, P., Goswami, S., Chakraborty, S., Taher Azar, A., Dey, N.: Image segmentation using rough set theory: a review. Int. J. Rough Sets Data Anal. (IJRSDA) 1(2), 62–74 (2014). doi:10.4018/ijrsda.2014070105

    Article  Google Scholar 

  3. Samanta, S., Dey, N., Das, P., Acharjee, S., Sinha Chaudhuri, S.: Multilevel threshold based gray scale image segmentation using cuckoo search. In: International Conference on Emerging Trends in Electrical, Communication and Information Technologies. Elsevier—S&T Books, vol. 1, pp. 27–34 (2012)

    Google Scholar 

  4. Chakraborty, S., Mukherjee, A., Chatterjee, D., Maji, P., Acharjee, S., Dey, N.: A semi-automated system for optic nerve head segmentation. In: Digital Retinal Images ICIT ‘14 Proceedings of the 2014 International Conference on Information Technology, IEEE Computer Society Washington, DC, USA, pp. 112–117 (2014). doi:10.1109/ICIT.2014.51

  5. Ikeda, N., Gupta, A., Dey, N., Bose, S., Shafique, S., Arak, T., Godia, E.C., Saba, L., Laird, J.R., Nicolaides, A., Suri, J.S.: Improved correlation between carotid and coronary atherosclerosis SYNTAX score using automated ultrasound carotid bulb plaque IMT measurement. Ultrasound Med. Biol. 41(5), 1247–1262 (2015). doi:10.1016/j.ultrasmedbio.2014.12.024

    Article  Google Scholar 

  6. Dey, N., Samanta, S., Yang, X.-S., Das, A., Sinha Chaudhuri, S.: Optimisation of scaling factors in electrocardiogram signal watermarking using cuckoo search. Int. J. Bio-Inspired Comput 5(5), 315–326 (2013). doi:10.1504/IJBIC.2013.057193

    Article  Google Scholar 

  7. Klemm, H.U., Ventura, R., Steven, D.: Catheter ablation of multiple ventricular tachycardias after myocardial infarction guided by combined contact and noncontact mapping. Circulation 115, 2697–2704 (2007)

    Article  Google Scholar 

  8. Marchlinski, F.E., Callans, D.J., Gottlieb, C.D., Zado, E.: Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation 101, 1288–1296 (2000)

    Article  Google Scholar 

  9. Brunckhorst, CB., Etienne Delacretaz, E., Soejima, K., Maisel, W.H., Friedman, P.L., Stevenson, WG.: Identification of the ventricular tachycardia isthmus after infarction by pace mapping. Circulation 110, 652–659 (1992)

    Google Scholar 

  10. Kimura, M., Sasaki, S., Owada, S., Horiuchi, D., Sasaki, K., Itoh, T., Ishida, Y., Kinjo, T., Okumura, K.: Validation of accuracy of three-dimensional left atrial CartoSound™ and CT image integration: influence of respiratory phase and cardiac cycle. J. Cardiovasc. Electrophysiol. 24(9), 1002–1008 (2013)

    Article  Google Scholar 

  11. Haissaguerre, M., Jais, P., Shah, D.C., Takahashi, A., Hocini, M., Quiniou, G., et al.: Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1988)

    Article  Google Scholar 

  12. Pappone, C., Rosanio, S., Oreto, G., Tocchi, M., Salvati, A., Dicandia, C., et al.: Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation 102, 2619–2628 (2000)

    Article  Google Scholar 

  13. Pappone, C., Oreto, G., Rosanio, S., Vicedomini, G., Tocchi, M., Gugliotta, F., et al.: Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation. Circulation 104, 2539–2544 (2001)

    Article  Google Scholar 

  14. Pappone, C., Manguso, F., Vicedomini, G., Gugliotta, F., Santinelli, V., Ferro, A., et al.: Prevention of iatrogenic atrial tachycardia following ablation of atrial fibrillation. a prospective randomized study comparing circumferential pulmonary vein ablation with a modified approach. Circulation 110, 3036–3042 (2004)

    Article  Google Scholar 

  15. Pappone, C., Santinelli, V., Manguso, F., Vicedomini, G., Gugliotta, F., Augello, G., et al.: Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation 109, 327–334 (2004)

    Article  Google Scholar 

  16. Pappone, C., Rosanio, S., Augello, G., Gallus, G., Vicedomini, G., Mazzone, P., et al.: Mortality, morbidity and quality of life after circumferential pulmonary vein ablation for atrial fibrillation. outcomes from a controlled not randomized long-term study. J. Am. Coll. Cardiol. 42, 185–197 (2003)

    Article  Google Scholar 

  17. Oral, H., Scharf, C., Chugh, A., Hall, B., Cheung, P., Good, E., et al.: Catheter ablation for paroxysmal atrial fibrillation: segmental pulmonary vein ostial ablation versus left atrial ablation. Circulation 108, 2355–2360 (2003)

    Article  Google Scholar 

  18. Wazni, O.M., Marrouche, N.F., Martin, D.O., Verma, A., Bhargava, M., Saliba, W., Themistoclakis, S., Rossillo, A., Bonso, A., Natale, A.: Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of symptomatic atrial fibrillation: a randomized trial. JAMA 293, 2634–2640 (2005)

    Article  Google Scholar 

  19. Stabile, G., Bertaglia, E., Senatore, G., de Simone, A., Zoppo, F., Donnici, G., et al.: Catheter ablation treatment in patients with drug refractory atrial fibrillation: a prospective, multi-centre, randomized, controlled study (catheter ablation for the cure of atrial fibrillation study). Eur. Heart J. 27, 216–221 (2006)

    Article  Google Scholar 

  20. Oral, H., Pappone, C., Chugh, A., Good, E., Bogun, F., Pelosi, F., et al.: Circumferential pulmonary vein ablation for chronic atrial fibrillation: a randomized, controlled study. N. Engl. J. Med. 354, 934–941 (2006)

    Article  Google Scholar 

  21. Pappone, C., Augello, G., Sala, S., Gugliotta, F., Vicedomini, G., Gulletta, S., et al.: A Randomized trial of circumferential pulmonary vein ablation versus antiarrhythmic drug therapy in paroxysmal atrial fibrillation. The ablation for paroxysmal atrial fibrillation (APAF) study. J. Am. Coll. Cardiol. 48, 2340–2347 (2006)

    Article  Google Scholar 

  22. Haissaguerre, M., Sanders, P., Hocini, M., Takahashi, Y., Rotter, M., Sacher, F., et al.: Catheter ablation of long-lasting persistent atrial fibrillation: critical structures for termination. J. Cardiovasc. Electrophysiol. 11, 1125–1137 (2005)

    Article  Google Scholar 

  23. Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., et al.: A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J. Am. Coll. Cardiol. 43, 2044–2053 (2004)

    Article  Google Scholar 

  24. Pappone, C., Vicedomini, G., Manguso, F., Mazzone, P., Gugliotta, F., Sala, S., et al.: Robotic magnetic navigation for atrial fibrillation ablation. J. Am. Coll. Cardiol. 47, 1390–1400 (2006)

    Article  Google Scholar 

  25. Pappone, C., Santinelli, V.: Remote navigation and ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. Suppl. 1, S18–S20 (2007)

    Article  Google Scholar 

  26. Pappone, C., Santinelli, V.: Multielectrode basket catheter: a new tool for curing atrial fibrillation? Heart Rhythm 3, 385–386 (2006)

    Google Scholar 

  27. Pappone, C., Radinovic, A., Manguso, F., Vicedomini, G., Ciconte, G., Sacchi, S., et al.: Atrial fibrillation progression and management: a 5-year prospective follow-up study. Heart Rhythm 5, 1501–1507 (2008)

    Article  Google Scholar 

  28. Themistoclakis, S., Raviele, A., China, P., Pappone, C., De Ponti, R., Revishvili, A., Aliot, E., Kuck, K.H., Hoff, P.I., Shah, D., Almendral, J., Manolis, A.S., Chierchia, G.B., Oto, A., Vatasescu, R.G., Sinkovec, M., Cappato, R.: Prospective European survey on atrial fibrillation ablation: clinical characteristics of patients and ablation strategies used in different countries. atrial fibrillation survey investigators. J. Cardiovasc. Electrophysiol. 25, 1074–1081 (2014)

    Article  Google Scholar 

  29. Pappone, C., Santinelli, V.: Atrial fibrillation ablation. Rev. Esp. Cardiol. 65, 560–569 (2012)

    Article  Google Scholar 

  30. Pappone, C., Vicedomini, G., Augello, G., Manguso, F., Saviano, M., Baldi, M., Petretta, A., Giannelli, L., Calovic, Z., Guluta, V., Tavazzi, L., Santinelli, V.: Radiofrequency catheter ablation and antiarrhythmic drug therapy: a prospective, randomized, 4-year follow-up trial: the APAF study. Circ. Arrhythm. Electrophysiol. 4, 808–814 (2011)

    Article  Google Scholar 

  31. Wilber, D.J., Pappone, C., Neuzil, P., De Paola, A., Marchlinski, F., Natale, A., Macle, L., Daoud, E.G., Calkins, H., Hall, B., Reddy, V., Augello, G., Reynolds, M.R., Vinekar, C., Liu, C.Y., Berry, S.M., Berry, D.A.: ThermoCool AF trial investigators. JAMA 303, 333–340 (2010)

    Article  Google Scholar 

  32. Estner, H.L., Deisenhofer, I., Luik, A., Ndrepepa, G., von Bary, C., Zrenner, B., Schmitt, C.: Electrical isolation of pulmonary veins in patients with atrial fibrillation: reduction of fluoroscopy exposure and procedure duration by the use of a non-fluoroscopic navigation system (NavX). Europace 8, 583–587 (2006)

    Article  Google Scholar 

  33. Rotter, M., Takahashi, Y., Sanders, P., Haissaguerre, M., Jais, P., Hsu, L.F., Sacher, F., Pasquie, J.L., Clementy, J., Hocini, M.: Reduction of fluoroscopy exposure and procedure duration during ablation of atrial fibrillation using a novel anatomical navigation system. Eur. Heart J. 26, 1415–1421 (2005)

    Article  Google Scholar 

  34. Liu, X., Wang, X.H., Gu, J.N., Zhou, L., Qiu, J.H.: Electroanatomical systems to guided circumferential pulmonary veins ablation for atrial fibrillation: Initial experience from comparison between the EnSite/NavX and carto system. Chin. Med. J. (Engl.) 118, 1156–1160 (2005)

    Google Scholar 

  35. Khaykin, Y., Oosthuizen, R., Zarnett, L., Wulffhart, Z.A., Whaley, B., Hill, C., Giewercer, D., Verma, A.: Carto-guided vs. NavX-guided pulmonary vein antrum isolation and pulmonary vein antrum isolation performed without 3-D mapping: effect of the 3-D mapping system on procedure duration and fluoroscopy time. J. Interv. Card. Electrophysiol. 30, 233–240 (2011)

    Article  Google Scholar 

  36. Kistler, P.M., Rajappan, K., Jahngir, M., Earley, M.J., Harris, S., Abrams, D., Gupta, D., Liew, R., Ellis, S., Sporton, S.C., Schilling, R.J.: The impact of ct image integration into an electroanatomic mapping system on clinical outcomes of catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 17, 1093–1101 (2006)

    Article  Google Scholar 

  37. Martinek, M., Nesser, H.J., Aichinger, J., Boehm, G., Purerfellner, H.: Impact of integration of multislice computed tomography imaging into three-dimensional electroanatomic mapping on clinical outcomes, safety, and efficacy using radiofrequency ablation for atrial fibrillation. Pacing Clin. Electrophysiol. 30, 1215–1223 (2007)

    Article  Google Scholar 

  38. Kistler, P.M., Rajappan, K., Harris, S., Earley, M.J., Richmond, L., Sporton, S.C., Schilling, R.J.: The impact of image integration on catheter ablation of atrial fibrillation using electroanatomic mapping: a prospective randomized study. Eur. Heart J. 29, 3029–3036 (2008)

    Article  Google Scholar 

  39. Marrouche, N.F., Martin, D.O., Wazni, O., Gillinov, A.M., Klein, A., Bhargava, M., Saad, E., Bash, D., Yamada, H., Jaber, W., Schweikert, R., Tchou, P., Abdul-Karim, A., Saliba, W., Natale, A.: Phased-array intracardiac echocardiography monitoring during pulmonary vein isolation in patients with atrial fibrillation: impact on outcome and complications. Circulation 107, 2710–2716 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Pappone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pappone, C., Garzillo, C., Crisà, S., Santinelli, V. (2016). Electroanatomical Mapping Systems. An Epochal Change in Cardiac Electrophysiology. In: Dey, N., Bhateja, V., Hassanien, A. (eds) Medical Imaging in Clinical Applications. Studies in Computational Intelligence, vol 651. Springer, Cham. https://doi.org/10.1007/978-3-319-33793-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33793-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33791-3

  • Online ISBN: 978-3-319-33793-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics