Skip to main content

Stem Cell Clinical Trials for Multiple Sclerosis: The Past, Present and Future

  • Chapter
  • First Online:
Neurological Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) that is associated by tissue inflammation and nerve cells apoptosis. The prevalence of this disease in women is two to three times more than men, and it is more frequent in the 20–40 years of age. During development, the nervous system emerges from neural stem cell (NSCs) that have self-renewal potential and differentiate into neural and glial cell. Two types of stem cells populating in patients with MS; one is hematopoietic stem cell (HSC) and others are mesenchymal stem cells (MSC). Despite major knowledge advances since the discovery of stem cells, the field is so broad and there are still many valuable opportunities to work. Every year, many people suffer from their internal organs damages that lead to life-threatening complications or losing their lives. Laboratory production of new tissue that could potentially be transplanted into the patient’s body can be a solution to this big problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altman J, Das GD (1964) Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature 204:1161–1163

    Article  CAS  PubMed  Google Scholar 

  • Ardeshiry Lajimi A, Hagh MF, Saki N, Mortaz E, Soleimani M et al (2013) Feasibility of cell therapy in multiple sclerosis: a systematic review of 83 studies. Int J Hematol Oncol Stem Cell Res 7:15–33

    PubMed  PubMed Central  Google Scholar 

  • Atkins HL, Freedman MS (2013) Hematopoietic stem cell therapy for multiple sclerosis: top 10 lessons learned. Neurotherapeutics 10:68–76

    Article  CAS  PubMed  Google Scholar 

  • Bielekova B, Muraro PA, Golestaneh L, Pascal J, McFarland HF et al (1999) Preferential expansion of autoreactive T lymphocytes from the memory T-cell pool by IL-7. J Neuroimmunol 100:115–123

    Article  CAS  PubMed  Google Scholar 

  • Bongso A, Richards M (2004) History and perspective of stem cell research. Best Pract Res Clin Obstet Gynaecol 18:827–842

    Article  PubMed  Google Scholar 

  • Bowen JD, Kraft GH, Wundes A, Guan Q, Maravilla KR et al (2012) Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results. Bone Marrow Transplant 47:946–951

    Article  CAS  PubMed  Google Scholar 

  • Burman J, Fransson M, Totterman TH, Fagius J, Mangsbo SM et al (2013) T-cell responses after haematopoietic stem cell transplantation for aggressive relapsing-remitting multiple sclerosis. Immunology 140:211–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connick P, Kolappan M, Crawley C, Webber DJ, Patani R et al (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11:150–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Cudrici C, Niculescu T, Niculescu F, Shin ML, Rus H (2006) Oligodendrocyte cell death in pathogenesis of multiple sclerosis: protection of oligodendrocytes from apoptosis by complement. J Rehabil Res Dev 43:123–132

    Article  PubMed  Google Scholar 

  • Day-Good N, Peterson R (2008) History of transplantation. In memory of Robert A. Good (1922–2003). Clin Transpl 22(3):267–286

    Google Scholar 

  • DiDio LJ (1986) Remembering Alexander Alexandrowitsch Maximow. Tokai J Exp Clin Med 11:151–153

    CAS  PubMed  Google Scholar 

  • Huang TF, Chen YT, Yang TH, Chen LL, Chiou SH et al (2008) Isolation and characterization of mesenchymal stromal cells from human anterior cruciate ligament. Cytotherapy 10:806–814

    Article  CAS  PubMed  Google Scholar 

  • Jaryal AK (2007) Nobel prize in physiology or medicine for the year 2007. Indian J Physiol Pharmacol 51:423–424

    PubMed  Google Scholar 

  • Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67:1187–1194

    Article  PubMed  PubMed Central  Google Scholar 

  • Krampera M, Franchini M, Pizzolo G, Aprili G (2007) Mesenchymal stem cells: from biology to clinical use. Blood Transfus 5:120–129

    PubMed  PubMed Central  Google Scholar 

  • Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JF, Zhang DJ, Geng T, Chen L, Huang H et al (2014) The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell Transplant 23(Suppl 1):S113–S122

    Article  PubMed  Google Scholar 

  • Llufriu S, Sepulveda M, Blanco Y, Marin P, Moreno B et al (2014) Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS One 9, e113936

    Article  PubMed  PubMed Central  Google Scholar 

  • Lublin FD, Bowen JD, Huddlestone J, Kremenchutzky M, Carpenter A et al (2014) Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study. Mult Scler Relat Disord 3:696–704

    Article  PubMed  Google Scholar 

  • Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E et al (2015) Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology 84:981–988

    Article  CAS  PubMed  Google Scholar 

  • McCulloch EA, Till JE (1960) The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res 13:115–125

    Article  CAS  PubMed  Google Scholar 

  • McQualter JL, Bernard CC (2007) Multiple sclerosis: a battle between destruction and repair. J Neurochem 100:295–306

    Article  CAS  PubMed  Google Scholar 

  • Muraro PA, Uccelli A (2010) Immuno-therapeutic potential of haematopoietic and mesenchymal stem cell transplantation in MS. Results Probl Cell Differ 51:237–257

    Article  CAS  PubMed  Google Scholar 

  • Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM et al (2015) High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol 72:159–169

    Article  PubMed  Google Scholar 

  • Novik AA, Kuznetsov A, Melnichenko VY, Fedorenko DA, Kartashov AV et al (2010) Reduced intensity conditioning regimen of autologous hematopoietic stem cell transplantation (+/-) mitoxantrone consolidation in multiple sclerosis. Blood 116(21):372

    Google Scholar 

  • Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B et al (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci U S A 99:13211–13216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomp O, Brokhman I, Ben-Dor I, Reubinoff B, Goldstein RS (2005) Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells 23:923–930

    Article  CAS  PubMed  Google Scholar 

  • Prindull G, Prindull B, Meulen N (1978) Haematopoietic stem cells (CFUc) in human cord blood. Acta Paediatr Scand 67:413–416

    Article  CAS  PubMed  Google Scholar 

  • Rice CM, Marks DI, Ben-Shlomo Y, Evangelou N, Morgan PS et al (2015) Assessment of bone marrow-derived Cellular Therapy in progressive Multiple Sclerosis (ACTiMuS): study protocol for a randomised controlled trial. Trials 16:463

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolak LA (2003) Multiple sclerosis: it’s not the disease you thought it was. Clin Med Res 1:57–60

    Article  PubMed  PubMed Central  Google Scholar 

  • S.M. N (2013) Stem cell therapy for multiple sclerosise. Cell J (Yakhteh) 15:25

    Google Scholar 

  • Schroeder GD, Kepler CK, Vaccaro AR (2016) The use of cell transplantation in spinal cord injuries. J Am Acad Orthop Surg 24:266–275

    Article  PubMed  Google Scholar 

  • Sepulveda M, Blanco Y, Llufriu S, Gabilondo I, Villoslada P et al (2012) Autologous mesenchymal stem cell transplantation in multiple sclerosis : A randomised, double-blind, crossover with placebo phase II study. Multiple Sclerosis (Houndmills, Basingstoke, England) 18:188

    Google Scholar 

  • Sun D (2014) The potential of endogenous neurogenesis for brain repair and regeneration following traumatic brain injury. Neural Regen Res 9:688–692

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavian M, Biasch K, Sinka L, Vallet J, Peault B (2010) Embryonic origin of human hematopoiesis. Int J Dev Biol 54:1061–1065

    Article  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma SK, Bardia A, Tiwari SK, Paspala SA, Khan AA (2014) Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: a review. J Adv Res 5:277–294

    Article  PubMed  Google Scholar 

  • Werner B, Scott JG, Sottoriva A, Anderson AR, Traulsen A et al (2016) The Cancer Stem Cell Fraction in Hierarchically Organized Tumors Can Be Estimated Using Mathematical Modeling and Patient-Specific Treatment Trajectories. Cancer Res 76(7):1705–1713

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the help of all the people that took part in the professionally advising process, more specifically, to the Prof. Bagher Larijani and Dr. Najmaldin Saki. Without their support, this book chapter would not have become a reality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakher Rahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rahim, F., Arjmand, B. (2017). Stem Cell Clinical Trials for Multiple Sclerosis: The Past, Present and Future. In: Pham, P. (eds) Neurological Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33720-3_9

Download citation

Publish with us

Policies and ethics