Skip to main content

Cyclical Loading to Evaluate the Bone Implant Interface

  • Living reference work entry
  • First Online:
Handbook of Spine Technology

Abstract

The goal of in vitro cyclical loading studies in spine biomechanics is to provide empirical data related to the long-term efficacy of spinal implants. Ultimately, these studies are used to determine if an implant has the ability to provide biomechanical stability over extended periods of time until arthrodesis achieves. In these studies, the bone implant interface should be gradually stressed according to physiological loading patterns to determine the rate at which the interfacial strength between the bone and implant degrades. When designed properly, these studies may able be used to determine the ultimate failure load of the bone implant interface. While study design is always an important aspect in benchtop research, the repetitive nature of in vitro cyclical loading studies exacerbates the effects of study design and emphasizes the importance of rigorous planning based on a strong understanding of the boundary conditions. This chapter is therefore focused on the most important aspects of study design surrounding in vitro spine biomechanics including specimen preparation, loading rate, loading magnitude, loading modality, outcome measures, and failure criteria and how they influence the results of these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbushi A, Cabraja M, Thomale UW, Woiciechowsky C, Kroppenstedt SN (2009) The influence of cage positioning and cage type on cage migration and fusion rates in patients with monosegmental posterior lumbar interbody fusion and posterior fixation. Eur Spine J 18(11):1621–1628

    Article  Google Scholar 

  • Agarwal A, Ingels M, Kodigudla M, Momeni N, Goel V, Agarwal AK (2016) Adjacent-level hypermobility and instrumented-level fatigue loosening with titanium and PEEK rods for a pedicle screw system: an in vitro study. J Biomech Eng 138(5):051004

    Article  Google Scholar 

  • Akpolat YT, Inceoglu S, Kinne N, Hunt D, Cheng WK (2016) Fatigue performance of cortical bone trajectory screw compared with standard trajectory pedicle screw. Spine (Phila Pa 1976) 41(6):E335–E341

    Article  Google Scholar 

  • Alkalay RN, Adamson R, Groff MW (2018) The effect of interbody fusion cage design on the stability of the instrumented spine in response to cyclic loading: an experimental study. Spine J 18(10):1867–1876

    Article  Google Scholar 

  • ASTM (2014) Standard test methods for spinal implant constructs in a vertebrectomy model. Medical devices and services. 2014 annual book of ASTM standards: ASTM International, West Conshohocken, PA, pp 658–679

    Google Scholar 

  • Baluch DA, Patel AA, Lullo B, Havey RM, Voronov LI, Nguyen NL et al (2014) Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine (Phila Pa 1976) 39(22):E1297–E1302

    Article  Google Scholar 

  • Bostelmann R, Keiler A, Steiger HJ, Scholz A, Cornelius JF, Schmoelz W (2017) Effect of augmentation techniques on the failure of pedicle screws under cranio-caudal cyclic loading. Eur Spine J 26(1):181–188

    Article  Google Scholar 

  • Cheng BC, Cook DJ, Cuchanski M, Pirris SM, Welch WC (2011) Biomechanical cyclical loading on cadaveric cervical spines in a corpectomy model. J ASTM Int 8(7):154–168. https://doi.org/10.1520/JAI103408

  • Cheng BC, Swink ITM, Carbone JJ, Diehl D (eds) (2018) Biomechanical fatigue evaluation of anterior lumbar interbody fusion devices with respect to flexion-extension loading. NASS, Los Angeles

    Google Scholar 

  • Duff J, Hussain MM, Klocke N, Harris JA, Yandamuri SS, Bobinski L et al (2018) Does pedicle screw fixation of the subaxial cervical spine provide adequate stabilization in a multilevel vertebral body fracture model? An in vitro biomechanical study. Clin Biomech (Bristol, Avon) 53:72–78

    Article  Google Scholar 

  • Freeman AL, Camisa WJ, Buttermann GR, Malcolm JR (2016) Flexibility and fatigue evaluation of oblique as compared with anterior lumbar interbody cages with integrated endplate fixation. J Neurosurg Spine 24(1):54–59

    Article  Google Scholar 

  • Galbusera F, Volkheimer D, Reitmaier S, Berger-Roscher N, Kienle A, Wilke HJ (2015) Pedicle screw loosening: a clinically relevant complication? Eur Spine J 24(5):1005–1016

    Article  Google Scholar 

  • Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS III, Cook SD (1994) Effects of bone mineral density on pedicle screw fixation. Spine 19(21):2415–2420. https://doi.org/10.1097/00007632-199411000-00008

    Article  CAS  PubMed  Google Scholar 

  • Koller H, Schmoelz W, Zenner J, Auffarth A, Resch H, Hitzl W et al (2015) Construct stability of an instrumented 2-level cervical corpectomy model following fatigue testing: biomechanical comparison of circumferential antero-posterior instrumentation versus a novel anterior-only transpedicular screw-plate fixation technique. Eur Spine J 24(12):2848–2856

    Article  Google Scholar 

  • Kueny RA, Kolb JP, Lehmann W, Puschel K, Morlock MM, Huber G (2014) Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing. Eur Spine J 23(10):2196–2202

    Article  Google Scholar 

  • Lai DM, Shih YT, Chen YH, Chien A, Wang JL (2018) Effect of pedicle screw diameter on screw fixation efficacy in human osteoporotic thoracic vertebrae. J Biomech 70:196–203

    Article  Google Scholar 

  • Lindtner RA, Schmid R, Nydegger T, Konschake M, Schmoelz W (2018) Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading. Eur Spine J 27(8):1775–1784

    Article  Google Scholar 

  • Liu YK, NJUS G, Buckwalter J, Wankano K (1983) Fatigue Reponse of lumbar intervertebral joints under axial cyclic loading. Spine (Phila Pa 1976) 8(8):857–865

    Article  CAS  Google Scholar 

  • Manda K, Xie S, Wallace RJ, Levrero-Florencio F, Pankaj P (2016) Linear viscoelasticity – bone volume fraction relationships of bovine trabecular bone. Biomech Model Mechanobiol 15(6):1631–1640

    Article  Google Scholar 

  • McCubbrey DA, Peterson DDC, Kuhn JL, Flynn MJ, Golstein SA (1995) Satic and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. J Biomech 28(8):891–899

    Article  CAS  Google Scholar 

  • Nagaraja S, Palepu V (2017) Integrated fixation cage loosening under fatigue loading. Int J Spine Surg 11:20

    Article  Google Scholar 

  • Palepu V, Peck JH, Simon DD, Helgeson MD, Nagaraja S (2017) Biomechanical evaluation of an integrated fixation cage during fatigue loading: a human cadaver study. J Neurosurg Spine 26(4):524–531

    Article  Google Scholar 

  • Palepu V, Helgeson MD, Molyneaux-Francis M, Nagaraja S (2018) Impact of bone quality on the performance of integrated fixation cage screws. Spine J 18(2):321–329

    Article  Google Scholar 

  • Panjabi M (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine (Phila Pa 1976) 13(10):1129–1134

    Article  CAS  Google Scholar 

  • Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech (Bristol, Avon) 22(3):257–265

    Article  Google Scholar 

  • Parkinson RJ, Callaghan JP (2009) The role of dynamic flexion in spine injury is altered by increasing dynamic load magnitude. Clin Biomech (Bristol, Avon) 24(2):148–154

    Article  Google Scholar 

  • Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976) 24(10):1003–1009

    Article  CAS  Google Scholar 

  • Pekmezci M, Tang JA, Cheng L, Modak A, McClellan RT, Buckley JM et al (2016) Comparison of expandable and fixed interbody cages in a human cadaver corpectomy model: fatigue characteristics. Clin Spine Surg 29(9):387–393

    Article  Google Scholar 

  • Qian L, Jiang C, Sun P, Xu D, Wang Y, Fu M et al (2018) A comparison of the biomechanical stability of pedicle-lengthening screws and traditional pedicle screws. Bone Joint J 100(B):516–521

    Article  Google Scholar 

  • Rohlmann A, Bergmann G, Graichen F (1997) Loads on an internal spinal fixation device during walking. J Biomech 30(1):41–47

    Article  CAS  Google Scholar 

  • Schmidt AL, Paskoff G, Shender BS, Bass CR (2012) Risk of lumbar spine injury from cyclic compressive loading. Spine (Phila Pa 1976) 37(26):E1614–E1621

    Article  Google Scholar 

  • Shimamoto N, Kotani Y, Shono Y, Kadoya K, Kaneda K, Minami A (2001) Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis. Spine (Phila Pa 1976) 26(24):2701–2708

    Article  CAS  Google Scholar 

  • Weiser L, Huber G, Sellenschloh K, Viezens L, Puschel K, Morlock MM et al (2017a) Insufficient stability of pedicle screws in osteoporotic vertebrae: biomechanical correlation of bone mineral density and pedicle screw fixation strength. Eur Spine J 26(11):2891–2897

    Article  Google Scholar 

  • Weiser L, Huber G, Sellenschloh K, Viezens L, Püschel K, Morlock MM, Lehmann W (2017b) Insufficient stability of pedicle screws in osteoporotic vertebrae: biomechanical correlation of bone mineral density and pedicle screw fixation strength. Eur Spine J 26(11):2891–2897. https://doi.org/10.1007/s00586-017-5091-x

    Article  PubMed  Google Scholar 

  • Wilke HJ, Mehnert U, Claes LE, Bierschneider MM, Jaksche H, Boszcyk BM (2006) Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclical loading. Spine (Phila Pa 1976) 31(25):2934–2941

    Article  Google Scholar 

  • Wilke HJ, Kaiser D, Volkheimer D, Hackenbroch C, Puschel K, Rauschmann M (2016) A pedicle screw system and a lamina hook system provide similar primary and long-term stability: a biomechanical in vitro study with quasi-static and dynamic loading conditions. Eur Spine J 25(9):2919–2928

    Article  Google Scholar 

  • Wittenberg RH, Shea M, Edwards WT, Swartz DE, White AA, Hayes WC (1992) A biomechanical study of the fatigue characteristics of thoracolumbar fixation implants in a calf spine model. Spine (Phila Pa 1976) 17(6):S121–S1S8

    Article  CAS  Google Scholar 

  • Xie S, Manda K, Pankaj P (2019) Effect of loading frequency on deformations at the bone-implant interface. Proc Inst Mech Eng H 233(12):1219–1225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac R. Swink .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Swink, I.R. et al. (2020). Cyclical Loading to Evaluate the Bone Implant Interface. In: Cheng, B. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33037-2_121-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33037-2_121-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33037-2

  • Online ISBN: 978-3-319-33037-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics