Skip to main content

Variational Approaches to Evolvability: Short- and Long-Term Perspectives

  • Reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

Evolvability, the ability of a biological system to respond to selection, has recently become a key concept in evolutionary developmental biology and an integral part of the vocabulary of a budding extended evolutionary synthesis. While some of the theoretical principles behind the evolvability of complex organisms have been established, there are also several aspects of it that remain controversial. How does evolvability itself evolve? Is evolvability constrained by mutation? Can current definitions account for evolutionary innovations?

Here, I will describe some of the research programs dedicated to the study of evolvability of complex organisms. I will then establish its relationship with modularity and robustness and conclude with questions about the nature of evolvability that remain unresolved. My aim is to show that research in evolvability has become integrative in nature and that this change has been aided by an increasing incorporation of the genotype-to-phenotype map into the variation-based evolutionary theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberch P (1991) From genes to phenotype: dynamical systems and evolvability. Genetica 84(1):5–11

    Article  CAS  Google Scholar 

  • Arendt D, Musser JM, Baker CV, Bergman A, Cepko C, Erwin DH, Pavlicev M, Schlosser G, Widder S, Laubichler MD, Wagner GP (2016) The origin and evolution of cell types. Nat Rev Genet 17(12):744–757

    Article  CAS  Google Scholar 

  • Blows MW, McGuigan K (2015) The distribution of genetic variance across phenotypic space and the response to selection. Mol Ecol 24(9):2056–2072

    Article  Google Scholar 

  • Cheverud JM (1988) A comparison of genetic and phenotypic correlations. Evolution 42(5):958–968

    Article  Google Scholar 

  • Dawkins R (1988) The evolution of evolvability. In: Langton C (ed) Artificial life: the proceedings of an interdiciplinary workshop on the synthesis and simulation of living systems. Addison Wesley, Santa Fe, pp 202–220

    Google Scholar 

  • Draghi JA, Parsons TL, Wagner GP, Plotkin JB (2010) Mutational robustness can facilitate adaptation. Nature 463(7279):353–355

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez F, Simmons LW, Tomkins JL, Kotiaho JS, Evans JP (2012) Comparing evolvabilities: common errors surrounding the calculation and use of coefficients of additive genetic variation. Evolution 66(8):2341–2349

    Article  Google Scholar 

  • Gerhart J, Kirschner M (1997) Cells, embryos, and evolution: toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability, vol 575.21 GER. Blackwell Science, Malden

    Google Scholar 

  • Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev 41(4):587–638

    Article  CAS  Google Scholar 

  • Hansen TF (2006) The evolution of genetic architecture. Annu Rev Ecol Evol S 37:123–157. https://doi.org/10.1146/annurev.ecolsys.37.091305.110224

    Article  Google Scholar 

  • Hansen TF, Houle D (2008) Measuring and comparing evolvability and constraint in multivariate characters. J Evol Biol 21(5):1201–1219

    Article  CAS  Google Scholar 

  • Hill WG (1982) Rates of change in quantitative traits from fixation of new mutations. Proc Natl Acad Sci 79(1):142–145

    Article  CAS  Google Scholar 

  • Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130(1):195–204

    Article  CAS  Google Scholar 

  • Houle D, Bolstad GH, van der Linde K, Hansen TF (2017) Mutation predicts 40 million years of fly wing evolution. Nature 548(7668):447–450

    Article  CAS  Google Scholar 

  • Lande R (1979) Quantitative genetic-analysis of multivariate evolution, applied to brain – body size allometry. Evolution 33(1):402–416

    Article  Google Scholar 

  • Leamy LJ, Routman EJ, Cheverud JM (1999) Quantitative trait loci for early-and late-developing skull characters in mice: a test of the genetic independence model of morphological integration. Am Nat 153(2):201–214

    Article  Google Scholar 

  • Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43(11):1154–1159

    Article  CAS  Google Scholar 

  • Marroig G, Cheverud JM (2005) Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in new world monkeys. Evolution 59(5):1128–1142

    Article  Google Scholar 

  • Müller GB, Streicher J (1989) Ontogeny of the syndesmosis tibiofibularis and the evolution of the bird hindlimb: a caenogenetic feature triggers phenotypic novelty. Anat Embryol 179(4):327–339

    Article  Google Scholar 

  • Nuño de la Rosa L (2017) Computing the extended synthesis: mapping the dynamics and conceptual structure of the evolvability research front. J Exp Zool Part B Mol Dev Evol 328:395–411

    Article  Google Scholar 

  • Pavličev M, Cheverud JM (2015) Constraints evolve: context dependency of gene effects allows evolution of pleiotropy. Annu Rev Ecol Evol Syst 46(1):413–434. https://doi.org/10.1146/annurev-ecolsys-120213-091721

    Article  Google Scholar 

  • Pavlicev M, Wagner GP (2012) Coming to grips with evolvability. Evol Educ Outreach 5(2):231–244

    Article  Google Scholar 

  • Pavlicev M, Kenney-Hunt JP, Norgard EA, Roseman CC, Wolf JB, Cheverud JM (2008) Genetic variation in pleiotropy: differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution 62(1):199–213

    PubMed  Google Scholar 

  • Pavlicev M, Cheverud JM, Wagner GP (2010) Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc R Soc Lond B Biol Sci 278:1903–1912. https://doi.org/10.1098/rspb.2010.2113

  • Pigliucci M (2008) Is evolvability evolvable? Nat Rev Genet 9(1):75–82

    Article  CAS  Google Scholar 

  • Pigliucci M, Muller GB (2010) Evolution-the extended synthesis. MIT Press, Cambridge, Massachusetts, vol 576.82 E9.

    Google Scholar 

  • Rasmussen S, Knudsen C, Feldberg R, Hindsholm M (1990) The coreworld: emergence and evolution of cooperative structures in a computational chemistry. Physica D 42(1–3):111–134

    Article  Google Scholar 

  • Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution 50(5):1766–1774

    Article  Google Scholar 

  • Schuster P, Fontana W, Stadler PF, Hofacker IL (1994) From sequences to shapes and back: a case study in RNA secondary structures. Proc R Soc Lond B Biol Sci 255(1344):279–284

    Article  CAS  Google Scholar 

  • True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3(2):109–119

    Article  CAS  Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150(3811):563–565

    Article  Google Scholar 

  • Wagner GP, Altenberg L (1996) Perspective: complex adaptations and the evolution of evolvability. Evolution 50(3):967–976

    Article  Google Scholar 

  • Wagner GP, Lynch VJ (2010) Evolutionary novelties. Curr Biol 20(2):R48–R52

    Article  CAS  Google Scholar 

  • Wagner GP, Zhang J (2011) The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nat Rev Genet 12(3):204–213

    Article  CAS  Google Scholar 

  • Walsh B, Blows MW (2009) Abundant genetic variation+ strong selection= multivariate genetic constraints: a geometric view of adaptation. Annu Rev Ecol Evol Syst 40:41–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Porto .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Porto, A. (2021). Variational Approaches to Evolvability: Short- and Long-Term Perspectives. In: Nuño de la Rosa, L., Müller, G.B. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-32979-6_114

Download citation

Publish with us

Policies and ethics