Skip to main content
Log in

Ontogeny of the syndesmosis tibiofibularis and the evolution of the bird hindlimb: a caenogenetic feature triggers phenotypic novelty

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The underlying theme of this study is the contribution of developmental mechanisms to the generation of morphological novelty in evolution. The syndesmosis tibiofibularis, an important structural and functional link between the two zeugopod bones of the bird hindlimb, is used as a model for evolutionary novelty. We analyze the structural, developmental and adaptive aspects of its origin in a combined descriptive, experimental, and comparative approach.The ontogeny of the syndesmosis in the chick embryo involves several developmental steps, including the formation of a separate cartilage rudiment that in turn stimulates the formation of an osseous crest on the tibia, which with eventually replace the cartilage element itself. Some of the epigenetic requirements for the formation of the cartilage element and the osseous crest are demonstrated by experimentally increasing the distance between the two zeugopod bones, an operation that results in the absence of both cartilage and crest. Although a syndesmosis tibiofibularis associated with an osseous crest on the tibiotarsus is unique to birds in extant vertebrates, the presence of a distinct crest at the corresponding location in theropod dinosaurs indicates that a syndesmosis also existed in this group of archosaurs.The results of the study suggest that in the case of the syndesmosis tibiofibularis phenotypic evolutionary novelty is based on a caenogenetic feature, i.e. a feature that initially arose in response to changing developmental conditions. In conclusion we propose a model for the stepwise evolutionary modification of the sauropsid hindlimb, integrating adaptive trends and developmental mechanisms that interactively determine the transformations of skeletal limb morphology. The syndesmosis tibiofibularis and the mechanisms of its formation are not only shown to have played a key-role in this process, but its presence in theropod dinosaurs also points towards the origin of birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberch P (1980) Ontogenesis and morphological diversification. Am Zool 20:653–667

    Google Scholar 

  • Alberch P (1982) Developmental constraints in evolutionary processes. In: Bonner JT (ed) Evolution and development. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Alberch P, Gale EA (1983) Size dependence during the development of the amphibian foot. Colchizine-induced digital loss and reduction. J Embryol Exp Morphol 76:177–197

    Google Scholar 

  • Archer CW, Hornbruch A, Wolpert L (1983a) Growth and morphogenesis of the fibula in the chick embryo. J Embryol Exp Morphol 75:101–106

    Google Scholar 

  • Archer CW, Rooney P, Wolpert L (1983b) The early growth and morphogenesis of limb cartilage. In: Fallon FG, Caplan Al (eds) Limb development and regeneration, Part A. Liss, New York

    Google Scholar 

  • Badi MH (1972) Calcification and ossification of fibrocartilage in the attachment of the patellar ligament in the rat. J Anat 112:415–421

    Google Scholar 

  • Barnett CH, Lewis OJ (1958) The evolution of some traction epiphyses in birds and mammals. J Anat 92:593–601

    Google Scholar 

  • Baumel JY (ed) (1979) Nomina anatomica avium. Academic Press, New York

    Google Scholar 

  • Benton MJ (1985) Classification and phylogeny of the diapsid reptiles. Zool J Linn Soc 84:97–164

    Google Scholar 

  • Beresford WA (1981) Chondroid bone, secondary cartilage and metaplasia. Urban & Schwarzenberg, Baltimore

    Google Scholar 

  • Brylski P, Hall BK (1988) Ontogeny of a macroevolutionary phenotype: the external cheek pouches of geomyoid rodents. Evolution 42:391–394

    Google Scholar 

  • Bürger R (1986) Constraints for the evolution of functionally coupled characters: a nonlinear analysis of a phenotypic model. Evolution 40:182–193

    Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. Freeman, New York

    Google Scholar 

  • Chairig AJ (1972) The evolution of the archosaur pelvis and hindlimb: an explanation in functional terms. In: Joysey KA, Kemp TS (eds) Studies in vertebrate evolution. Oliver& Boyd, Edinburgh

    Google Scholar 

  • Cooper RR, Misol S (1970) Tendon and ligament insertions. J Bone J Surg Am Vol 52:1–20

    Google Scholar 

  • Cruickshank ARI, Benton MJ (1985) Archosaur ankles and the relationships of thecodontian and dinosaurian reptiles. Nature 317:715–717

    Google Scholar 

  • Dames W (1884) Über Archaeopteryx. Palaeontol Abh2:119–196

    Google Scholar 

  • De Beer G (1954) Archacopteryx lithographica. Br Mus Nat Hist London 1–68

    Google Scholar 

  • Feduccia A (1980) The age of birds. Harvard University Press, Cambridge

    Google Scholar 

  • Frazzetta TH (1975) Complex adaptations in evolving populations. Sinaur Associates, Massachusetts

    Google Scholar 

  • Freeman BM, Vince MA (1975) Development of the Avian Embryo. Chapman and Hall, London

    Google Scholar 

  • Gauthier J (1986) Saurischian monophyly and the origin of birds. In: Padian K (ed) The origin of birds and the evolution of flight. Mem Calif Acad Sci 8:1–55. California Academy of Sciences. San Francisco

    Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen. Reimer, Berlin

    Google Scholar 

  • Haines RW (1969) Epiphyses and sesamoids. In: Gans C (ed) Biology of the reptilia, vol 1 (Morphology A).Academic Press, New York

    Google Scholar 

  • Hall BK (1970) Cellular differentiation in skeletal tissues. Biol Rev 45:455–484

    Google Scholar 

  • Hall BK (1978) Developmental and cellular skeletal biology. Academic Press, New York

    Google Scholar 

  • Hall BK (1979) Selective proliferation and accumulation of chondroprogenitor cells as the mode of action of biomechanical factors. Teratology 20:81–92

    Google Scholar 

  • Hall BK (1983) Epigenetic control in development and evolution. In: Goodwin BC, Holder N, Wylie CG (eds) Development and evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hamburger V (1980) Embryology and the modern synthesis in evolutionary theory. In: Mayr E, Provine WB (eds) The evolutionary synthesis. Harvard University Press, Cambridge

    Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Google Scholar 

  • Hamburger V, Balaban M, Oppenheim R, Wenger E (1965) Periodic motility of normal and spinal chick embryos between 8 and 17 days of incubation. J Exp Zool 159:1–14

    Google Scholar 

  • Hampé A (1959) Contribution à l'étude du développement et de la régulation des déficiences et des excédents dans la patte de l'embryon de poulet. Arch Anat Microsc Morphol Exp 48:347–479

    Google Scholar 

  • Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) (1985) The beginnings of birds. Proceedings of the International Archaeopteryx Conference, Eichstätt, FRG

  • Heller F (1959) Ein dritter Archaeopteroyx-Fund aus den Solnhofener Plattenkalken von Langenaltheim/Mfr. Erlanger Geol Abh 31:1–25

    Google Scholar 

  • Hinchliffe JR, Johnson SR (1980) The development of the vertebrate limb. Clarendon Press, Oxford

    Google Scholar 

  • Horner JR, Weishampel DB (1988) A comparative embryological study of two ornithischian dinosaurs. Nature 332:256–257

    Google Scholar 

  • Martin LD, Stewart JD, Whetstone KN (1980) The origin of birds: structure of the tarsus and teeth. Auk 97:86–93

    Google Scholar 

  • Merrilees MJ, Flint MH (1980) Ultrastructural study of tension and pressure zones in a rabbit flexor tendon. Am J Anat 157:87–106

    Google Scholar 

  • Müller GB (1985) Experimentelle Untersuchungen zur Theorie des epigenetischen Systems. In: Ott JA, Wagner GP, Wuketits FM (eds) Evolution, Ordnung und Erkenntnis. Paul Parey, Berlin

    Google Scholar 

  • Müller GB (1986) Effects of skeletal change on muscle pattern formation. In: Christ B, Cihak R (eds) Bibliotheca Anatomica 29. Development and regeneration of the skeletal muscles. Karger, Basel

    Google Scholar 

  • Müller GB (1989) Ancestral patterns in bird limb development: a new look at Hampé's experiment. J Evol Biol 2:31–47

    Google Scholar 

  • Müller GB, Wagner GP, Hall BK (1988) Experimental vertebrate embryology and the study of evolution. Workshop report. In: Splechtna H, Hilgers H (eds) Progress in zoology, vol 36. Fischer Verlag, Stuttgart (in press)

    Google Scholar 

  • Noyes FR, Lorvik PJ, Hyde WB, De Lucas JL (1974) Biomechanics of ligament failure. II. An analysis of immubilization, exercies, and reconditioning effects in primates. J Bone J Surg Am Vol 56:1406–1418

    Google Scholar 

  • Ostrom JH (1972) Description of the Archaeopteryx specimen in the Tyler Museum, Haarlem. Proc K Ned Akad Wet Ser (B) 75:289–305

    Google Scholar 

  • Ostrom JH (1973) The ancestry of birds. Nature 242:136

    Google Scholar 

  • Ostrom JH (1976) Archaeopteryx and the origin of birds. Biol J Linn Soc 8:91–182

    Google Scholar 

  • Padian K (1983) A functional analysis of flying and walking in pterosaurs. Paleobiology 9:218–239

    Google Scholar 

  • Padian K (ed) (1986) The origin of birds and the evolution of flight. Mem Calif Acad Sci 8. California Academy of Sciences, San Francisco

    Google Scholar 

  • Pautou MP, Hedayat I, Kieny M (1982) The pattern of muscle development in the chick leg. Arch Anat Microsc Morphol Exp 71:193–206

    Google Scholar 

  • Pritchard JJ, Ruzicka AJ (1950) Comparison of fracture repair in frog, lizard and rat. J Anat 84:236–261

    Google Scholar 

  • Riedl R (1978) Order in living organisms. Wiley, Chichester

    Google Scholar 

  • Riska B (1986) Some models for development, growth and morphometric correlation. Evolution 40:1303–1311

    Google Scholar 

  • Romer AS (1966) Vertebrate Paleontology, 3rd edn, University of Chicago Press, Chicago

    Google Scholar 

  • Sanz JL, Bonaparte JF, Lacasa A (1988) Unusual early cretaceous birds from Spain. Nature 331:433–435

    Google Scholar 

  • Schaffer J (1902a) Über Knorpelbildungen an den Beugesehnen der Vögel. Zentralbl Physiol 16:118–120

    Google Scholar 

  • Schaffer J (1902b) Über Knorpel und knorpelähnliche Bildungen an den Zehen von Amphibien und Reptilien. Zentralbl Physiol 16:734–736

    Google Scholar 

  • Schaffer J, (1930) Die Stützgewebe.In: Möllendorff W (ed) Handbuch der mikroskopischen Anatomie des Menschen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tarsitano S, Hecht MK (1980) A reconsideration of the reptilian relationships of Archaeopteryx. Zool J Linn Soc 69:149–182

    Google Scholar 

  • Thulborn RA (1972) The postcranial skeleton of the Triassic ornithischian dinosaur Fabrosaurus australis. Palaeontology 15:29–60

    Google Scholar 

  • Wagner GP (1984) Coevolution of functionally contrained characters: prerequisites for adaptive versatility. BioSystems 17:51–55

    Google Scholar 

  • Walker AD (1972) New light on the origin of birds and crocodiles. Nature 237:257–263

    Google Scholar 

  • Wassersug R (1976) A procedure for differential staining of cartilage and bone in whole formalin-fixed vertebrates. Stain Technol 51:131–134

    Google Scholar 

  • Wellnhofer P (1974) Das fünfte Skelettexemplar von Archacopteryx. Palaeontolographica 147:169–216

    Google Scholar 

  • Wellnhofer P (1975) Die Rhamphorhynchoidea der Oberjura Plattenkalke Süddeutschlands. Palaeontogr Am 148:1–33 132–186; 149: 1–30

    Google Scholar 

  • Wolff E (1958) Le principe de compétition. Bull Soc Zool Fr 83:13–25

    Google Scholar 

  • Wolff E, Kieny M (1962) Mise en évidence par l'irradiation aux rayons X d'un phénomène de compétition entre les ébauches du tibia et du péroné chez l'embryon de poulet. Dev Biol 4:197–213

    Google Scholar 

  • Wolpert L, Tickle C, Sampford M (1979) The effect of cell killing by X-irradiation on pattern formation in the chick limb. J Embryol Exp Morphol 50:175–198

    Google Scholar 

  • Wortham RA (1948) The development of the muscles and tendons in the lower leg and foot of chick embryos. J Morphol 83:105–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, G.B., Streicher, J. Ontogeny of the syndesmosis tibiofibularis and the evolution of the bird hindlimb: a caenogenetic feature triggers phenotypic novelty. Anat Embryol 179, 327–339 (1989). https://doi.org/10.1007/BF00305059

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00305059

Key words

Navigation