Skip to main content

Rehabilitation and Health Care Robotics

  • Chapter
  • First Online:
Springer Handbook of Robotics

Abstract

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADL:

activities for daily living

ALEX:

active leg exoskeleton

ARM:

assistive robot service manipulator

BCI:

brain-computer interface

BI:

brain imaging

BWSTT:

body-weight supported treadmill training

CEA:

Atomic Energy Commission

COM:

center of mass

CP:

cerebral palsy

DC:

direct current

DOF:

degree of freedom

DSO:

Defense Sciences Office

EEG:

electroencephalography

EMG:

electromyography

EPP:

extended physiological proprioception

ES:

electrical stimulation

EU:

European Union

EVRYON:

evolving morphologies for human–robot symbiotic interaction

fMRI:

functional magnetic resonance imaging

FNS:

functional neural stimulation

IWS:

intelligent wheelchair system

LENAR:

lower extremity nonanthropomorphic robot

LOPES:

lower extremity powered exoskeleton

MEG:

magnetoencephalography

MIME:

mirror image motion enabler

mirror image movement enhancer

MIMICS:

multimodal immersive motion rehabilitation with interactive cognitive system

MIT:

Massachusetts Institute of Technology

NIDRR:

National Institute on Disability and Rehabilitation Research

NIRS:

near infrared spectroscopy

NIST:

National Institute of Standards and Technology

NOAH:

navigation and obstacle avoidance help

NRI:

national robotics initiative

OxIM:

Oxford intelligent machine

P&O:

prosthetics and orthotic

ProVAR:

professional vocational assistive robot

RERC:

Rehabilitation Engineering Research Center

rTMS:

repetitive TMS

SCI:

spinal cord injury

SEA:

series elastic actuator

tDCS:

transcranial direct current stimulation

TMS:

transcranial magnetic stimulation

References

  1. L. Leifer: Rehabilitative robots. In: Robotics Age, in the Beginning: Selected from Robotics Age Magazine, ed. by C. Helmers (Hayden Book, Rochelle Park 1983) pp. 227–241

    Google Scholar 

  2. M. Kassler: Introduction to the special issue on robotics for health care, Robotica 11, 493–494 (1993)

    Article  Google Scholar 

  3. H.F.M. Van der Loos: VA/Stanford rehabilitation robotics research and development program: Lessons learned in the application of robotics technology to the field of rehabilitation, IEEE Trans. Rehabil. Eng. 3, 46–55 (1995)

    Article  Google Scholar 

  4. J.L. Patton, M.E. Phillips-Stoykov, M. Stojakovich, F.A. Mussa-Ivaldi: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors, Exp. Brain Res. 168, 368–383 (2006)

    Article  Google Scholar 

  5. J. Emken, D. Reinkensmeyer: Robot-enhanced motor learning: Accelerating internal model formation during locomotion by transient dynamic amplification, IEEE Trans. Neural Syst. Rehabil. Eng. 99, 1–7 (2005)

    Google Scholar 

  6. E. Guglielmelli, M. Johnson, T. Shibata: Guest editorial special issue on rehabilitation robotics, IEEE Trans. Robotics 25, 477–480 (2009)

    Article  Google Scholar 

  7. M.J. Matarić, J. Eriksson, D.J. Feil-Seifer, C.J. Winstein: Socially assistive robotics for post-stroke rehabilitation, J. Neuroeng. Rehabil. 19, 5 (2007)

    Article  Google Scholar 

  8. M.P. Dijkers, P.C. deBear, R.F. Erlandson, K.A. Kristy, D.M. Geer, A. Nichols: Patient and staff acceptance of robotic technology in occupational therapy: A pilot study, J. Rehabil. Res. 28, 33–44 (1991)

    Article  Google Scholar 

  9. R. Jimínez-Fabián, O. Verlinden: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons, Med. Eng. Phys. 34, 397–408 (2012)

    Article  Google Scholar 

  10. D.G. Smith, J.D. Bigelow: Biomedicine: Revolutionizing prosthetics-guest editors' introduction, Johns Hopkins APL Tech. Dig. 30, 182–185 (2011)

    Google Scholar 

  11. G. Baldassarre: La disabilità in Italia. Il quadro della statistica ufficiale (Istat, Roma 2010)

    Google Scholar 

  12. Demo-Geodemo: Mappe, Popolazione, Statistiche Demografiche dell'ISTAT, available online at http://demo.istat.it

  13. Destatis (Statistisches Bundesamt), https://www.destatis.de/EN/

  14. X. Zheng, G. Chen, X. Song, J. Liu, L. Yan, W. Du, L. Pang, L. Zhang, J. Wu, B. Zhang, J. Zhang: Twenty-year trends in the prevalence of disability in China, Bull. World Health Organ. 89, 788–797 (2011)

    Article  Google Scholar 

  15. National-Bureau-of-Statistics-of-China: http://www.stats.gov.cn/english/

  16. Central-Statistics-Office-Ministry-of-Statistics-&-Programme-Implementation: Disability in India – A statistical profile 2011 (2011)

    Google Scholar 

  17. CIA: The World Factbook, available online at https://www.cia.gov/library/publications/the-world-factbook/geos/in.html

  18. H.F.M. Van der Loos, R. Mahoney, C. Ammi: Great expectations for rehabilitation mechatronics in the coming decade. In: Advances in Rehabilitation Robotics, ed. by Z. Bien, D. Stefanov (Springer, Berlin, Heidelberg 2004) pp. 427–433

    Chapter  Google Scholar 

  19. K. Corker, J.H. Lyman, S. Sheredos: A preliminary evaluation of remote medical manipulators, Bull. Prosthet. Res. 10, 107–134 (1979)

    Google Scholar 

  20. M. Hillman: Rehabilitation robotics from past to present – A historical perspective. In: Advances in Rehabilitation Robotics, ed. by Z. Bien, D. Stefanov (Springer, Berlin, Heidelberg 2004) pp. 25–44

    Chapter  Google Scholar 

  21. W. Seamone, G. Schmeisser: Early clinical evaluation of a robot arm/work table system for spinal cord injured persons, J. Rehabil. Res. Dev. 22, 38–57 (1985)

    Article  Google Scholar 

  22. J. Guittet, H.H. Kwee, N. Quetin, J. Yelon: The SPARTACUS telethesis: Manipulator control studies, Bull. Prosthet. Res. 10, 69–105 (1979)

    Google Scholar 

  23. H.H. Kwee: Integrated control of MANUS manipulator and wheelchair enhanced by environmental docking, Robotica 16, 491–498 (2000)

    Article  Google Scholar 

  24. J. Hammel, K. Hall, D.S. Lees, L.J. Leifer, H.F.M. Van der Loos, I. Perkash, R. Crigler: Clinical evaluation of a desktop robotic assistant, J. Rehabil. Res. Dev. 26, 1–16 (1989)

    Google Scholar 

  25. J.M. Hammel, H.F.M. Van der Loos, I. Perkash: Evaluation of a vocational robot with a quadriplegic employee, Arch. Phys. Med. Rehabil. 73, 683–693 (1992)

    Google Scholar 

  26. H.F.M. Van der Loos, S.J. Michalowski, L.J. Leifer: Design of an omnidirectional mobile robot as a manipulation aid for the severely disabled. In: Interactive Robotic Aids – One Option for Independent Living: An International Perspective, ed. by R. Foulds (World Rehabilitation Fund, New York 1986) pp. 61–63

    Google Scholar 

  27. J.J. Wagner, M. Wickizer, H.F.M. Van der Loos, L.J. Leifer: User testing and design iteration of the ProVAR user interface, 8th IEEE Int. Workshop Robot Hum. Interact. (RO-MAN) (1999) pp. 18–22

    Google Scholar 

  28. M. Busnel, R. Cammoun, F. Coulon-Lauture, J.-M. Detriche, G. Le Claire, B. Lesigne: The robotized workstation MASTER for users with tetraplegia: Description and evaluation, J. Rehabil. Res. Dev. 36, 217–229 (1999)

    Google Scholar 

  29. R. Gelin, B. Lesigne, M. Busnel, J.P. Michel: The first moves of the AFMASTER workstation, Adv. Robotics 14, 639–649 (2001)

    Article  Google Scholar 

  30. M. Topping: The development of Handy 1, a rehabilitation robotic system to assist the severely disabled, Ind. Robot 25, 316–320 (1998)

    Article  Google Scholar 

  31. R.M. Mahoney: The raptor wheelchair robot system. In: Integration of Assistive Technology in the Information Age, ed. by M. Mokhtari (IOS, Amsterdam 2001) pp. 135–141

    Google Scholar 

  32. V. Maheu, J. Frappier, P.S. Archambault, F. Routhier: Evaluation of the JACO robotic arm: Clinico-economic study for powered wheelchair users with upper-extremity disabilities, IEEE Int. Conf. Rehabil. Robotics (2011) p. 5975397

    Google Scholar 

  33. Z. Bien, M.J. Chung, P.H. Chang, D.S. Kwon, D.J. Kim, J.S. Han, J.-H. Kim, D.-H. Kim, H.-S. Park, S.-H. Kang, K. Lee, S.-C. Lim: Integration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units, Auton. Robots 16, 165–191 (2004)

    Article  Google Scholar 

  34. R.C. Simpson, S.P. Levine, D.A. Bell, L. Jaros, Y. Koren, J. Borenstein: NavChair: An assistive wheelchair navigation system with automatic adaptation, assistive technology and AI, Lect. Notes Artif. Intell. 1458, 235–255 (1998)

    Google Scholar 

  35. R.C. Simpson, D. Poirot, F. Baxter: The Hephaestus smart wheelchair system, IEEE Trans. Neural Syst. Rehabil. Eng. 10, 118–122 (2002)

    Article  Google Scholar 

  36. R. Krukowski: Particle brake clutch muscle exercise and rehabilitation apparatus, US Patent Ser 4765315 A (1986)

    Google Scholar 

  37. D. Khalili, M. Zomlefer: An intelligent robotic system for rehabilitation of joints and estimation of body segment parameters, IEEE Trans. Biomed. Eng. 35, 138–146 (1988)

    Article  Google Scholar 

  38. P.S. Lum, S.L. Lehman, D.J. Reinkensmeyer: The bimanual lifting rehabilitator: A device for rehabilitating bimanual control in stroke patients, IEEE Trans. Rehabil. Eng. 3, 166–174 (1995)

    Article  Google Scholar 

  39. P.S. Lum, D.J. Reinkensmeyer, S.L. Lehman: Robotic assist devices for bimanual physical therapy: Preliminary experiments, IEEE Trans. Rehabil. Eng. 1, 185–191 (1993)

    Article  Google Scholar 

  40. P.S. Lum, H.F.M. Van der Loos, P. Shor, C.G. Burgar: A robotic system for upper-limb exercises to promote recovery of motor function following stroke, Proc. 6th Int. Conf. Rehabil. Robotics (1999) pp. 235–239

    Google Scholar 

  41. M.J. Johnson, H.F. Van der Loos, C.G. Burgar, P. Shor, L.J. Leifer: Experimental results using force-feedback cueing in robot-assisted stroke therapy, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 335–348 (2005)

    Article  Google Scholar 

  42. D.J. Reinkensmeyer, J.P.A. Dewald, W.Z. Rymer: Guidance-based quantification of arm impairment following brain injury: A pilot study, IEEE Trans. Rehabil. Eng. 7, 1–11 (1999)

    Article  Google Scholar 

  43. P. Hilaire, A.C. Jacob, T. Böni, B. Rüttimann: Richard Scherb: Orthopaedic surgeon and muscle physiologist, 28th Int. Soc. Biomech. Congr. (2001)

    Google Scholar 

  44. J.P.L. Bel, P. Rabischong: Orthopaedic appliances, US Patent Ser 3993056 A (1976)

    Google Scholar 

  45. G. Colombo, M. Joerg, R. Schreier, V. Dietz: Treadmill training of paraplegic patients with a robotic orthosis, J. Rehabil. Res. Dev. 37, 693–700 (2000)

    Google Scholar 

  46. S. Hesse, D. Uhlenbrock: A mechanized gait trainer for restoration of gait, J. Rehabil. Res. Dev. 37, 701–708 (2000)

    Google Scholar 

  47. Cybernetic Zoo: Stock Photo ID 42-17253903, available online at http://cyberneticzoo.com/bionics/1976-pneumatic-exoskeleton-prosthesis-pierre-rabischong-french/

  48. LokoHelp: http://www.darkov.com/treatment/curative-procedures/lokostation-with-lokohelp.aspx

  49. GEO System: http://www.skoutasmedical.gr/portal/index.php?page=shop.product_details&product_id=742&flypage=ilvm_fly2_blue.tpl&pop=0&option=com_virtuemart&Itemid=120&lang=en&vmcchk=1&Itemid=120

  50. A.C. Lo, P.D. Guarino, L.G. Richards, J.K. Haselkorn, G.F. Wittenberg, D.G. Federman, R.J. Ringer, T.H. Wagner, H.I. Krebs, B.T. Volpe, C.T. Bever, D.M. Bratava, P.W. Duncan, B.H. Corn, A.D. Maffucci, S.E. Nadeau, S.S. Conroy, J.M. Powell, G.D. Huang, P. Peduzzi: Robot-assisted therapy for long-term upper-limb impairment after stroke, N. Engl. J. Med. 362, 1772–1783 (2010)

    Article  Google Scholar 

  51. G. Kwakkel, B.J. Kollen, H.I. Krebs: Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review, Neurorehabil. Neural Repair 22, 111–121 (2008)

    Article  Google Scholar 

  52. E.C. Lu, R.H. Wang, D. Hebert, J. Boger, M.P. Galea, A. Mihailidis: The development of an upper limb stroke rehabilitation robot: Identification of clinical practices and design requirements through a survey of therapists, Disabil. Rehabil. Assist. Technol. 6, 420–431 (2011)

    Article  Google Scholar 

  53. B.T. Volpe, P.T. Huerta, J.L. Zipse, A. Rykman, D. Edwards, L. Dipietro, N. Hogan, H.I. Krebs: Robotic devices as therapeutic and diagnostic tools for stroke recovery, Arch. Neurol. 66, 1086–1090 (2009)

    Article  Google Scholar 

  54. L. Zollo, L. Rossini, M. Bravi, G. Magrone, S. Sterzi, E. Guglielmelli: Quantitative evaluation of upper-limb motor control in robot-aided rehabilitation, Med. Biol. Eng. Comput. 49, 1131–1144 (2011)

    Article  Google Scholar 

  55. B. Rohrer, S. Fasoli, H.I. Krebs, R. Hughes, B. Volpe, W.R. Frontera, J. Stein, N. Hogan: Movement smoothness changes during stroke recovery, J. Neurosci. 22, 8297–8304 (2002)

    Article  Google Scholar 

  56. E. Papaleo, L. Zollo, L. Spedaliere, E. Guglielmelli: Patient-tailored adaptive robotic system for upper-limb rehabilitation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)

    Google Scholar 

  57. G. Pellegrino, L. Tomasevic, M. Tombini, G. Assenza, M. Bravi, S. Sterzi, V. Giacobbe, L. Zollo, E. Guglielmelli, G. Cavallo, F. Vernieri, F. Tecchio: Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation, Restor. Neurol. Neurosci. 30, 497–510 (2012)

    Google Scholar 

  58. R. Riener, M. Munih: Special section on rehabilitation via bio-cooperative control, IEEE Trans. Neural Syst. Rehabil. Eng. 18, 337–338 (2010)

    Article  Google Scholar 

  59. R.C. Loureiro, W.S. Harwin, K. Nagai, M. Johnson: Advances in upper limb stroke rehabilitation: A technology push, Med. Biol. Eng. Comput. 49, 1103–1118 (2011)

    Article  Google Scholar 

  60. F.J. Badesa, R. Morales-Vidal, N. Garcia, C. Perez, J.M. Sabater-Navarro, E. Papaleo: New concept of multimodal assistive robotic device, IEEE Robotics Autom. Mag. (IEEE/RAM) (2012)

    Google Scholar 

  61. L. Zollo, E. Papaleo, L. Spedaliere, E. Guglielmelli, F.J. Badesa, R. Morales, N. Garcia-Aracil: Multimodal interfaces to improve therapeutic outcomes in robot-assisted rehabilitation, Springer Tract. Adv. Robotics 94, 321–343 (2014)

    Google Scholar 

  62. Intelligent System Co., Ltd., Japan: http://www.parorobots.com/

  63. K. Dautenhahn, I. Werry: Towards interaction robots in autism therapy: Background, motivation, and challenges, Pragmact. Cogn. 12, 1–35 (2004)

    Article  Google Scholar 

  64. T. Shibata, T. Mitsui, K. Wada, K. Tanie: Psychophysiological effects by interaction with mental commit robot, J. Robotics Mechatron. 14, 13–19 (2002)

    Article  Google Scholar 

  65. L. Sawaki: Use-dependent plasticity of the human motor cortex in health and disease, IEEE Eng. Med. Biol. Mag. 24, 36–39 (2005)

    Article  Google Scholar 

  66. J.R. Wolpaw, A.M. Tennissen: Activity-dependent spinal cord plasticity in health and disease, Annu. Rev. Neurosci. 24, 807–843 (2001)

    Article  Google Scholar 

  67. K.M. Baldwin, F. Haddad: Skeletal muscle plasticity: Cellular and molecular responses to altered physical activity paradigms, Am. J. Phys. Med. Rehabil. 81, S40–S51 (2002)

    Article  Google Scholar 

  68. V.S. Huang, J.W. Krakauer: Robotic neurorehabilitation: A computational motor learning perspective, J. Neuroeng. Rehabil. 6(1), 5 (2009)

    Article  Google Scholar 

  69. J. Mehrholz, M. Pohl: Electromechanical-assisted gait training after stroke: A systematic review comparing end-effector and exoskeleton devices, J. Rehabil. Med. 44(3), 193–199 (2012)

    Article  Google Scholar 

  70. V. Klamroth-Marganska, J. Blanco, K. Campen, A. Curt, V. Dietz, T. Ettlin, M. Felder, B. Fellinghauer, M. Guidali, A. Kollmar, A. Luft, T. Nef, C. Schuster-Amft, W. Stahel, R. Riener: Three-dimensional, task-specific robot therapy of the arm after stroke: A multicentre, parallel-group randomised trial, Lancet Neurol. 13(2), 159–166 (2014)

    Article  Google Scholar 

  71. P. Langhorne, F. Coupar, A. Pollock: Motor recovery after stroke: A systematic review, Lancet Neurol. 8, 741–754 (2009)

    Article  Google Scholar 

  72. J.L. Emken, R. Benitez, D.J. Reinkensmeyer: Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed, J. Neuroeng. Rehabil. 4, 8 (2007)

    Article  Google Scholar 

  73. M. Casadio, V. Sanguineti: Learning, retention, and slacking: A model of the dynamics of recovery in robot therapy, IEEE Trans. Neural Syst. Rehabil. Eng. 20, 286–296 (2012)

    Article  Google Scholar 

  74. E.R. Pospisil, B.L. Luu, J.S. Blouin, H.F. Van der Loos, E.A. Croft: Independent ankle motion control improves robotic balance simulator, IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. (2012) pp. 6487–6491

    Google Scholar 

  75. B. Luu, T. Huryn, E. Croft, H. Van der Loos, J. Blouin: Investigating load stiffness in quiet stance using a robotic balance system, IEEE Trans. Neural Syst. Rehabil. Eng. 19(4), 382–390 (2011)

    Article  Google Scholar 

  76. M. Guadagnoli, T. Lee: Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning, J. Mot. Beh. 36, 212–224 (2004)

    Article  Google Scholar 

  77. C. Bosecker, L. Dipietro, B. Volpe, H.I. Krebs: Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke, Neurorehabil. Neural Repair 24(1), 62–69 (2009)

    Article  Google Scholar 

  78. L. Zollo, O.E. Gallotta, E. Guglielmelli, S. Sterzi: Robotic technologies and rehabilitation: New tools for upper-limb therapy and assessment in chronic stroke, Eur. J. Phys. Rehabil. Med. 47.2, 223–236 (2011)

    Google Scholar 

  79. H.I. Krebs, M. Krams, D. Agrafiotis, A. DiBernardo, J.C. Chavez, G.S. Littman, E. Yang, G. Byttebier, L. Dipietro, A. Rykman, K. McArthur, K. Hajjar, K.R. Lees, B.T. Volpe: Robotic measurement of arm movements after stroke establishes biomarkers of motorecovery, Stroke 45(1), 200–204 (2014)

    Article  Google Scholar 

  80. A. Domingo, T. Lam: Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury, J. Neuroeng. Rehabil. 11(1), 167 (2014)

    Article  Google Scholar 

  81. C. Carignan, H. Krebs: Telerehabilitation robotics: Bright lights, big future?, J. Rehabil. Res. Dev. 43, 695–710 (2006)

    Article  Google Scholar 

  82. B.H. Dobkin: Neurologic Rehabilitation (F.A. Davis, Philadelphia 1996)

    Google Scholar 

  83. T. Truelsen, B. Piechowski-Jóźwiak, R. Bonita, C. Mathers, J. Bogousslavsky, G. Boysen: Stroke incidence and prevalence in Europe: A review of available data, Eur. J. Neurol. 13, 581–598 (2006)

    Article  Google Scholar 

  84. ESCIF (European Spinal Cord Injury Federation): Statement on Spinal Cord Injury Regenerative Research (ESCIF, Nottwill 2011)

    Google Scholar 

  85. M. Wirz, D.H. Zemon, R. Rupp, A. Scheel, G. Colombo, V. Dietz, T.G. Hornby: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial, Arch. Phys. Med. Rehabil. 86, 672–680 (2005)

    Article  Google Scholar 

  86. H.I. Krebs, N. Hogan, M.L. Aisen, B.T. Volpe: Robot-aided neurorehabilitation, IEEE Trans. Rehabil. Eng. 6, 75–87 (1998)

    Article  Google Scholar 

  87. S.P. Buerger, H.I. Krebs, N. Hogan: Characterization and control of a screw-driven robot for neurorehabilitation, Proc. IEEE Int. Conf. Control Appl. (2001) pp. 388–394

    Google Scholar 

  88. D.J. Williams, H.I. Krebs, N. Hogan: A robot for wrist rehabilitation, IEEE 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (2001) pp. 1336–1339

    Google Scholar 

  89. L. Masia, H.I. Krebs, P. Cappa, N. Hogan: Whole-arm rehabilitation following stroke: Hand module, IEEE/RAS-EMBS 1st Int. Conf. Biomed. Robotics Biomechatron. (BioRob) (2006) pp. 1085–1089

    Google Scholar 

  90. J. Stein, H.I. Krebs, W.R. Frontera, S. Fasoli, R. Hughes, N. Hogan: Comparison of two techniques of robot-aided upper limb exercise training after stroke, Am. J. Phys. Med. Rehabil. 83, 720–728 (2004)

    Article  Google Scholar 

  91. H. Krebs, J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B.T. Volpe, N. Hogan: Rehabilitation robotics: Performance-based progressive robot-assisted therapy, Auton. Robots 15, 7–20 (2003)

    Article  Google Scholar 

  92. M.L. Aisen, H.I. Krebs, N. Hogan, F. McDowell, B. Volpe: The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke, Arch. Neurol. 54, 443–446 (1997)

    Article  Google Scholar 

  93. S. Fasoli, H. Krebs, J. Stein, W. Frontera, N. Hogan: Effects of robotic therapy on motor impairment and recovery in chronic stroke, Arch. Phys. Med. Rehabil. 84, 477–482 (2003)

    Article  Google Scholar 

  94. J.J. Daly, N. Hogan, E.M. Perepezko, H.I. Krebs, J.M. Rogers, K.S. Goyal, M.E. Dohring, E. Fredrickson, J. Nethery, R.L. Ruff: Response to upper-limb robotics and functional neuromuscular stimulation following stroke, J. Rehabil. Res. Dev. 42, 723–736 (2005)

    Article  Google Scholar 

  95. T.H. Wagner, A.C. Lo, P. Peduzzi, D.M. Bravata, G.D. Huang, H.I. Krebs, R.J. Ringer, D.G. Federman, L.G. Richards, J.K. Haselkorn, G.F. Wittenberg, B.T. Volpe, C.T. Bever, P.W. Duncan, A. Siroka, P.D. Guarino: An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke, Stroke 41, 2630–2632 (2011)

    Article  Google Scholar 

  96. P.S. Lum, C.G. Burgar, P.C. Shor, M. Majmundar, H.F.M. Van der Loos: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper limb motor function following stroke, Arch. Phys. Med. Rehabil. 83, 952–959 (2002)

    Article  Google Scholar 

  97. P.S. Lum, C.G. Burgar, H.F.M. Van der Loos, P.C. Shor, M. Majmundar, R. Yap: MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study, J. Rehabil. Res. Dev. 43, 631–642 (2006)

    Article  Google Scholar 

  98. C.G. Burgar, P.S. Lum, A.M. Scremin, S.L. Garber, H.F. Van der Loos, D. Kenney, F. Shor: Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of veterans affairs multisite clinical trial, J. Rehabil. Res. Dev. 48, 445–458 (2011)

    Article  Google Scholar 

  99. L.E. Kahn, M.L. Zygman, W.Z. Rymer, D.J. Reinkensmeyer: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study, J. Neuroeng. Neurorehabil. 3, 12 (2006)

    Article  Google Scholar 

  100. S. Hesse, C. Werner, M. Pohl, S. Rueckriem, J. Mehrholz, M.L. Lingnau: Computerized arm training improves the motor control of the severely affected arm after stroke: A single-blinded randomized trial in two centers, Stroke 36, 1960–1966 (2005)

    Article  Google Scholar 

  101. D. Reinkensmeyer, J. Emken, S. Cramer: Robotics, motor learning, and neurologic recovery, Annu. Rev. Biomed. Eng. 6, 497–525 (2004)

    Article  Google Scholar 

  102. F. Amirabdollahian, E. Gradwell, R. Loureiro, W. Harwin: Effects of the GENTLE/S robot mediated therapy on the outcome of upper limb rehabilitation post-stroke: Analysis of the Battle Hospital data, Proc. 8th Int. Conf. Rehabil. Robotics (2003) pp. 55–58

    Google Scholar 

  103. F. Amirabdollahian, R. Loureiro, E. Gradwell, C. Collin, W. Harwin, G. Johnson: Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy, J. Neuroeng. Rehabil. 19, 4 (2007)

    Article  Google Scholar 

  104. A.S. Merians, H. Poizner, R. Boian, G. Burdea, S. Adamovich: Sensorimotor training in a virtual reality environment: Does it improve functional recovery poststroke? The Rutgers arm, a rehabilitation system in virtual reality: A pilot study, Neurorehabil. Neural Repair. 20, 252–267 (2006)

    Article  Google Scholar 

  105. R. Colombo, F. Pisano, S. Micera, A. Mazzone, C. Delconte, M. Carrozza, P. Dario, G. Minuco: Robotic techniques for upper limb evaluation and rehabilitation of stroke patients, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 311–324 (2005)

    Article  Google Scholar 

  106. R.J. Sanchez, J. Liu, S. Rao, P. Shah, R. Smith, S.C. Cramer, J.E. Bobrow, D.J. Reinkensmeyer: Automating arm movement training following severe stroke: Functional exercises with quantitative feedback in a gravity-reduced environment, IEEE Trans. Neural Syst. Rehabil. Eng. 14, 378–389 (2006)

    Article  Google Scholar 

  107. S.J. Housman, K.M. Scott, D.J. Reinkensmeyer: A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis, Neurorehabil. Neural Repair 23, 505–514 (2009)

    Article  Google Scholar 

  108. D. Gijbels, I. Lamers, L. Kerkhofs, G. Alders, E. Knippenberg, P. Feys: The armeo spring as training tool to improve upper limb functionality in multiple sclerosis: A pilot study, J. Neuroeng. Rehabil. 8, 5 (2011)

    Article  Google Scholar 

  109. J. Zariffa, N. Kapadia, J.L. Kramer, P. Taylor, M. Alizadeh-Meghrazi, V. Zivanovic, R. Williams, A. Townson, A. Curt, M.R. Popovic, J.D. Steeves: Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population, Spinal Cord 50, 220–226 (2012)

    Article  Google Scholar 

  110. L. Schwickert, J. Klenk, A. Stähler, C. Becker, U. Lindemann: Robotic-assisted rehabilitation of proximal humerus fractures in virtual environments: A pilot study, Z. Gerontol. Geriatr. 44, 387–392 (2011)

    Article  Google Scholar 

  111. S. Masiero, A. Celia, G. Rosati, M. Armani: Robotic-assisted rehabilitation of the the upper limb after acute stroke, Arch. Phys. Med. Rehabil. 88, 142–149 (2007)

    Article  Google Scholar 

  112. G. Fazekas, M. Horvath, A. Toth: A novel robot training system designed to supplement upper limb physiotherapy of patients with spastic hemiparesis, Int. J. Rehabil. Res. 29, 251–254 (2006)

    Article  Google Scholar 

  113. T. Nef, R. Riener: ARMin – Design of a novel arm rehabilitation robot, Proc. IEEE Int. Conf. Rehabil. Robotics (2005) pp. 57–60

    Google Scholar 

  114. E. Wolbrecht, J. Leavitt, D. Reinkensmeyer, J. Bobrow: Control of a pneumatic orthosis for upper extremity stroke rehabilitation, IEEE Eng. Med. Biol. Conf. (2006) pp. 2687–2693

    Google Scholar 

  115. J. Klein, S.J. Spencer, J. Allington, J.E. Bobrow, D.J. Reinkensmeyer: Optimization of a parallel shoulder mechanism to achieve a high force, low mass, robotic arm exoskeleton, IEEE Trans. Robotics 26, 710–715 (2010)

    Article  Google Scholar 

  116. J.L. Patton, G. Dawe, C. Scharver, F.A. Mussa-Ivaldi, R. Kenyon: Robotics and virtual reality: The development of a life-sized 3-D system for the rehabilitation of motor function, IEEE 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (2004) pp. 4840–4843

    Google Scholar 

  117. H. Huang, J. He: Utilization of biomechanical modeling in design of robotic arm for rehabilitation of stroke patients, IEEE 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Vol. 4 (2004) pp. 2718–2721

    Google Scholar 

  118. J.C. Perry, J. Rosen, S. Burns: Upper-limb powered exoskeleton design, IEEE/ASME Trans. Mechatron. 12, 408–417 (2007)

    Article  Google Scholar 

  119. R. Gopura, K. Kiguchi, Y. Li: SUEFUL-7: A 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 1126–1131

    Google Scholar 

  120. N. Jarrasse, M. Tagliabue, J.V.G. Robertson, A. Maiza, V. Crocher, A. Roby-Brami, G. Morel: A methodology to quantify alterations in human upper limb movement during co-manipulation with an exoskeleton, IEEE Trans. Neural Syst. Rehabil. Eng. 18, 389–397 (2010)

    Article  Google Scholar 

  121. B.-C. Tsai, W.-W. Wang, L.-C. Hsu, L.-C. Fu, J.-S. Lai: An articulated rehabilitation robot for upper limb physiotherapy and training, 2010 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 1470–1475

    Google Scholar 

  122. M.J. Johnson, H.F.M. Van der Loos, C.G. Burgar, P. Shor, L.J. Leifer: Experimental results using force-feedback cueing in robot-assisted stroke therapy, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 335–348 (2005)

    Article  Google Scholar 

  123. D. Reinkensmeyer, C. Pang, J. Nessler, C. Painter: Web-based telerehabilitation for the upper-extremity after stroke, IEEE Trans. Neural Sci. Rehabil. Eng. 10, 1–7 (2002)

    Article  Google Scholar 

  124. X. Feng, J. Winters: UniTherapy: A computer-assisted motivating neurorehabilitation platform for teleassessment and remote therapy, IEEE Int. Conf. Rehabil. Robotics (2005) pp. 349–352

    Google Scholar 

  125. H. Sugarman, E. Dayan, A. Weisel-Eichler, J. Tiran: The jerusalem telerehabilitation system, a new low-cost, haptic rehabilitation approach, Cyberpsychol. Behav. 9, 178–182 (2006)

    Article  Google Scholar 

  126. L. Zollo, D. Accoto, F. Torchiani, D. Formica, E. Guglielmelli: Design of a planar robotic machine for neuro-rehabilitation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 2031–2036

    Google Scholar 

  127. L. Zollo, A. Salerno, M. Vespignani, D. Accoto, M. Passalacqua, E. Guglielmelli: Dynamic characterization and interaction control of the CBM-Motus robot for upper-limb rehabilitation, Int. J. Adv. Robotic Syst. 10, 374 (2013)

    Article  Google Scholar 

  128. O. Lambercy, L. Dovat, H. Yun, S.K. Wee, C. Kuah, K. Chua, R. Gassert, T. Milner, L.-T. Chee, E. Rurdet: Rehabilitation of grasping and forearm pronation/supination with the Haptic Knob, IEEE Int. Conf. Rehabil. Robotics (2009) pp. 22–27

    Google Scholar 

  129. L. Dovat, O. Lambercy, R. Gassert, T. Maeder, T. Milner, T.C. Leong, E. Burdet: HandCARE: A cable-actuated rehabilitation system to train hand function after stroke, IEEE Trans. Neural Syst. Rehabil. Eng. 16, 582–591 (2008)

    Article  Google Scholar 

  130. S. Hesse, H. Kuhlmann, J. Wilk, C. Tomelleri, S.G.B. Kirker: A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: A case series in chronic and acute stroke patients, J. NeuroEng. Rehabil. 5, 21 (2008)

    Article  Google Scholar 

  131. C. Takahashi, L. Der-Yeghiaian, V. Le, S. Cramer: A robotic device for hand motor therapy after stroke, IEEE Int. Conf. Rehabil. Robotics (2005) pp. 17–20

    Google Scholar 

  132. C.N. Schabowsky, S.B. Godfrey, R.J. Holley, P.S. Lum: Development and pilot testing of HEXORR: Hand EXOskeleton rehabilitation robot, J. Neuroeng. Rehabil. 7, 1–16 (2010)

    Article  Google Scholar 

  133. S. Ito, H. Kawasaki, Y. Ishigure, M. Natsume, T. Mouri, Y. Nishimoto: A design of fine motion assist equipment for disabled hand in robotic rehabilitation system, J. Frankl. Inst. 348, 79–89 (2011)

    Article  MATH  Google Scholar 

  134. M. Mulas, M. Folgheraiter, G. Gini: An EMG-controlled exoskeleton for hand rehabilitation, Int. Conf. Rehabil. Robotics (2005) pp. 371–374

    Google Scholar 

  135. T. Kline, D. Kamper, B. Schmit: Control system for pneumatically controlled glove to assist in grasp activities, Int. Conf. Rehabil. Robotics (2005) pp. 78–81

    Google Scholar 

  136. B. Birch, E. Haslam, I. Heerah, N. Dechev, E. Park: Design of a continuous passive and active motion device for hand rehabilitation, IEEE 30th Annu. Int. Conf. Eng. Med. Biol. Soc. (2008) pp. 4306–4309

    Google Scholar 

  137. H. Yamaura, K. Matsushita, R. Kato, H. Yokoi: Development of hand rehabilitation system using wire-driven link mechanism for paralysis patients, IEEE Int. Conf. Robotics Biomim. (ROBIO) (2009) pp. 209–214

    Google Scholar 

  138. H. Taheri, J.B. Rowe, D. Gardner, V. Chan, D.J. Reinkensmeyer, E.T. Wolbrecht: Robot-assisted guitar hero for finger rehabilitation after stroke, IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. (2012) pp. 3911–3917

    Google Scholar 

  139. S. Balasubramanian, J. Klein, E. Burdet: Robot-assisted rehabilitation of hand function, Curr. Opin. Neurol. 23, 661–670 (2010)

    Article  Google Scholar 

  140. B.R. Brewer, M. Fagan, R.L. Klatzky, Y. Matsuoka: Perceptual limits for a robotic rehabilitation environment using visual feedback distortion, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 1–11 (2005)

    Article  Google Scholar 

  141. O. Lambercy, L. Dovat, H. Yun, S.K. Wee, C.W.K. Kuah, K.S.G. Chua, Z. Gassert, T.E. Milner, L.T. Chee, E. Burdet: Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: A pilot study, J. Neuroeng. Rehabil. 8(1), 63 (2011)

    Article  Google Scholar 

  142. S.P. Mazzoleni, M. Franceschini, S. Bigazzi, M.C. Carrozza, P. Dario, F. Posteraro: Effects of proximal and distal robot-assisted upper limb rehabilitation on chronic stroke recovery, NeuroRehabilitation 33(1), 33–39 (2013)

    Article  Google Scholar 

  143. T. Boonstra, H. Clairbois, A. Daffertshofer, J. Verbunt, B. van Dijk, P. Beek: MEG-compatible force sensor, J. Neurosci. Methods 144, 193–196 (2005)

    Article  Google Scholar 

  144. R. Gassert, R. Moser, E. Burdet, H. Bleuler: MRI/fMRI-compatible robotic system with force feedback for interaction with human motion, IEEE/ASME Trans. Mechatron. 11, 216–224 (2006)

    Article  Google Scholar 

  145. Z.J. Tang, S. Sugano, H. Iwata: Design of an MRI compatible robot for finger rehabilitation, Int. Conf. Mechatron. Autom. (ICMA) (2012) pp. 611–616

    Google Scholar 

  146. O. Unluhisarcikli, B. Weinberg, M. Sivak, A. Mirelman, P. Bonato, C. Mavroidis: A robotic hand rehabilitation system with interactive gaming using novel electro-rheological fluid based actuators, IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 1846–1851

    Google Scholar 

  147. A. Khanicheh, D. Mintzopoulos, B. Weinberg, A.A. Tzika, C. Mavroidis: MR_CHIROD v. 2: Magnetic resonance compatible smart hand rehabilitation device for brain imaging, IEEE Trans. Neural Syst. Rehabil. Eng. 16, 91–98 (2008)

    Article  Google Scholar 

  148. J. Izawa, T. Shimizu, T. Aodai, T. Kondo, H. Gomi, S. Toyama, K. Ito: MR compatible manipulandum with ultrasonic motor for fMRI studies, Proc. IEEE Int. Conf. Robotics Autom (ICRA) (2006) pp. 3850–3854

    Google Scholar 

  149. F. Sergi, H.I. Krebs, B. Groissier, A. Rykman, E. Guglielmelli, B.T. Volpe, J.D. Schaechter: Predicting efficacy of robot-aided rehabilitation in chronic stroke patients using an MRI-compatible robotic device, IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. (2011) pp. 7470–7473

    Google Scholar 

  150. E. Buch, C. Weber, L.G. Cohen, C. Brawn, M.A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, N. Birbaumer: Think to move: A neuromagnetic brain-computer interface (BCI) system for chronic stroke, Stroke 39(3), 910–917 (2008)

    Article  Google Scholar 

  151. E.T. Wolbrecht, V. Chan, D.J. Reinkensmeyer, J.E. Bobrow: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation, IEEE Trans. Neural Syst. Rehabil. Eng. 16, 286–297 (2008)

    Article  Google Scholar 

  152. J.L. Patton, M. Kovic, F.A. Mussa-Ivaldi: Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis, J. Rehabil. Res. Dev. 43, 643–656 (2006)

    Article  Google Scholar 

  153. R.G. Lovely, R.J. Gregor, R.R. Roy, V.R. Edgerton: Effects of training on the recovery of full weight-bearing stepping in the adult spinal cat, Exp. Neurol. 92, 421–435 (1986)

    Article  Google Scholar 

  154. H. Barbeau, S. Rossignol: Recovery of locomotion after chronic spinalization in the adult cat, Brain Res. 412, 84–95 (1987)

    Article  Google Scholar 

  155. M. Visintin, H. Barbeau, N. Korner-Bitensky, N. Mayo: A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation, Stroke 29, 1122–1128 (1998)

    Article  Google Scholar 

  156. S. Hesse, C. Bertelt, M. Jahnke, A. Schaffrin, P. Baake, M. Malezic, K.H. Mauritz: Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients, Stroke 26, 976–981 (1995)

    Article  Google Scholar 

  157. A. Wernig, A. Nanassy, S. Muller: Maintenance of locomotor abilities following Laufband (treadmill) therapy in para- and tetraplegic persons: Follow-up studies, Spinal Cord 36, 744–749 (1998)

    Article  Google Scholar 

  158. A.L. Behrman, S.J. Harkema: Locomotor training after human spinal cord injury: A series of case studies, Phys. Ther. 80, 688–700 (2000)

    Article  Google Scholar 

  159. H. Barbeau: Locomotor training in neurorehabilitation: Emerging rehabilitation concepts, Neurorehabil. Neural Repair 17, 3–11 (2003)

    Article  Google Scholar 

  160. B. Dobkin, D. Apple, H. Barbeau, M. Basso, A. Behrman, D. Deforge, J. Ditunno, G. Dudley, R. Elashoff, L. Fugate, S. Harkema, M. Saulino, M. Scott: Weight-supported treadmill vs. over-ground training for walking after acute incomplete SCI, Neurology 66, 484–493 (2006)

    Article  Google Scholar 

  161. T.G. Hornby: Clinical and quantitative evaluation of robotic-assisted treadmill walking to retrain ambulation after spinal cord injury, Top. Spinal Cord Inj. Rehabil. 11, 1–17 (2005)

    Article  Google Scholar 

  162. L. Nilsson, K. Fugl-Meyer, L. Kristensen, B. Sjölund, K. Sunnerhagen: Walking training of patients with hemiparesis at an early stage after stroke: A comparison of walking training on a treadmill with body weight support and walking training on the ground, Clin. Rehabil. 15, 515–527 (2001)

    Article  Google Scholar 

  163. C. Werner, A. Bardeleben, K. Mauritz, S. Kirker, S. Hesse: Treadmill training with partial body weight support and physiotherapy in stroke patients: A preliminary comparison, Eur. J. Neurol. 9, 639–644 (2002)

    Article  Google Scholar 

  164. S. Hesse, C. Werner, H. Seibel, S. von Frankenberg, E. Kappel, S. Kirker, M. Käding: Treadmill training with partial body-weight support after total hip arthroplasty: A randomized controlled trial, Arch. Phys. Med. Rehabil. 84, 1767–1773 (2003)

    Article  Google Scholar 

  165. T. Brown, J. Mount, B. Rouland, K. Kautz, R. Barnes, J. Kim: Body weight-supported treadmill training versus conventional gait training for people with chronic traumatic brain injury, J. Head. Trauma. Rehabil. 20, 402–415 (2005)

    Article  Google Scholar 

  166. P.W. Duncan, K.J. Sullivan, A.L. Behrman, S.P. Azen, S.S. Wu, S.E. Nadeau, B.H. Dobkin, D.K. Rose, J.K. Tilson, S. Cen, S.H. Hayden: Body-weight-supported treadmill rehabilitation after stroke, N. Engl. J. Med. 364, 2026–2036 (2011)

    Article  Google Scholar 

  167. S. Freivogel, J. Mehrholz, T. Husak-Sotomayor, D. Schmalohr: Gait training with the newly developed LokoHelp-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study, Brain Inj. 22, 625–632 (2008)

    Article  Google Scholar 

  168. Reha-Technology: http://www.rehatechnology.com/ (2012)

  169. C. Werner, S. Von Frankenberg, T. Treig, M. Konrad, S. Hesse: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: A randomized crossover study, Stroke 33, 2895–2901 (2002)

    Article  Google Scholar 

  170. M. Pohl, C. Werner, M. Holzgraefe, G. Kroczek, J. Mehrholz, I. Wingendorf, G. Hoölig, R. Koch, S. Hesse: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: A single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS), Clin. Rehabil. 21, 17–27 (2007)

    Article  Google Scholar 

  171. S. Freivogel, D. Schmalohr, J. Mehrholz: Improved walking ability and reduced therapeutic stress with an electromechanical gait device, J. Rehabil. Med. 41, 734–739 (2009)

    Article  Google Scholar 

  172. K.P. Westlake, C. Patten: Journal of neuroengineering and rehabilitation, J. Neuroeng. Rehabil. 6, 18 (2009)

    Article  Google Scholar 

  173. T.G. Hornby, D.D. Campbell, J.H. Kahn, T. Demott, J.L. Moore, H.R. Roth: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: A randomized controlled study, Stroke; J. Cereb. Circ. 39, 1786–1792 (2008)

    Article  Google Scholar 

  174. J. Hidler, D. Nichols, M. Pelliccio, K. Brady, D.D. Campbell, J.H. Kahn, T.G. Hornby: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke, Neurorehabil. Neural Repair 23, 5–13 (2009)

    Article  Google Scholar 

  175. M. Mihelj: Human arm kinematics for robot based rehabilitation, Robotica 24, 377–384 (2006)

    Article  Google Scholar 

  176. S. Hesse, C. Tomelleri, A. Bardeleben, C. Werner, A. Waldner: Robot-assisted practice of gait and stair climbing in nonambulatory stroke patients, J. Rehabil. Res. Dev. 49, 613–622 (2012)

    Article  Google Scholar 

  177. S. Hesse, C. Werner, A. Bardeleben: Electromechanical gait training with functional electrical stimulation: Case studies in spinal cord injury, Spinal Cord 42, 346–352 (2004)

    Article  Google Scholar 

  178. A. Picelli, C. Melotti, F. Origano, A. Waldner, A. Fiaschi, V. Santilli, N. Smania: Robot-assisted gait training in patients with parkinson disease a randomized controlled trial, Neurorehabil. Neural Repair 26, 353–361 (2012)

    Article  Google Scholar 

  179. H. Schmidt, S. Hesse, R. Bernhardt, J. Krüger: HapticWalker – A novel haptic foot device, ACM Trans. Appl. Percept. 2, 166–180 (2005)

    Article  Google Scholar 

  180. S. Jezernik, G. Colombo, M. Morari: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis, IEEE Trans. Robotics Autom. 20, 574–582 (2004)

    Article  Google Scholar 

  181. D. Reinkensmeyer, D. Aoyagi, J. Emken, J. Galvez, W. Ichinose, G. Kerdanyan, S. Maneekobkunwong, K. Minakata, J.A. Nessler, R. Weber, B.R. Roy, R. de Leon, J.E. Bobrow, S.J. Harkema, V.R. Edgerton: Tools for understanding and optimizing robotic gait training, J. Rehabil. Res. Dev. 43, 657–670 (2006)

    Article  Google Scholar 

  182. D. Surdilovic, R. Bernhardt: STRING-MAN: A new wire robot for gait rehabilitation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 2031–2036

    Google Scholar 

  183. J.F. Veneman, R. Ekkelenkamp, R. Kruidhof, F.C.T. van der Helm, H. van der Kooij: A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots, Int. J. Robotics Res. 25, 261–282 (2006)

    Article  Google Scholar 

  184. J.A. Galvez, D.J. Reinkensmeyer: Robotics for gait training after spinal cord injury, Top. Spinal Cord Inj. Rehabil. 11, 18–33 (2005)

    Article  Google Scholar 

  185. D. Aoyagi, W.E. Ichinose, S.J. Harkema, D.J. Reinkensmeyer, J.E. Bobrow: An assistive robotic device that can synchronize to the pelvic motion during human gait training, IEEE Int. Conf. Rehabil. Robotics (2005) pp. 565–568

    Google Scholar 

  186. S. Jezernik, R. Scharer, G. Colombo, M. Morari: Adaptive robotic rehabilitation of locomotion: A clinical study in spinally injured individuals, Spinal Cord 41, 657–666 (2003)

    Article  Google Scholar 

  187. D. Aoyagi: Ph.D. Thesis Ser. (Department of Mechanical and Aerospace Engineering, University of California at Irvine 2006)

    Google Scholar 

  188. University of Twente, The Netherlands: http://www.utwente.nl/ctw/bw/research/projects/lopes/

  189. J.F. Veneman, R. Kruidhof, E.E. Hekman, R. Ekkelenkamp, E.H. Van Asseldonk, H. van der Kooij: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation, IEEE Trans. Neural Syst. Rehabil. Eng. 15, 379–386 (2007)

    Article  Google Scholar 

  190. G. Pratt, M. Williamson, P. Dillworth, J. Pratt, K. Ulland, A. Wright: Stiffness isn't everything, 4th Int. Symp. Exp. Robotics (1995)

    Google Scholar 

  191. D. Accoto, F. Sergi, N. Tagliamonte, G. Carpino, A. Sudano, E. Guglielmelli: Robomorphism: A nonanthropomorphic wearable robot, IEEE Robotics Autom. Mag. 21(4), 45–55 (2014)

    Article  Google Scholar 

  192. E.H. Van Asseldonk, J.F. Veneman, R. Ekkelenkamp, J.H. Buurke, F.C. Van der Helm, H. van der Kooij: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control, IEEE Trans. Neural Syst. Rehabil. Eng. 16, 360–370 (2008)

    Article  Google Scholar 

  193. E. Van Asseldonk, R. Ekkelenkamp, J. Veneman, F. Van der Helm, H. Van der Kooij: Selective control of a subtask of walking in a robotic gait trainer (LOPES), IEEE Int. Conf. Rehabil. Robotics (2007) pp. 841–848

    Google Scholar 

  194. E.H. van Asseldonk, B. Koopman, J.H. Buurke, C.D. Simons, H. van der Kooij: Selective and adaptive robotic support of foot clearance for training stroke survivors with stiff knee gait, IEEE Int. Conf Rehabil. Robotics (2009) pp. 602–607

    Google Scholar 

  195. F. Sergi, D. Accoto, N.L. Tagliamonte, G. Carpino, E. Guglielmelli: A systematic graph-based method for the kinematic synthesis of non-anthropomorphic wearable robots for the lower limbs, Front. Mech. Eng. 6(1), 61–70 (2011)

    Google Scholar 

  196. F. Sergi, D. Accoto, N.L. Tagliamonte, G. Carpino, S. Galzerano, E. Guglielmelli: Kinematic synthesis, optimization and analysis of a non-anthropomorphic 2-DOFs wearable orthosis for gait assistance, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012)

    Google Scholar 

  197. N.L. Tagliamonte, D. Accoto, F. Sergi, A. Sudano, D. Formica, E. Guglielmelli: Muscular activity when walking in a non-anthropomorphic wearable robot, IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. (2014) pp. 3073–3076

    Google Scholar 

  198. D. Accoto, G. Carpino, F. Sergi, N.L. Tagliamonte, L. Zollo, E. Guglielmelli: Design and characterization of a novel high-power series elastic actuator for a lower limb robotic orthosis, Int. J. Adv. Robotics Syst. 10, 359 (2013)

    Article  Google Scholar 

  199. M. Peshkin, D.A. Brown, J.J. Santos-Munne, A. Makhlin, E. Lewis, J.E. Colgate, J. Patton, D. Schwandt: KineAssist: A robotic overground gait and balance training device, IEEE Int. Conf. Rehabil. Robotics (2005) pp. 241–246

    Google Scholar 

  200. HDT Global, USA: http://www.hdtglobal.com/services/robotics/medical/kineassist/

  201. Univ. of Delaware, USA: http://www.udel.edu/udmessenger/vol17no1/stories/robotic_exoskeleton.html

  202. D. Ferris: Powered lower limb orthoses for gait rehabilitation, Top. Spinal Cord Inj. Rehabil. 11, 34–49 (2005)

    Article  Google Scholar 

  203. J. Deutsch, J. Latonio, G. Burdea, R. Boian: Post-stroke rehabilitation with the Rutgers Ankle system – A case study, Presence 10, 416–430 (2001)

    Article  Google Scholar 

  204. S. Agrawal, A. Fattah: Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion, IEEE Trans. Neural Syst. Rehabil. Eng. 12, 157–165 (2004)

    Article  Google Scholar 

  205. S.K. Banala, S.K. Agrawal: Gait rehabilitation with an active leg orthosis, Proc. ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. (2005)

    Google Scholar 

  206. J. Kawamura, T. Ide, S. Hayashi, H. Ono, T. Honda: Automatic suspension device for gait training, Prosthet. Orthot. Int. 17, 120–125 (1993)

    Article  Google Scholar 

  207. S. Banala, S.H. Kim, S. Agrawal, J. Scholz: Robot assisted gait training with active leg exoskeleton (ALEX), IEEE Trans. Neural Syst. Rehabil. Eng. 17, 2–8 (2009)

    Article  Google Scholar 

  208. I. Díaz, J.J. Gil, E. Sánchez: Lower-limb robotic rehabilitation: Literature review and challenges, J. Robotics 2011, 759–764 (2011)

    Article  Google Scholar 

  209. R.F. Erlandson, P. deBear, K. Kristy, M. Dijkers, S. Wu: A robotic system to provide movement therapy, Proc. 5th Int. Serv. Robot Conf. (1990) pp. 7–15

    Google Scholar 

  210. M.J. Rosen: Telerehabilitation, NeuroRehabilitation 12, 11–26 (1999)

    Article  Google Scholar 

  211. J. Borenstein, I. Ulrich: The guidecane – A computerized travel aid for the active guidance of blind pedestrians, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1997) pp. 1283–1288

    Google Scholar 

  212. I. Ulrich, J. Borenstein: The guidecane-applying mobile robot technologies to assist the visually impaired, IEEE Trans. Syst. Man Cybern. 31(2), 131–136 (2001)

    Article  Google Scholar 

  213. L. Zollo, K. Wada, H. Van der Loos: Special issue on assistive robotics, IEEE Robotics Autom. Mag. 20, 16–19 (2013)

    Article  Google Scholar 

  214. A. Tapus, M. Mataric, B. Scassellati: Socially assistive robotics - The grand challenges in helping humans through social interaction, IEEE Robotics Autom. Mag. 14, 35–42 (2007)

    Article  Google Scholar 

  215. National Robotics Initiative: The realization of co-robots acting in direct support of individuals and groups, available online at http://www.nsf.gov/pubs/2012/nsf12607/nsf12607.htm (2012)

  216. C. Stanger, M. Cawley: Demographics of rehabilitation robotics users, Technol. Disabil. 5, 125–138 (1996)

    Google Scholar 

  217. J. Hammel: The role of assessment and evaluation in rehabilitation robotics research and development: Moving from concept to clinic to context, IEEE Trans. Rehabil. Eng. 3, 56–61 (1995)

    Article  Google Scholar 

  218. J.J. Wagner, H.F.M. Van der Loos, L.J. Leifer: Dual-character based user interface design for an assistive robot, IEEE Int. Workshop Robot Hum. Commun. (RO-MAN) (1998) pp. 101–106

    Google Scholar 

  219. H.F.M. Van der Loos, J. Hammel, D.S. Lees, D. Chang, I. Perkash: Field evaluation of a robot workstation for quadriplegic office workers, Eur. Rev. Biomed. Tech. 5, 317–319 (1990)

    Google Scholar 

  220. J.J. Wagner, H.F.M. Van der Loos, L.J. Leifer: Construction of social relationships between user and robot, Robotics Auton. Syst. 31, 185–191 (2000)

    Article  Google Scholar 

  221. M.J. Johnson, E. Guglielmelli, G.A. Di Lauro, C. Laschi, M.C. Carrozza, P. Dario: GIVING-A-HAND system: The development of a task-specific robot appliance. In: Advances in Rehabilitation Robotics, ed. by Z. Bien, D. Stefanov (Springer, Berlin, Heidelberg 2004) pp. 127–141

    Chapter  Google Scholar 

  222. S. Groothuis, S. Stramigioli, R. Carloni: Lending a helping hand: Towards novel assistive robotic arms, IEEE Robotics Autom. Mag. 20(1), 20–29 (2013)

    Article  Google Scholar 

  223. Kinova: JACO Arm user guide, available online at http://www.robotshop.com (2010)

  224. Assistive Innovations: iARM intelligent arm robot manipulator, available online at http://assistive-innovations.com (2010)

  225. W. Yoon: Robotic arm for persons with upper-limb DisAbilities (RAPUDA), AIST Today 36, 20 (2010)

    Google Scholar 

  226. T. Barrett Inc.: WAM Arm datasheet, available online at http://www.barrett.com (2012)

  227. Elumotion: Elumotion RT2-Arm, available online at http://www.elumotion.com (2012)

  228. G. Hirzinger, N. Sporer, A. Albu-Schaffer, M. Hahnle, R. Krenn, A. Pascucci, M. Schedl: DLR's torque-controlled light weight robot III–are we reaching the technological limits now?, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 1710–1716

    Google Scholar 

  229. H.F.M. Van der Loos, N. Ullrich, H. Kobayashi: Development of sensate and robotic bed technologies for vital signs monitoring and sleep quality improvement, Auton. Robots 15, 67–79 (2003)

    Article  Google Scholar 

  230. T. Sato, T. Harada, T. Mori: Environment-type robot system robotic room featured by behavior media, behavior contents, and behavior adaptation, IEEE/ASME Trans. Mechatron. 9, 529–534 (2004)

    Article  Google Scholar 

  231. G. Romer, H.J.A. Stuyt, A. Peters: Cost-savings and economic benefits due to the assistive robotic manipulator (ARM), IEEE Int. Conf. Rehabil. Robotics (2005) pp. 201–204

    Google Scholar 

  232. M. Hillman, K. Hagan, S. Hagan, J. Jepson, R. Orpwood: The Weston wheelchair mounted assistive robot – the design story, Robotica 20(2), 125–132 (2002)

    Article  Google Scholar 

  233. B.V. FOCAL-Meditech: Personal Robot Bridgit, available online at http://www.focalmeditech.nl (2012)

  234. J.F. Engelberger: Health-care robotics goes commercial: The HelpMate experience, Robotica 11, 517–524 (1993)

    Article  Google Scholar 

  235. P. Dario, C. Laschi, E. Guglielmelli: Design and experiments on a personal robotic assistant, Adv. Robotics 13, 153–169 (1999)

    Article  Google Scholar 

  236. European Union: Robot-Era: Implementation and integration of advanced robotic systems, available online at http://www.robot-era.eu/robotera (2012)

  237. B. Graf, M. Hans, R.D. Schraft: Care-O-bot II — Development of a next generation robotic home assistant, Auton. Robots 16, 193–205 (2004)

    Article  Google Scholar 

  238. T.L. Chen, M. Ciocarlie, S. Cousins, P. Grice, K. Hawkins, K. Hsiao, C.C. Kemp, C.-H. King, D.A. Lazewatsky, H. Ngyen, A. Paepcke, C. Pantofaru, W.D. Smart, L. Takayama: Robots for humanity: A case study in assistive mobile manipulation, IEEE Robotics Autom. Mag. 20(1), 30–39 (2013)

    Article  Google Scholar 

  239. P. Dario, E. Guglielmelli, C. Laschi, G. Teti: MOVAID: A personal robot in everyday life of disabled and elderly people, Technol. Disabil. 10, 77–93 (1999)

    Article  Google Scholar 

  240. R.C. Simpson: Smart wheelchairs: A literature review, J. Rehabil. Res. Dev. 42, 423–436 (2004)

    Article  Google Scholar 

  241. S.P. Levine, D.A. Bell, L.A. Jaros, R.C. Simpson, Y. Koren, J. Borenstein: The navchair assistive wheelchair navigation system, IEEE Trans. Rehabil. Eng. E 7, 443–451 (1999)

    Article  Google Scholar 

  242. H. Yanco: Wheelesley: A robotic wheelchair system: Indoor navigation and user interface, Lect. Notes Comput. Sci. 1458, 256–268 (1998)

    Article  Google Scholar 

  243. P. Encarnação: Understanding and improving power mobility use among older adults: An overview of the canwheel program of research, Assist. Technol. Res. Pract. 33, 210 (2013)

    Google Scholar 

  244. P. Viswanathan, A.K. Mackworth, J.J. Little, J. Hoey, A. Mihailidis: NOAH for wheelchair users with cognitive impairment: Navigation and obstacle avoidance help, AAAI Fall Symp. AI Eldercare New Solut. Old Prob. (2008) pp. 150–152

    Google Scholar 

  245. T.-V. How, R.H. Wang, A. Mihailidis: Evaluation of an intelligent wheelchair system for older adults with cognitive impairments, J. Neuroeng. Rehabil. 10, 90 (2013)

    Article  Google Scholar 

  246. R.A.M. Braga, M. Petry, L.P. Reis, A.P. Moreira: Intellwheels: Modular development platform for intelligent wheelchairs, J. Rehabil. Res. Dev. 48(9), 1061–1076 (2011)

    Article  Google Scholar 

  247. B.M. Faria, L.P. Reis, N. Lau: Adapted control methods for cerebral palsy users of an intelligent wheelchair, J. Intell. Robotics Syst. 77(2), 1–14 (2014)

    Google Scholar 

  248. M. Bailey, A. Chanler, B. Maxwell, M. Micire, K. Tsui, H. Yanco: Development of vision-based navigation for a robotic wheelchair, IEEE Int. Conf. Rehabil. Robotics (2007) pp. 951–957

    Google Scholar 

  249. D. Ding, R.A. Cooper: Electric powered wheelchairs, IEEE Control Syst. 25(2), 22–34 (2005)

    Article  Google Scholar 

  250. K.M. Tsui, H.A. Yanco, D.J. Feil-Seifer, M.J. Matarić: Survey of domain-specific performance measures in assistive robotic technology, Proc. ACM 8th Workshop Perform. Metr. Intell. Syst. (2008) pp. 116–123

    Google Scholar 

  251. M.A. Peshkin, J.E. Colgate, W. Wannasuphoprasit, C.A. Moore, R.B. Gillerpie, P. Akella: Cobot architecture, IEEE Trans. Robotics Autom. 17(4), 377–390 (2001)

    Article  Google Scholar 

  252. J. Colgate, J. Edward, M.A. Peshkin, W. Wannasuphoprasit: Cobots: Robots for Collaboration with Human Operators (Northwestern University, Evanston 1996)

    Google Scholar 

  253. C.A. Moore, M.A. Peshkin, J.E. Colgate: Cobot implementation of virtual paths and 3D virtual surfaces, IEEE Trans. Robotics Autom. 19(2), 347–351 (2003)

    Article  Google Scholar 

  254. G. Lacey, S. MacNamara: User involvement in the design and evaluation of a smart mobility aid, J. Rehabil. Res. Dev. 37(6), 709–723 (2000)

    Google Scholar 

  255. A.M. Dollar, H. Herr: Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art, IEEE Trans. Robotics 24, 144–158 (2008)

    Article  Google Scholar 

  256. H. Herr: Exoskeletons and orthoses: Classification, design challenges and future directions, J. Neuroeng. Rehabil. 6, 21 (2009)

    Article  Google Scholar 

  257. J.L. Pons: Rehabilitation exoskeletal robotics, IEEE Eng. Med. Biol. Mag. 29, 57–63 (2010)

    Article  Google Scholar 

  258. E. Strickland: Good-bye, wheelchair, hello, exoskeleton, http://spectrum.ieee.org/biomedical/bionics/goodbye-wheelchair-hello-exoskeleton

  259. T.A. Swift, K.A. Strausser, A. Zoss, H. Kazerooni: Control and experimental results for post stroke gait rehabilitation with a prototype mobile medical exoskeleton, ASME Dyn. Syst. Control Conf. (2010)

    Google Scholar 

  260. K.A. Strausser, T.A. Swift, A. Zoss, H. Kazerooni: Prototype medical exoskeleton for paraplegic mobility: First experimental results, ASME Dyn. Syst. Control Conf. 2010, Cambridge (2010)

    Google Scholar 

  261. Argo-Medical: http://www.rewalk.com/ (2012)

  262. T. Engineer: Rewalk is a new exoskeleton that lets paralysed people walk again, available online at http://wonderfulengineering.com/rewalk-is-a-new-exoskeleton-that-lets-paralysed-people-walk-again/

  263. H. Kawamoto, Y. Sankai: Power assist system HAL3 for gait disorder person, Lect. Notes Comput. Sci. 2398, 196–203 (2002)

    Article  Google Scholar 

  264. K. Suzuki, Y. Kawamura, T. Hayashi, T. Sakurai, Y. Hasegawa, Y. Sankai: Intention-based walking support for paraplegia patient, IEEE Int. Conf. Syst. Man Cybern., Vol. 3 (2006) pp. 2707–2713

    Google Scholar 

  265. R. Farris, H. Quintero, M. Goldfarb: Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals, IEEE Trans. Neural Syst. Rehabil. Eng. 19(6), 652–659 (2011)

    Article  Google Scholar 

  266. Rex-Bionics: http://www.rexbionics.com (2012)

  267. R.F.F. Weir: Design of artificial arms and hands for prosthetic applications. In: Standard Handbook of Biomedical Engineering and Design, ed. by M. Kutz (McGraw-Hill, New York 2003) pp. 32.1–32.61

    Google Scholar 

  268. T.A. Kuiken, G.A. Dumanian, R.D. Lipschutz, L.A. Miller, K.A. Stubblefield: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee, Prosthet. Orthot. Int. 28(3), 245–253 (2004)

    Article  Google Scholar 

  269. T.A. Kuiken, L.A. Miller, R.D. Lipschutz, B.A. Lock, K. Stubblefield, P.D. Marasco, P. Zhou, G.A. Dumanian: Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study, Lancet 369, 371–380 (2007)

    Article  Google Scholar 

  270. G.S. Dhillon, K.W. Horch: Direct neural sensory feedback and control of a prosthetic arm, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 468–472 (2005)

    Article  Google Scholar 

  271. K.P. Hoffmann, K.P. Koch, T. Doerge, S. Micera: New technologies in manufacturing of different implantable microelectrodes as an interface to the peripheral nervous system, IEEE/RAS-EMBS Int. Conf. Biomed. Robotics Biomech. (BioRob) (2006) pp. 414–419

    Google Scholar 

  272. P.M. Rossini, S. Micera, A. Benvenuto, J. Carpaneto, G. Cavallo, L. Citi, C. Cipriani, L. Denaro, V. Denaro, G. Di Pino, F. Ferrari, E. Guglielmelli, K.-P. Hoffmann, S. Raspopovic, J. Rigosa, L. Rossini, M. Tombini, P. Dario: Double nerve intraneural interface implant on a human amputee for robotic hand control, Clin. Neurophys. 121, 777–783 (2010)

    Article  Google Scholar 

  273. S. Raspopovic, M. Capogrosso, F.M. Petrini, M. Bonizzato, J. Rigosa, G. Di Pino, I. Carpanedo, M. Controzzi, T. Boretius, E. Fernandez, G. Granata, C.M. Oddo, L. Citi, A.L. Ciancio, C. Cipriani, M.C. Carrozza, W. Jensen, E. Guglielmelli, T. Stieglitz, P.M. Rossini, S. Mieera: Restoring natural sensory feedback in real-time bidirectional hand prostheses, Sci. Transl. Med. 6(222), 222ra19 (2014)

    Article  Google Scholar 

  274. S.G. Meek, S.C. Jacobsen, P.P. Goulding: Extended physiologic taction: Design and evaluation of a proportional force feedback system. J. Rehabil. Res, Dev. 26(3), 53–62 (1989)

    Google Scholar 

  275. H.M. Herr, J.A. Weber, S.K. Au, B.W. Deffenbaugh, L.H. Magnusson, A.G. Hofmann, B.B. Aisen: Powered ankle food prothesis, US Patent Ser 8512415 B2 (2013)

    Google Scholar 

  276. Nature 442 (7099): http://www.nature.com/nature/journal/v442/n7099/index.html, 109--222, 2006

  277. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghve: Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature 442, 164–171 (2006)

    Article  Google Scholar 

  278. C. Babiloni, V. Pizzella, C.D. Gratta, A. Ferretti, G.L. Romani: Fundamentals of electroencefalography, magnetoencefalography, and functional magnetic resonance imaging, Int. Rev. Neurobiol. 86, 67–80 (2009)

    Article  Google Scholar 

  279. G.E. Loeb, F.J. Richmond, L.L. Baker: The BION devices: Injectable interfaces with peripheral nerves and muscles, Neurosurg. Focus 20, E2 (2006)

    Article  Google Scholar 

  280. R.B. Stein, V. Mushahwar: Reanimating limbs after injury or disease, Trends Neurosci. 28, 518–524 (2005)

    Article  Google Scholar 

  281. P.F. Pasquina, P.R. Bryant, M.E. Huang, T.L. Roberts, V.S. Nelson, K.M. Flood: Advances in amputee care, Arch. Phys. Med. Rehabil. 87, S34–S43 (2006)

    Article  Google Scholar 

  282. H. Vallery, J. Veneman, E. van Asseldonk, R. Ekkelenkamp, M. Buss, H. van der Kooij: Compliant actuation of rehabilitation robots: Benefits and limitations of series elastic actuators, IEEE Robotics Autom. Mag. 15, 60–69 (2008)

    Article  Google Scholar 

  283. A. Basmajian, E.E. Blanco, H.H. Asada: The marionette bed: Automated rolling and repositioning of bedridden patients, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 1422–1427

    Google Scholar 

  284. F. Kasagami, H. Wang, I. Sakuma, M. Araya, T. Dohi: Development of a robot to assist patient transfer, IEEE Int. Conf. Syst. Man Cybern., Vol. 5 (2004) pp. 4383–4388

    Google Scholar 

  285. G.D. Abowd, M. Ebling, G. Hung, L. Hui, H.W. Gellersen: Context-aware computing, IEEE Pervasive Comput. 1, 22 (2002)

    Article  Google Scholar 

  286. M.J. Covington, W. Long, S. Srinivasan, A.K. Dev, M. Ahamad, G.D. Abowd: Securing Context-Aware Applications Using Environment Roles (Georgia Institute of Technology, Atlanta 2001)

    Book  Google Scholar 

  287. R. Sanchez, D.E.R.I.C. Reinkensmeyer, P. Shah, J. Liu, S. Rao, R. Smith, J. Bobrow: Monitoring functional arm movement for home-based therapy after stroke, IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. Chicago, Vol. 2 (2004) pp. 4787–4790

    Google Scholar 

  288. S.J. Housman, V. Le, T. Rahman, R.J. Sanchez, D.J. Reinkensmeyer: Arm-training with T-WREX after chronic stroke: Preliminary results of a randomized controlled trial, IEEE Int. Conf. Rehabil. Robotics (2007) pp. 562–568

    Google Scholar 

  289. A.J. Butler, C. Bay, D. Wu, K.M. Richards, S. Buchanan: Expanding tele-rehabilitation of stroke through in-home robot-assisted therapy, Int. J. Phys. Med. Rehabil. 2(184), 2 (2014)

    Google Scholar 

  290. S.M. Linder, A.B. Rosenfeldt, R.C. Bay, K. Sahu, S.L. Wolf, J.L. Alberts: Improving quality of life and depression after stroke through telerehabilitation, Am. J. Occup. Ther. 69(2), 6902290020 (2015)

    Article  Google Scholar 

  291. F.H. Wilhelm, W.T. Roth: Ambulatory assessment of clinical anxiety. In: Ambulatory Assessment: Computer-Assisted Psychological and Psychophysiological Methods in Monitoring and Field Studies, ed. by J. Fahrenberg, M. Myrteck (Hogrefe Huber, Seattle 1996) pp. 317–345

    Google Scholar 

  292. E. Dishman: Inventing wellness systems for aging in place, Computer 37, 34 (2004)

    Article  Google Scholar 

  293. H. Zhou, H. Hu: Human motion tracking for rehabilitation—A survey, Biomed. Sig. Process. Control 3, 1–18 (2008)

    Article  Google Scholar 

  294. E. Papaleo, L. Zollo, S. Sterzi, E. Guglielmelli: An inverse kinematics algorithm for upper-limb joint reconstruction during robot-aided motor therapy, IEEE/RAS-EMBS Int. Conf. Biomed. Robotics Biomechatron. (BioRob) (2012) pp. 1983–1988

    Google Scholar 

  295. M. Zinn, B. Roth, O. Khatib, J. Salisbury: A new actuation approach for human friendly robot design, Int. J. Robotics Res. 23, 379–398 (2004)

    Article  Google Scholar 

  296. M. Nokata, K. Ikuta, H. Ishii: Safety evaluation method for rehabilitation robotics. In: Advances in Rehabilitation Robotics, ed. by Z. Bien, D. Stefanov (Springer, Berlin, Heidelberg 2004) pp. 187–198

    Chapter  Google Scholar 

  297. N. Tejima: Risk reduction mechanisms for safe rehabilitation robots. In: Advances in Rehabilitation Robotics, ed. by Z. Bien, D. Stefanov (Springer, Berlin, Heidelberg 2004) pp. 187–198

    Google Scholar 

  298. H.F.M. Van der Loos: Design and engineering ethics considerations for neurotechnologies, Camb. Quar. Heal. Ethics 16, 305–309 (2007)

    Google Scholar 

  299. G. Veruggio: The Roboethics Roadmap, available online at http://www.roboethics.org/site/modules/mydownloads/visit.php?cid=1&lid=37 (2007)

  300. J.F. Engelberger: Robotics in Service (MIT Press, Cambridge 1989)

    Book  Google Scholar 

  301. G. Colombo, M. Jorg, V. Dietz: Driven gait orthosis to do locomotor training of paraplegic patients, IEEE Annu. Int. Conf. Eng. Med. Biol. Soc., Vol. 4 (2000) pp. 3159–3163

    Google Scholar 

  302. I.T. Lott, E. Doran, D.M. Walsh, M. Hill: Telemedicine, dementia and Down syndrome: Implications for Alzheimer disease, Alzheimer's Dement. 2, 179–184 (2006)

    Article  Google Scholar 

  303. D. Reinkensmeyer, P. Lum, J. Winters: Emerging technologies for improving access to movement therapy following neurologic injury. In: Emerging and Accessible Telecommunications, Information and Healthcare Technologies: Engineering Challenges in Enabling Universal Access, ed. by J. Winters, C. Robinson, R. Simpson, G. Vanderheiden (Rehabiltitation Eng. Soc. North Am., Arlington 2002) pp. 136–150

    Google Scholar 

  304. M. Lotze, C. Braun, N. Birbaumer, S. Anders, L.G. Cohen: Motor learning elicited by voluntary drive, Brain 126, 866–872 (2003)

    Article  Google Scholar 

  305. J.E. Speich, J. Rosen: Medical robotics. In: Encyclopedia of Biomaterials and Biomedical Engineering, ed. by G.E. Wnek, G.L. Bowlin (Marcel Dekker, New York 2004)

    Google Scholar 

  306. D.J. Reinkensmeyer, J.L. Emken, S.C. Cramer: Robotics, motor learning, and neurologic recovery, Annu. Rev. Biomed. Eng. 6, 497–525 (2004)

    Article  Google Scholar 

  307. M. Oishi, I. Mitchell, H. Van der Loos: Design and Use of Assistive Technology (Springer, Berlin, Heidelberg 2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.F. Machiel Van der Loos .

Editor information

Editors and Affiliations

Video-References

Video-References

:

The WREX exoskeleton available from http://handbookofrobotics.org/view-chapter/64/videodetails/499

:

MIT Manus robotic therapy robot and other robots from the MIT group available from http://handbookofrobotics.org/view-chapter/64/videodetails/496

:

MANUS assistive robot available from http://handbookofrobotics.org/view-chapter/64/videodetails/500

:

The ArmeoSpring therapy exoskeleton available from http://handbookofrobotics.org/view-chapter/64/videodetails/502

:

Lokomat available from http://handbookofrobotics.org/view-chapter/64/videodetails/503

:

Gait Trainer GT 1 available from http://handbookofrobotics.org/view-chapter/64/videodetails/504

:

Kineassist available from http://handbookofrobotics.org/view-chapter/64/videodetails/505

:

Ekso available from http://handbookofrobotics.org/view-chapter/64/videodetails/507

:

ReWalk available from http://handbookofrobotics.org/view-chapter/64/videodetails/508

:

HAL available from http://handbookofrobotics.org/view-chapter/64/videodetails/509

:

Indego available from http://handbookofrobotics.org/view-chapter/64/videodetails/510

:

REX available from http://handbookofrobotics.org/view-chapter/64/videodetails/511

:

Targetted reinnervation and the DEKA arm available from http://handbookofrobotics.org/view-chapter/64/videodetails/513

:

PAM available from http://handbookofrobotics.org/view-chapter/64/videodetails/515

:

The Arm Guide available from http://handbookofrobotics.org/view-chapter/64/videodetails/494

:

ARMin plus HandSOME robotic therapy system available from http://handbookofrobotics.org/view-chapter/64/videodetails/497

:

BONES and SUE exoskeletons for robotic therapy available from http://handbookofrobotics.org/view-chapter/64/videodetails/498

:

The MIME rehabilitation therapy robot available from http://handbookofrobotics.org/view-chapter/64/videodetails/495

:

Handsome exoskeleton available from http://handbookofrobotics.org/view-chapter/64/videodetails/568

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van der Loos, H.M., Reinkensmeyer, D.J., Guglielmelli, E. (2016). Rehabilitation and Health Care Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics