Skip to main content

Introduction to Ionic Liquids

  • Chapter
  • First Online:
Dielectric Properties of Ionic Liquids

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

Ionic liquids and polymerized ionic liquids possess a high application potential in synthesis, separation processes, and in processes relating to transport and storage of energy. Therefore, this introduction discusses synthetic ways to obtain ionic liquids as well as selected properties of ionic liquids. Knowledge of chemical reactions occurring during ionic liquid synthesis including purification procedures gives an insight into possible impurities, which may remain after the manufacturing process. The liquid range of ionic liquids with the glass transition temperature or the melting point as lower limit on the one hand and temperatures where weight loss is higher than 0.5 wt% during thermal treatment as possible upper limit is important for both investigation of ionic liquids as well as their application. A brief discussion of selected physical properties, such as viscosity, density, and polarity of ionic liquids should give a first impression about the broad variety of ionic liquid properties that are discussed in more detail in the following chapters. Furthermore, discussion of both polymerization of ionic liquid monomers using different polymerization mechanisms and selected properties of the polymer materials obtained will complete this introduction. The significant increase of the glass transition temperature of polymerized aprotic ionic liquids caused by polymerization of aprotic ionic liquid monomers exhibits differences in the properties between ionic liquids and polymerized ionic liquids .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a general procedure for synthesis of the 1-alkyl-3-methylimidazolium tosylates a mixture of 1-methylimidazole dissolved in dry acetonitrile was slowly dropped into a stirred solution of alkyltosylate dissolved in acetonitrile at 5 °C. The mole ratio was 1.2 for 1-methylimidazole to the alkyltosylate. The resulting mixture was further stirred during heating up to room temperature for 1 h and then refluxing at 70 °C for 5 h. After the reaction was complete, acetonitrile was removed under vacuo. The residue was washed several times with ethyl acetate to remove the remaining excess of 1-methylimidazole. The crystalline product was heated in fresh dry ethyl acetate up to the boiling point of the solvent. Crystallization of the 1-alkyl-3-methylimidazolium tosylates occurred again after cooling to room temperature. Isolation of the crystalline material and drying under vacuo resulted in halide free 1-alkyl-3-methylimidazolium tosylates.

References

  1. Swinkels DAJ (1971) Molten salt batteries and fuel cells. In: Braunstein J, Mamantov G, Smith GP (eds) Advances in molten salts chemistry. Plenum Press, New York, pp 165–223

    Chapter  Google Scholar 

  2. Wasserscheid P, Welton T (eds) (2003) Ionic liquid in synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  3. Wilkes JS, Levisky JA, Wilson RA, Hussy CL (1982) Dialkylimidazolium Chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg Chem 21:1263–1264

    Article  CAS  Google Scholar 

  4. Cooper EI, O’Sullivan EJM (1992) New, stable, ambient-temperature molten salts. Electrochem Proc 386–396

    Google Scholar 

  5. Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  Google Scholar 

  6. Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Sci 405–422

    Google Scholar 

  7. Ohno H (ed) (2005) Electrochemical aspects of ionic liquids. Wiley-Interscience, Hoboken

    Google Scholar 

  8. Endres F, Abbott AP, MacFarlane DR (eds) (2008) Electrodeposition from ionic liquids. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  9. Torriero AAJ (ed) (2015) Electrochemistry in ionic liquids. Springer International Publishing, Switzerland

    Google Scholar 

  10. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:22238–22264

    Article  CAS  Google Scholar 

  11. Freudenmann D, Wolf S, Wolff M, Feldmann C (2011) Ionic liquids: new perspectives for inorganic synthesis. Angew Chem Int Ed 50(47):11050–11060

    Article  CAS  Google Scholar 

  12. Zhen W, Li D, Guo W (2015) Applications of Ionic Liquids (ILs) in synthesis of inorganic nanomaterials. In: Handy S (ed) Materials science fluids “Ionic Liquids—current state of the art. INTECH open science 2015, cdn.intechopen.com, http://dx.doi.org/10.5772/59048

  13. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionische Flüssigkeiten für die Synthese funktioneller Nanopartikel und anderer anorganischer Nanostrukturen. Angew Chem 116:5096–5100

    Article  Google Scholar 

  14. Zhou Y, Antonietti M (2003) Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. J Am Chem Soc 125:14960–14961

    Article  CAS  Google Scholar 

  15. Dupont J, Itoh T, Lozano P, Malhotra SV (eds) (2015) Environmentally friendly syntheses using ionic liquids. In: Cann MC (series ed) Sustainability: contributions through science and technology. CRC Press, Taylor & Francis Group, Boca Raton, London

    Google Scholar 

  16. Muthyala MK, Velisetti K, Parang K, Kumar A (2014) Advances in functionalized ionic liquids as reagents and scavengers in organic synthesis. Current Org Chem 18:2530–2554

    Article  CAS  Google Scholar 

  17. Kuchenbuch A, Giernoth R (2015) Ionic liquids beyond simple solvents: glimpses at the state of the art in organic chemistry. Chem Open 4:677–681

    CAS  Google Scholar 

  18. Pâvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665

    Article  CAS  Google Scholar 

  19. Kubisa P (2004) Application of ionic liquids as solvents for polymerization processes. Prog Polym Sci 29:3–12

    Article  CAS  Google Scholar 

  20. Brazel CS, Rogers RD (eds) (2005) Ionic liquids in polymer systems: solvents, additives, and novel applications. ACS Symp Ser 913

    Google Scholar 

  21. Kubisa P (2009) Ionic liquids as solvents for polymerization processes—Progress and challenges. Prog Polym Sci 34:1333–1347

    Article  CAS  Google Scholar 

  22. Strehmel V (2011) Ionische Flüssigkeiten in der Polymersynthese. Chem Ing Tech 83(9):1443–1453

    Article  CAS  Google Scholar 

  23. Duchet-Rumeau M, Gérard JF, Galli G (eds) (2014) Macromol Symp Spec Issue Polym Ionic Liquids 342

    Google Scholar 

  24. Lozano P, De Diego T, Iborra JL (2010) Biocatalytic processes using ionic liquids and supercritical carbon dioxide, Part 3. In: Biocatalysis. Wiley VCH

    Google Scholar 

  25. Habulin M, Primozic M, Knez Z (2011) Application of ionic liquids in biocatalysis. In: Kokorin A (ed) Ionic liquids: applications and perspectives. InTech Europe, Chap 19, www.interchopen.com

  26. Tavares APM, Rodriguez O, Macedo EA (2013) New generations of ionic liquids applied to enzymatic biocatalysis. In: Kadowaka J (ed)  Ionic liquids—new aspects for the future InTech, Chap 20, www.interchopen.com

  27. Stepinski DC, Jensen MP, Dzielawa JA, Dietz ML (2005) Synergistic effects in the facilitated transfer of metal ionis into room-temperature ionic liquids. Green Chem 7:151–158

    Article  CAS  Google Scholar 

  28. Berthod A, Ruiz-Angel MJ, Huguet S (2005) Nonmolecular solvents in separation methods: dual nature of room temperature ionic liquids. Anal Chem 77:4071–4080

    Article  CAS  Google Scholar 

  29. Anastas PT, Wasserscheid P, Stark A (eds) (2010) Handbook of green chemistry. Ionic Liquids 6. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  30. Rodríguez H (ed) (2016) Green chemistry and sustainable technology, ionic liquids for better separation processes. Springer, Berlin

    Google Scholar 

  31. Sun X, Juo H, Dai S (2012) Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128

    Article  CAS  Google Scholar 

  32. Rogers RD, Seddon KR (eds) (2003) Ionic liquids as green solvents, progress and prospects. ACS Symposium Series 856. American Chemical Society, Washington, DC

    Google Scholar 

  33. Rogers RD, Seddon KR (eds) (2002) Ionic liquids, industrial applications for green chemistry. ACS Symposium Series 818. American Chemical Society, Washington, DC

    Google Scholar 

  34. Wilkes JS (2002) A short history of ionic liquids—From molten salts to neoteric solvents. Green Chem 4:73–80

    Article  CAS  Google Scholar 

  35. Holbrey JD, Seddon KR (1999) The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans 2133–2139

    Google Scholar 

  36. Zhang S, Sun N, He X, Lu X, Zhang X (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35(4):1475–1517

    Article  CAS  Google Scholar 

  37. Seddon K (2008) Definition of ionic liquids given at the Bunsen Discussion meeting in Clausthal-Zellerfeld, 23–25 Nov 2008

    Google Scholar 

  38. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237

    Article  CAS  Google Scholar 

  39. Fukaya Y, Iizuka Y, Sekikawa K, Ohno H (2007) Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem 9:1155–1157

    Article  CAS  Google Scholar 

  40. Winther-Jensen O, Vijayaraghavan R, Sun J, Winther-Jensen B, MacFarlane DR (2009) Self polymerizing ionic liquid gel. Chem Commun 3041–3043

    Google Scholar 

  41. Sundar DS, Vijayaraghavan R, Subramaniam J, Surianarayanan M, Mandal AB (2011) Role of choline formate ionic liquid in the polymerization of vinyl and methacrylic monomers. J Appl Polym Sci 120:3733–3739

    Article  CAS  Google Scholar 

  42. Aparicio S, Atilhan M (2012) A Computational study on choline benzoate and choline salicylate ionic liquids in the pure state and after CO2 adsorption. J Phys Chem B 116:9171–9185

    Article  CAS  Google Scholar 

  43. Aparicio S, Atilhan M (2012) Choline-based ionic liquids on graphite surfaces and carbon nanotubes solvation: a molecular dynamics study. J Phys Chem C 116:12055–12065

    Article  CAS  Google Scholar 

  44. Carlisle TK, Bara JE, Gabriel CJ, Noble RD, Gin DL (2008) Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach. Ind Eng Chem Res 47:7005–7012

    Article  CAS  Google Scholar 

  45. Hirao M, Ito-Akita K, Ohno H (2000) Polymerization of molten salt monomers having a phenylimidazolium group. Polym Adv Technol 11:534–538

    Article  CAS  Google Scholar 

  46. Nakajima H, Ohno H (2005) Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 46:11499–11504

    Article  CAS  Google Scholar 

  47. Ohno H (2007) Design of ion conductive polymers based on ionic liquids. Macromol Symp 249–250:551–556

    Article  CAS  Google Scholar 

  48. Cardiano P, Mineo PG, Neri F, Schiavo SL, Piraino P (2008) A new application of ionic liquids: hydrophobic properties of tetraalkylammonium-based poly(ionic liquid)s. J Mater Chem 18:1253–1260

    Article  CAS  Google Scholar 

  49. Mori H, Yahagi M, Endo T (2009) RAFT Polymerization of N-vinylimidazolium salts and synthesis of thermoresponsive ionic liquid block copolymers. Macromolecules 42:8082–8092

    Article  CAS  Google Scholar 

  50. Shaplov AS, Goujon L, Vidal F, Lozinskaya EI, Meyer F, Malyshkina IA, Chevrot C, Teyssie D, Odinets IL, Vygodskii YS (2009) Ionic IPNs as novel candidates for highly conductive solid polymer electrolytes. J Polym Sci A Chem Ed 47:4245–4266

    Article  CAS  Google Scholar 

  51. Nakamura K, Saiwaki T, Fukao K (2010) Dielectric relaxation behavior of polymerized ionic liquid. Macromolecules 43:6092–6098

    Article  CAS  Google Scholar 

  52. Becht GA, Lee S, Seifert S, Firestone MA (2010) Solvent tunable optical properties of a polymerized vinyl- and thienyl-substituted ionic liquid. J Phys Chem B 114:14703–14711

    Article  CAS  Google Scholar 

  53. Sangoro JR, Iacob C, Naumov S, Valiullin R, Rexhausen H, Hunger J, Buchner R, Strehmel V, Kärger J, Kremer F (2011) Diffusion in ionic liquids: the interplay between molecular structure and dynamics. Soft Matter 7:1678–1681

    Google Scholar 

  54. Wojnarowska Z, Knapik J, Diaz M, Ortiz A, Ortiz I, Paluch M (2014) Conductivity mechanism in polymerized imidazolium-based protic ionic liquid [HSO3–BVIm][OTf]: dielectric relaxation studies. Macromolecules 47:4056–4065

    Article  CAS  Google Scholar 

  55. Pinaud J, Fèvre M, Coupillaud P, Vignolle J, Taton D (2011) Synthesis of 1-Vinyl-3-ethylimidazolium-based ionic liquid (Co)polymers by cobalt-mediated radical polymerization. Macromolecules 44:6397–6404

    Article  CAS  Google Scholar 

  56. Nakamura K, Saiwaki T, Fukao K, Inoue T (2011) Viscoelastic behavior of the Polymerized Ionic Liquid Poly(1-ethyl-3-vinylimidazolium bis(trifluoromethanesulfonylimide)). Macromolecures 44:7719–7726

    Article  CAS  Google Scholar 

  57. González-Álvarez J, Blanco-Gomis D, Arias-Abrodo P, Díaz-Llorente D, Ríos-Lombardía N, Busto E, Gotor-Fernández V, Gutiérrez-Álvarez MD (2012) Polymeric imidazolium ionic liquids as valuable stationary phases in gas chromatography: chemical synthesis and full characterization. Anal Chim Acta 721:173–181

    Article  CAS  Google Scholar 

  58. Nakamura K, Fukao K, Inoue T (2012) Dielectric relaxation and viscoelastic behavior of polymerized ionic liquids with various counteranions. Macromolecules 45:3850–3858

    Article  CAS  Google Scholar 

  59. He H, Zhong M, Adzima B, Luebke D, Nulwala H, Matyjaszewski K (2013) A simple and universal gel permeation chromatography technique for precise molecular weight characterization of well-defined poly(ionic liquid)s. J Am Chem Soc 135:4227–4230

    Article  CAS  Google Scholar 

  60. Smith TW, Zhao M, Yang F, Smith D, Cebe P (2013) Imidazole polymers derived from ionic liquid 4-vinylimidazolium monomers: their synthesis and thermal and dielectric properties. Macromolecules 46:1133–1143

    Article  CAS  Google Scholar 

  61. Carrasco PM, Tzounis L, Mompean FJ, Strati K, Georgopanos P, Garcia-Hernandez M, Stamm M, Gabanero G, Odriozola I, Avgeropoulos A, Garcia I (2013) Thermoset magnetic materials based on poly(ionic liquid)s block copolymers. Macromolecules 46:1860–1867

    Article  CAS  Google Scholar 

  62. Allen MH Jr, Wang S, Hemp ST, Chen Y, Madsen LA, Winey KI, Long TE (2013) Hydroxyalkyl-containing imidazolium homopolymers: correlation of structure with conductivity. Macromolecules 46:3037–3045

    Article  CAS  Google Scholar 

  63. Strehmel V, Berdzinski S, Rexhausen H (2014) Interactions between ionic liquids and radicals. J Mol Liq 192:153–170

    Article  CAS  Google Scholar 

  64. Berdzinski S, Strehmel B, Strehmel V (2015) Photogenerated lophyl radicals in 1-alkyl- 3-vinylimidazolium bis(trifluoromethylsulfonyl)- imides. Photochem Photobiol Sci 14:714–725

    Article  CAS  Google Scholar 

  65. Kumar R, Bocharova V, Strelcov E, Tselev A, Kravchenko II, Berdzinski S, Strehmel V, Ovchinnikova OS, Minutolo JA, Sangoro JR, Agapov AL, Sokolov AP, Kalinin SV, Sumpter BG (2015) Ion transport and softening in a polymerized ionic liquid. Nanoscale 7:947–955

    Article  CAS  Google Scholar 

  66. Bocharova V, Agapov AL, Tselev A, Collins L, Kumar R, Berdzinski S, Strehmel V, Kisliuk A, Kravchenko II, Sumpter BG, Sokolov AP, Kalinin SV, Strelcov E (2015) Controlled nanopatterning of a polymerized ionic liquid in a strong electric field. Adv Funct Mater 25:805–811

    Article  CAS  Google Scholar 

  67. Wojnarowska Z, Knapik J, Jacquemin J, Berdzinski S, Strehmel V, Sangoro JR, Paluch M (2015) Effect of pressure on decoupling of ionic conductivity from segmental dynamics in polymerized ionic liquids. Macromolecules 48(23):8660–8666

    Article  CAS  Google Scholar 

  68. Cordella D, Kermagoret A, Debuigne A, Jérôme C, Mecerreyes D, Isik M, Taton D, Detrembleur C (2015) All poly(ionic liquid)-based block copolymers by sequential controlled radical copolymerization of vinylimidazolium monomers. Macromolecules 48:5230–5243

    Article  CAS  Google Scholar 

  69. Washiro S, Yoshizawa M, Nakajima H, Ohno H (2004) Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer 45:1577–1582

    Article  CAS  Google Scholar 

  70. Chen H, Choi J-H, Salas-de la Cruz D, Winey KI, Elabd YA (2009) Polymerized ionic liquids: the effect of random copolymer composition on ion conduction. Macromolecules 42:4809–4816

    Article  CAS  Google Scholar 

  71. Green O, Grubjesic S, Lee S, Firestone MA (2009) The design of polymeric ionic liquids for the preparation of functional materials. J Macromol Sci C Polym Rev 49:339–360

    CAS  Google Scholar 

  72. Lee M, Choi UH, Colby RH, Gibson HW (2010) Ion conduction in imidazolium acrylate ionic liquids and their polymers. Chem Mater 22:5814–5822

    Article  CAS  Google Scholar 

  73. Matsumoto K, Talukdar B, Endo T (2011) Methacrylate-based ionic liquid: radical polymerization/copolymerization with methyl methacrylate and evaluation of molecular weight of the obtained homopolymers. Polym Bull 66:199–210

    Article  CAS  Google Scholar 

  74. Shaplov AS, Lozinskaya EI, Ponkratov DO, Malyshkina IA, Vidal F, Aubert P-H, Okatova OV, Pavlov GM, Komarova LI, Wandrey C, Vygodskii YS (2011) Bis(trifluoromethylsulfonyl)amide based “polymeric ionic liquids”: synthesis, purification and peculiarities of structure–properties relationships. Electrochim Acta 57:74–90

    Article  CAS  Google Scholar 

  75. Becht GA, Sofos M, Seifert S, Firestone MA (2011) Formation of a liquid-crystalline interpenetrating poly(ionic liquid) network hydrogel. Macromolecules 44:1421–1428

    Article  CAS  Google Scholar 

  76. Shaplov AS, Vlasov PS, Lozinskaya EI, Ponkratov DO, Malyshkina IA, Vidal F, Okatova OV, Pavlov GM, Wandrey C, Bhide A, Schönhoff M, Vygodskii YS (2011) Polymeric ionic liquids: comparison of polycations and polyanions. Macromolecules 44:9792–9803

    Google Scholar 

  77. Choi UH, Lee M, Wang S, Liu W, Winey KI, Gibson HW, Colby RH (2012) Ionic conduction and dielectric response of poly(imidazolium acrylate) ionomers. Macromolecules 45:3974–3985

    Article  CAS  Google Scholar 

  78. Tokuda M, Minami H (2013) Specific solubility behavior of quaternary ammonium-based poly(ionic liquid) particles by changing counter anion. J Coll Interf Sci 398:120–125

    Article  CAS  Google Scholar 

  79. Choi UH, Mittal A, Price TL Jr, Gibson HW, Runt J, Colby RH (2013) Polymerized ionic liquids with enhanced static dielectric constants. Macromolecules 46:1175–1186

    Article  CAS  Google Scholar 

  80. Tokuda M, Shindo T, Minami H (2013) Preparation of polymer/poly(ionic liquid) composite particles by seeded dispersion polymerization. Langmuir 29:11284–11289

    Article  CAS  Google Scholar 

  81. Tokuda M, Sanada T, Shindo T, Suzuki T, Minami H (2014) Preparation of submicrometer-sized quaternary ammonium-based poly(ionic liquid) particles via emulsion polymerization and switchable responsiveness of emulsion film. Langmuir 30:3406–3412

    Article  CAS  Google Scholar 

  82. Chen J, Wang S, Peng J, Li J, Zhai M (2014) New lipophilic polyelectrolyte gels containing quaternary ammonium salt with superabsorbent capacity for organic solvents. ACS Appl Mater Interfaces 6:14894–14902

    Article  CAS  Google Scholar 

  83. Meek KM, Elabd YA (2015) Alkaline chemical stability of polymerized ionic liquids with various cations. Macromolecules 48:7071–7084

    Article  CAS  Google Scholar 

  84. Tejero R, Arbe A, Fernández-García M, López D (2015) Nanostructuration by self-assembly in N-Alkyl Thiazolium and Triazolium side-chain polymethacrylates. Macromolecules 48:7180–7193

    Article  CAS  Google Scholar 

  85. Fan F, Wang Y, Hong T, Heres MF, Saito T, Sokolov AP (2015) Ion conduction in polymerized ionic liquids with different pendant groups. Macromolecules 48:44461–44470

    Google Scholar 

  86. Strehmel V, Senkowski V (2015) Synthesis of traditional and ionic polymethacrylates by anion catalyzed group transfer polymerization. J Polym Sci A Polym Chem Ed 53(24):2849–2859

    Article  CAS  Google Scholar 

  87. Cavicchi KA (2012) Synthesis and polymerization of substituted ammonium sulfonate monomers for advanced materials applications. ACS Appl Mater Interfaces 4:518–526

    Article  CAS  Google Scholar 

  88. Qiu H, Takafuji M, Sawada T, Liu X, Jiang S, Ihara H (2010) New strategy for drastic enhancement of selectivity via chemical modification of counter anions in ionic liquid polymer phase. Chem Commun 46:8740–8742

    Article  CAS  Google Scholar 

  89. Anouti M, Jacquemin J (2014) Structuring reductive media containing protic ionic liquids and their application to the formation of metallic nanoparticles. Colloids Surf A Physicochem Eng Aspects 445:1–11

    Article  CAS  Google Scholar 

  90. Krüger M, Huang M-M, Brüdermann E, Weingärtner H, Havenith M (2011) Combined THz and microwave dielectric spectroscopy of intermolecular interactions in homologous protic ionic liquids. IEEE Trans Terahertz Sci Technol 1(1):313–320

    Article  CAS  Google Scholar 

  91. Zech O, Kellermeier M, Thomaier S, Maurer E, Klein R, Schreiner C, Kunz W (2009) Alkali metal oligoether carboxylates—A new class of ionic liquids. Chem Eur J 15:1341–1345

    Article  CAS  Google Scholar 

  92. Sangoro JR (2014) Charge transport and dipolar relaxation in an alkali metal oligoether carboxylate ionic liquid. Colloid Polym Sci 292:1933–1938

    Article  CAS  Google Scholar 

  93. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    Article  CAS  Google Scholar 

  94. Strehmel V, Rexhausen H, Strauch P (2010) Influence of imidazolium bis(trifluoromethylsulfonylimide)s on the rotation of spin probes comprising ionic and hydrogen bonding groups. Phys Chem Chem Phys 12:1933–1940

    Article  CAS  Google Scholar 

  95. BMImLactat-Synthese über Silberlactat, Harjani JR, Farrell J, Garcia MT, Singer RD, Scammells PJ (2009) Further investigation of the biodegradability of imidazolium ionic liquids. Green Chem 11:821–829

    Google Scholar 

  96. Holbrey JD, Reichert WM, Swatloski RP, Broker GA, Pitner WR, Seddon KR, Rogers RD (2002) Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethylsulfate anions. Green Chem 4:407–413

    Article  CAS  Google Scholar 

  97. Strehmel V, Berdzinski S, Ehrentraut L, Faßbender C, Horst J, Leeb E, Liepert J, Ruby M-P, Senkowski V, Straßburg P, Wenda A, Strehmel C (2015) Application of ionic liquids in synthesis of polymeric binders for coatings. Prog Org Coat 89:297–313

    Article  CAS  Google Scholar 

  98. Scholz E (1984) Karl Fischer-Titration Methoden zur Wasserbestimmung. In: Anleitungen für die chemische Laboratoriumspraxis, vol XX. Springer, Berlin

    Google Scholar 

  99. Bruttel P, Schlink R (2003) Wasserbestimmung durch Karl Fischer- Titration. Metrohm Monographie 8.026.5001–2003-06; Metrohm AG, Herisau, Switzerland

    Google Scholar 

  100. Strehmel V, Laschewsky A, Wetzel H, Görnitz E (2006) Free radical polymerization of n-butyl methacrylate in ionic liquids. Macromolecules 39:923–930

    Article  CAS  Google Scholar 

  101. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109(13):6103–6110

    Article  CAS  Google Scholar 

  102. Fredlake CP, Crostwaite JM, Hert DG, Aki SNVK, Brennecke JF (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49(4):954–964

    Google Scholar 

  103. Nazet A, Sokolov S, Sonnleitner T, Makino T, Kanakubo M, Buchner R (2015) Densities, viscosities, and conductivities of the imidazolium ionic liquids [Emim][Ac], [Emim][FAP], [Bmim][BETI], [Bmim][FSI], [Hmim][TFSI], and [Omim][TFSI]. J Chem Eng Data 60:2400–2411

    Article  CAS  Google Scholar 

  104. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chem Commun 965–967

    Google Scholar 

  105. Berdzinski S, Strehmel B, Strehmel V (2015) Photogenerated lophyl radicals in 1-alkyl- 3-vinylimidazolium bis(triluoromethylsulfonyl)-imides. Photochem Photobiol Sci 14:714–725

    Article  CAS  Google Scholar 

  106. Bernard UL, Izgorodina EI, MacFarlane DR (2010) New insights into the relationship between ion-pair binding energy and thermodynamic and transport properties of ionic liquids. J Phys Chem C 114(48):20472–20478

    Article  CAS  Google Scholar 

  107. Martinelli A, Matic A, Jacobsson P, Börjesson L, Fernicola A, Scrosati B (2009) J Phys Chem B 113(32):11247–11251

    Article  CAS  Google Scholar 

  108. MacFarlane DR, Forsyth SA, Golding J, Deacon GB (2002) Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chem 4:444–448

    Article  CAS  Google Scholar 

  109. Fletcher SI, Sillars FB, Hudson NE, Hall PJ (2010) Physical properties of selected ionic liquids for use as electrolytes and other industrial applications. J Chem Eng Data 55:778–782

    Article  CAS  Google Scholar 

  110. Strehmel V (2007) Selection of ionic liquids for free radical polymerization processes. Macromol Symp 254:25–33

    Article  CAS  Google Scholar 

  111. Shirota H, Fukazawa H, Fujisawa T, Wishart JF (2010) Heavy atom substitution effects in non-aromatic ionic liquids: ultrafast dynamics and physical properties. J Phys Chem B 114:9400–9412

    Article  CAS  Google Scholar 

  112. Atkin R, Warr GG (2008) The smallest amphiphiles: nanostructure in protic room-temperature ionic liquids with short alkyl groups. J Phys Chem B 112(14):4164–4166

    Google Scholar 

  113. Greaves TL, Weerawardena A, Fong C, Krodkiewska I, Drummond CJ (2006) Protic ionic liquids: solvents with tunable phase behavior and physicochemical properties. J Phys Chem B 110:22479–22487

    Article  CAS  Google Scholar 

  114. Zech O, Kellermeier M, Thomaier S, Maurer E, Klein R, Schreiner C, Kunz W (2009) Alkali metal oligoether carboxylates—A new class of ionic liquids. Chem Eur J 15:1341–1345

    Article  CAS  Google Scholar 

  115. Weingaertner H, Knocks A, Schrader W, Kaatze U (2001) Dielectric spectroscopy of the ethylammonium nitrate. J Phys Chem A 105(38):8646–8650

    Article  CAS  Google Scholar 

  116. Huang M, Weingaertner H (2008) Protic ionic liquids with unusually high dielectric permittivities. ChemPhysChem 9(15):2172–2173

    Article  CAS  Google Scholar 

  117. Huang M-M, Jiang Y, Sasisanker P, Driver G, Gordon W, Weingärtner H (2011) Static relative dielectric permittivities of ionic liquids at 25°. J Chem Eng Data 56(4):1494–1499

    Article  CAS  Google Scholar 

  118. Krueger M, Huang MM, Bruendermann E, Weingaertner H, Havenith M (2011) Combined THz and microwave dielectric spectroscopy of intermolecular interactions in homologous protic ionic liquids. IEEE Trans Terahertz Sci Technol 1(1):313–320

    Google Scholar 

  119. Zheng Z-P, Fan W-H, Roy S, Mazur K, Nazet A, Buchner R, Bonn M, Hunger J (2015) Ionic liquids: not only structurally but also dynamically heterogeneous. Angew Chem Int Ed. 54(2):687–690

    Google Scholar 

  120. Sonnleitner T, Turton DA, Hefter G, Ortner A, Waselikowski S, Walther M, Wynne K, Buchner R (2015) Ultra-broadband dielectric and optical kerr-effect study of the ionic liquids ethyl and propylammonium nitrate. J Phys Chem B 119(29):8826–8841

    Article  CAS  Google Scholar 

  121. Wojnarowska Z, Paluch M (2015) Recent progress on dielectric properties of protic ionic liquids. J Phys Condens Matter 27(7):073202/1–073202/20

    Google Scholar 

  122. Zaitsau DH, Yermalayeu AV, Emel’yanenko VN, Heintz A, Verevkin SP, Schick C, Berdzinski S, Strehmel V (2014) Structure–property relationships in ILs: vaporization enthalpies of pyrrolidinium based ionic liquids. J Mol Liquids 192:171–176

    Google Scholar 

  123. Villanueva M, Coronas A, Garcia J, Salgado J (2013) Thermal stability of ionic liquids for their application as new absorbents. Ind Eng Chem Res 52:15718–15727

    Article  CAS  Google Scholar 

  124. Stoppa A, Zech O, Kunz W, Buchner R (2010) The conductivity of imidazolium-based ionic liquids from (−35 to 195)° CA variation of cation’s alkyl chain. J Chem Eng Data 55:1768–1773

    Article  CAS  Google Scholar 

  125. Tao R, Tamas G, Xue L, Simon SL, Quitevis EL (2014) Thermophysical properties of imidazolium-based ionic liquids: the effect of aliphatic versus aromatic functionality. J Chem Eng Data 59:2717–2724

    Article  CAS  Google Scholar 

  126. Strehmel V, Wishart JF, Polyanski DE, Strehmel B (2009) Recombination of photogenerated lophyl radicals in imidazolium-based ionic liquids. ChemPhysChem 10:3112–3118

    Article  CAS  Google Scholar 

  127. Berdzinski S, Horst J, Straßburg P, Strehmel V (2013) Recombination of lophyl radicals in pyrrolidinium-based ionic liquids. ChemPhysChem 14:1899–1908

    Article  CAS  Google Scholar 

  128. McHale G, Hardacre C, Ge R, Doy N, Allen RWK, MacInnes JM, Bown MR, Newton MI (2008) Density-viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis. Anal Chem 80:5806–5811

    Article  CAS  Google Scholar 

  129. Alcade R, Garcia G, Atilhan M, Aparicio S (2015) Systematic study on the viscosity of ionic liquids: measurement and prediction. Ind Eng Chem Res 54:10918–10924

    Article  CAS  Google Scholar 

  130. Neves CMSS, Kurnia KA, Coutinho JAP, Marrucho IM, Lopes JNC, Freire MG, Rebelo LPN (2013) Systematic study of the thermophysical properties of imidazolium-based ionic liquids with cyano-functionalized anions. J Phys Chem B 117:10271–10283 (including Supporting Information)

    Google Scholar 

  131. Rox ET, Weaver JEF, Henderson WA (2012) Tuning binary ionic liquid mixtures: linking alkyl chain length to phase behavior and ionic conductivity. J Phys Chem C 116:5270–5274

    Article  CAS  Google Scholar 

  132. Ciocirlan O, Iulian O (2009) J Serb Chem Soc 74:317–329

    Article  CAS  Google Scholar 

  133. Asano T (1999) Pure Appl Chem 71:1691–1704

    Article  CAS  Google Scholar 

  134. Strehmel V, Rexhausen H, Strauch P, Görnitz E, Strehmel B (2008) Temperature dependence of interactions between stable piperidine-1-yloxyl derivatives and a semicrystalline ionic liquid. ChemPhysChem 9:1294–1302

    Article  CAS  Google Scholar 

  135. Strehmel V, Rexhausen H, Strauch P, Strehmel B (2010) Temperature dependence of interactions between stable piperidine-1-yloxyl derivatives and a semicrystalline ionic liquid. ChemPhysChem 11:2182–2190

    Article  CAS  Google Scholar 

  136. Vogel H (1921) Phys Z 22:645–646

    CAS  Google Scholar 

  137. Fulcher GS (1925) J Am Chem Soc 8:339–355, 789–794

    Google Scholar 

  138. Tamman G, Hesse WH, Anorg Z (1926) Allg Chem 156:245–257

    Article  CAS  Google Scholar 

  139. Widegren JA, Laesecke A, Magee JW (2005) The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids. Chem Commun 1610–1612

    Google Scholar 

  140. AlTuwaim MS, Alkhaldi KHAE, Al-Jimaz AS, Mohammad AA (2014) Temperature dependence of physicochemical properties of imidazolium-, pyroldinium-, and phosphonium-based ionic liquids. J Chem Eng Data 59:1955–1963

    Article  CAS  Google Scholar 

  141. Atilhan M, Jacquemin J, Rooney D, Khraisheh M, Aparicio S (2013) Viscous behavior of imidazolium-based ionic liquids. Ind Eng Chem Res 52:16774–16785

    Article  CAS  Google Scholar 

  142. Kolbeck C, Lehmann J, Lovelock KRJ, Cremer T, Paape N, Wasserscheid P, Fröba AP, Maier F, Steinrück H-P (2010) Density and surface tension of ionic liquids. J Phys Chem B 114:17025–17036

    Article  CAS  Google Scholar 

  143. Wandschneider A, Lehmann JK, Heintz A (2008) Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol. J Chem Eng Data 53:596–599

    Article  CAS  Google Scholar 

  144. Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 18:275–297

    Article  CAS  Google Scholar 

  145. Carmichael AJ, Seddon KR (2000) Polarity study of some 1-alkyl-3-methylimidazolium amibient-temperature ionic liquids with solvatochromic dye, Nile Red. J Phys Org Chem 13:591–595

    Article  CAS  Google Scholar 

  146. Muldoon MJ, Gordon CM, Dunkin IR (2001) Investigations of solvent-solute interactions in room temperature ionic liquids using solvatochromic dyes. Chem Soc Perkin Trans 2:433–435

    Article  CAS  Google Scholar 

  147. Dzyuba SV, Bartsch RA (2002) Expanding the polarity range of ionic liquids. Tetrahedron Lett 43:4657–4659

    Article  CAS  Google Scholar 

  148. Kimura Y, Hamamoto T, Terazima M (2007) Raman spectroscopic study on the solvation of N, N-dimethyl-p-nitroaniline in room-temperature ionic liquids. J Phys Chem A 111:7081–7089

    Article  CAS  Google Scholar 

  149. Ferrer B, Garcia H, Schultz KP, Nelson SF (2007) Mixed valence compounds as probes to determine the polarity of 1-Butyl-3-methylimidazolium ionic liquids. J Phys Chem B 111:13967–13970

    Article  CAS  Google Scholar 

  150. Ciappe C, Pomelli CS, Rajamani S (2011) Influence of structural variations in cationic and anionic moieties on the polarity of ionic liquids. J Phys Chem B 115:9653–9661

    Google Scholar 

  151. Crowhurst L, Mawdsley PR, Perez-Arlandis JM, Salter PA, Welton T (2003) Solvent-solute interactions in ionic liquids. Phys Chem Chem Phys 5:2790–2794

    Article  CAS  Google Scholar 

  152. Lee MM, Ruckes S, Prausnitz JM (2008) Solvent polarities and kamlet-taft parameters for ionic liquids containing a pyridinium cation. J Phys Chem B 112:1473–1476

    Article  CAS  Google Scholar 

  153. Kobrak MN (2008) The relationship between solvent polarity and molar volume in room-temperature ionic liquids. Green Chem 10:80–86

    Article  CAS  Google Scholar 

  154. Lee J-M, Ruckes S, Prausnitz JM (2008) Solvent polarities and kamlet-taft parameters for ionic liquids containing a pyridinium cation. J. Phys. Chem. B 112:1473–1476

    Article  CAS  Google Scholar 

  155. Lungwitz R, Strehmel V, Spange S (2010) The dipolarity/polarisability of 1-alkyl-3-methylimidazolium ionic liquids as function of anion structure and the alkyl chain length. New J Chem 34:1135–1149

    Article  CAS  Google Scholar 

  156. Strehmel V, Lungwitz R, Rexhausen H, Spange S (2010) Relationship between hyperfine coupling constants of spin probes and empirical polarity parameters of some ionic liquids. New J Chem 34:2125–2131

    Article  CAS  Google Scholar 

  157. Niedermeyer H, Ashworth C, Brandt A, Welton T, Hunt PA (2013) A step towards the a priori design of ionic liquids. Phys Chem Chem Phys 15:11566–11578

    Article  CAS  Google Scholar 

  158. Spange S, Lungwitz R, Schade A (2014) Correlation of molecular structure and polarity of ionic liquids. J Mol Liquids 192:137–143

    Article  CAS  Google Scholar 

  159. Lohse PW, Borsing R, Lenzer T, Oum K (2008) Exploring 12′-Apo-β-carotenoic-12′-acid as an ultrafast polarity probe for ionic liquids. J Phys Chem B 112:3048–3057

    Article  CAS  Google Scholar 

  160. S. Zhang, Ya. Zhang, X. Ma, L. Lu, Y. He, Y. Deng (2013) Benzonitrile as a probe of local environment in ionic liquids. J Phys Chem B 117:2764–2772

    Google Scholar 

  161. Stoesser R, Herrmann W, Zehl A, Laschewsky A, Strehmel V (2006) Microviscosity and micropolarity effects of imidazolium based ionic liquids investigated by spin probes their diffusion and spin exchange. Z Phys Chem 220:1309–1342

    Article  CAS  Google Scholar 

  162. Strehmel V (2012) Radicals in Ionic liquids. ChemPhysChem 13:1649–1663

    Article  CAS  Google Scholar 

  163. Wakai C, Oleinikova A, Ott M, Weingärtner H (2005) J Phys Chem B 109:17028–17030

    Article  CAS  Google Scholar 

  164. Bright FV, Baker GA (2006) Comment on “How Polar Are Ionic Liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave spectroscopy”. J Phys Chem B 110:5822–5823

    Article  CAS  Google Scholar 

  165. Wakai C, Oleinikova A, Weingärtner H (2006) Reply to “Comment on ‘How Polar Are Ionic Liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave spectroscopy’”. J Phys Chem B 110:5824

    Article  CAS  Google Scholar 

  166. Singh T, Kumar A (2008), Static dielectric constant of room temperature ionic liquids: internal pressure and cohesive energy density approach. J Phys Chem B 112:12968–12972

    Google Scholar 

  167. MacFarlane DR, Forsyth M, Izgorodina EI, Abbott AP, Annata G, Fraser K (2009) On the concept of ionicity in ionic liquids. Phys Chem Chem Phys 11:4962–4967

    Article  CAS  Google Scholar 

  168. Ueno H, Tokuda M (2010) Watanabe, Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys Chem Chem Phys 12:1649–1658

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Strehmel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Strehmel, V. (2016). Introduction to Ionic Liquids. In: Paluch, M. (eds) Dielectric Properties of Ionic Liquids. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-32489-0_1

Download citation

Publish with us

Policies and ethics