Skip to main content
Log in

Charge transport and dipolar relaxations in an alkali metal oligoether carboxylate ionic liquid

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Charge transport and dipolar relaxations in a sodium-based oligoether carboxylate ionic liquid are investigated in a wide frequency and temperature range by means of broadband dielectric spectroscopy (BDS). The dielectric spectra are described at lower temperatures in terms of dipolar relaxations whereas hopping conduction in a random spatially varying energy landscape is quantitatively shown to dominate the spectra at higher temperatures. Based on detailed analysis of the dielectric relaxation strength in its temperature dependence, the slower secondary relaxation process is attributed to molecular fluctuation of ion pairs (sodium and carboxylate ions) while the localized motion of the carboxylate anion gives rise to the faster process observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Wasserscheid P, Welton W (2008) Ionic liquids in synthesis, ed. P. Wasserscheid and W. Welton. Wiley, Weinheim

  2. Ye JT et al (2010) Liquid-gated interface superconductivity on an atomically flat film. Nat Mater 9(2):125–128

    Article  CAS  Google Scholar 

  3. Zech O et al (2009) Alkali metal oligoether carboxylates—a new class of ionic liquids. Chem Eur J 15(6):1341–1345

    Article  CAS  Google Scholar 

  4. Matzke M et al (2007) The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem 9(11):1198–1207

    Article  CAS  Google Scholar 

  5. Wood N, Stephens G (2010) Accelerating the discovery of biocompatible ionic liquids. Phys Chem Chem Phys 12(8):1670–1674

    Article  CAS  Google Scholar 

  6. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418

    Article  CAS  Google Scholar 

  7. Sidebottom DL (2009) Colloquium: understanding ion motion in disordered solids from impedance spectroscopy scaling. Rev Mod Phys 81(3):999

    Article  Google Scholar 

  8. Sangoro JR et al (2009) Universal scaling of charge transport in glass-forming ionic liquids. Phys Chem Chem Phys 11(6):913–916

    Article  CAS  Google Scholar 

  9. Krause C et al (2010) Charge transport and dipolar relaxations in imidazolium-based ionic liquids. J Phys Chem B 114(1):382–386

    Article  CAS  Google Scholar 

  10. Griffin P et al (2011) Decoupling charge transport from the structural dynamics in room temperature ionic liquids. J Chem Phys 135(11):114509

    Article  Google Scholar 

  11. Griffin PJ et al (2014) Interplay between hydrophobic aggregation and charge transport in the ionic liquid methyltrioctylammonium bis(trifluoromethylsulfonyl)imide. J Phys Chem B 118(3):783–790

    Article  CAS  Google Scholar 

  12. Kremer F, Schoenhals A. (2003) Broadband dielectric spectroscopy, ed. F. Kremer and A. Schoenhals. Springer, Berlin

  13. Rivera A, Roessler EA (2006) Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Phys Rev B 73(21):212201–212204

    Article  Google Scholar 

  14. Sangoro JR et al (2008) Charge transport and mass transport in imidazolium-based ionic liquids. Phys Rev E 77(5):051202

    Article  CAS  Google Scholar 

  15. Serghei A et al (2009) Electrode polarization and charge transport at solid interfaces. Phys Rev B 80(18):184301–184305

    Article  Google Scholar 

  16. Matsushima K, Kawamura N, Okahara M (1979) Synthesis of novel macrocyclic ether-ester compounds via the intramolecular cyclization of oligoethylene glycol monocarboxymethyl ethers. Tetrahedron Lett 20(36):3445–3448

    Article  Google Scholar 

  17. Endres F, Abbott AP, Macfarlane D (2008) Electrodeposition from ionic liquids. Electrodeposition from ionic liquids. Wiley GmbH & Co. KGaA. 369–377

  18. Dyre JC (1988) The random free-energy barrier model for Ac conduction in disordered solids. J Appl Phys 64(5):2456–2468

    Article  Google Scholar 

  19. Dyre JC, Schroder TB (2000) Universality of ac conduction in disordered solids. Rev Mod Phys 72(3):873–892

    Article  Google Scholar 

  20. Boettger H, Bryksin VV (1985) Hopping conduction in solids. Akademie, Berlin

    Google Scholar 

  21. Johari GP, Goldstein M (1970) Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J Chem Phys 53(6):2372–2388

    Article  CAS  Google Scholar 

  22. Johari GP (1973) Intrinsic mobility of molecular glasses. J Chem Phys 58(4):1766–1770

    Article  CAS  Google Scholar 

  23. Zech O et al (2010) Correlation between polarity parameters and dielectric properties of [Na][TOTO]-a sodium ionic liquid. Phys Chem Chem Phys 12(42):14341–14350

    Article  CAS  Google Scholar 

  24. Sangoro JR, Kremer F (2012) Charge transport and glassy dynamics in ionic liquids. Acc Chem Res 45(4):525–532

    Article  CAS  Google Scholar 

  25. Sangoro JR et al (2011) Diffusion in ionic liquids: the interplay between molecular structure and dynamics. Soft Matter 7(5):1678–1681

    Article  CAS  Google Scholar 

  26. Sangoro JR et al (2008) Charge transport and mass transport in imidazolium-based ionic liquids. Phys Rev E Stat Nonlin Soft Matter Phys 77(5 Pt 1):051202

    Article  CAS  Google Scholar 

  27. Eilmes A, Kubisiak P (2013) Quantum-chemical and molecular dynamics study of M + [TOTO] − (M = Li, Na, K) ionic liquids. J Phys Chem B 117(41):12583–12592

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the University of Tennessee-Knoxville through tenure-track faculty start-up funds is gratefully acknowledged. The author also thanks the German Research Foundation for the support under the DFG SPP 1191 Priority Program on Ionic Liquids. The experiments reported in the current article were performed in the laboratory of Prof. Friedrich Kremer at the University of Leipzig, and Prof. Richard Buchner (University of Regensburg) kindly provided the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua R. Sangoro.

Additional information

The author is grateful for the opportunity to dedicate this work to Frieder Kremer, his scientific teacher and mentor, on his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangoro, J.R. Charge transport and dipolar relaxations in an alkali metal oligoether carboxylate ionic liquid. Colloid Polym Sci 292, 1933–1938 (2014). https://doi.org/10.1007/s00396-014-3299-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3299-4

Keywords

Navigation