Skip to main content

Skin Tensile Strength in Scleroderma

  • Reference work entry
  • First Online:
Agache's Measuring the Skin

Abstract

In recent decades, some noninvasive biometrological methods were developed for measuring the skin tensile strength, particularly in scleroderma. Skin connective tissue (SCT) is a complex and well-organized composite of fibers and cells embedded in a viscous nonfibrillar extracellular matrix. Among its diversity of functions, the SCT exhibits integrated load-transmitting properties. The related skin tensile strength is under intrinsic and extrinsic influences modifying the way by which the tissue withstands and transmits forces through appropriate deformations. The intimate SCT structures contribute to adequately balance the skin response to any casual mechanical prompting. The typical microanatomical changes in the cutaneous involvement of scleroderma alter the overall skin tensile strength. Both the static and dynamic responses to stress are clinically and instrumentally altered. The most typical features about the biomechanical impact of the cutaneous involvement in scleroderma are deep hidebinding and decreased skin unfolding and distensibility. In addition, other changes in tensile properties include altered creep extension, biological elasticity, and viscous involvement. These changes are related to the stage of the disease evolution. All these parameters are affected by the disease progression and any positive impact of therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghassi D, Monoson T, Braverman I. Reproducible measurements to quantify cutaneous involvement in scleroderma. Arch Dermatol. 1995;131:1160–6.

    Article  CAS  PubMed  Google Scholar 

  • Andres C, Kollmar A, Mempel M, Hein R, Ring J, Eberlein B. Successful ultraviolet A1 phototherapy in the treatment of localized scleroderma: a retrospective and prospective study. Br J Dermatol. 2010;162:445–7.

    Article  CAS  PubMed  Google Scholar 

  • Beyer C, Distler O, Distler JH. Innovative antifibrotic therapies in systemic sclerosis. Curr Opin Rheumatol. 2012;24:274–80.

    Article  CAS  PubMed  Google Scholar 

  • Binai N, O’Reilly S, Griffiths B, van Laar JM, Hügle T. Differentiation potential of CD14+ monocytes into myofibroblasts in patients with systemic sclerosis. PLoS One. 2012;7:e33508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements PJ, Lachenbruch PA, Ng SC, Simmons M, Sterz M, Furst DE. Skin score: a semi-quantitative measure of cutaneous involvement that improves prediction of prognosis in systemic sclerosis. Arthritis Rheum. 1990;33:1256–63.

    Article  CAS  PubMed  Google Scholar 

  • Clements PJ, Lachenbruch PA, Seibold JR, Zee B, Steen VD, Brennan P, Silman AJ, Allegar N, Varga J, Massa M. Skin thickness score in systemic sclerosis: an assessment of interobserver variability in three independent studies. J Rheumatol. 1993;20:1892–6.

    CAS  PubMed  Google Scholar 

  • Cua AB, Wilhelm KP, Maibach HI. Elastic properties of human skin: relation to age, sex, and anatomical region. Arch Dermatol Res. 1990;282:283–8.

    Article  CAS  PubMed  Google Scholar 

  • Diridollou S, Patat F, Gens F, Vaillant L, Black D, Lagard eJM, Gall Y, Berson M. In vivo model of the mechanical properties of the human skin under suction. Skin Res Technol. 2000a;6:214–21.

    Article  PubMed  Google Scholar 

  • Diridollou S, Black D, Lagarde JM, Gall Y, Berson M, Vabre V, Patat F, Vaillant L. Sex- and site-dependent variations in the thickness and mechanical properties of human skin in vivo. Int J Cosmet Sci. 2000b;22:421–35.

    Article  CAS  PubMed  Google Scholar 

  • Dobrev HP. In vivo study of skin mechanical properties in patients with systemic sclerosis. J Am Acad Dermatol. 1999;40:436–42.

    Article  CAS  PubMed  Google Scholar 

  • Dobrev H. In vivo study of skin mechanical properties in Raynaud’s phenomenon. Skin Res Technol. 2007;13:91–4.

    Article  PubMed  Google Scholar 

  • Enomoto D, Mekkes NH, Bossuyt JR, Hoekzema R, Bos JD. Quantification of cutaneous sclerosis with a skin elasticity meter in patients with generalized scleroderma. J Am Acad Dermatol. 1996;35:381–7.

    Article  CAS  PubMed  Google Scholar 

  • Fett N, Werth VP. Update on morphea: part II. Outcome measures and treatment. J Am Acad Dermatol. 2011;64:231–42.

    Article  PubMed  Google Scholar 

  • Hermanns-Lê T, Jonlet F, Scheen A, Piérard GE. Age- and body mass index-related changes in cutaneous shear wave velocity. Exp Gerontol. 2001;36:363–72.

    Article  PubMed  Google Scholar 

  • Hermanns-Lê T, Piérard-Franchimont C, Piérard GE, André B, de Roover C, Renwart L, et al. How I explore… the skin functional involvement in scleroderma. Rev Med Liege. 2013;68:141–7.

    PubMed  Google Scholar 

  • Herrick AL, Gush RJ, Tully M, Jayson MI. A controlled trial of the effect of topical glyceryl trinitrate on skin blood flow and skin elasticity in scleroderma. Ann Rheum Dis. 1994;53:212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humbert P, Dupond JL, Rochefort A, Vasselet R, Lucas A, Laurent R, Agache P. Localized scleroderma – response to 1,25-dihydroxyvitamin D3. Clin Exp Dermatol. 1990;15:396–8.

    Article  CAS  PubMed  Google Scholar 

  • Humbert P, Dupond JL, Agache P, Laurent R, Rochefort A, Drobacheff C, de Wazieres B, Aubin F. Treatment of scleroderma with oral 1,25-dihydroxyvitamin D3: evaluation of skin involvement using non-invasive techniques. Results of an open prospective trial. Acta Derm Venereol. 1993;73:449–51.

    CAS  PubMed  Google Scholar 

  • Kaya G, Saurat JH. Dermatoporosis: a chronic cutaneous insufficiency/fragility syndrome. Clinicopathological features, mechanisms, prevention and potential treatments. Dermatology. 2007;215:284–94.

    Article  PubMed  Google Scholar 

  • Langton AK, Sherratt MJ, Griffiths CE, Watson RE. Differential expression of elastic fibre components in intrinsically aged skin. Biogerontology. 2012;13:37–48.

    Article  CAS  PubMed  Google Scholar 

  • Livarinen JT, Korhonen RK, Julkunen P, et al. Experimental and computational analysis of soft tissue mechanical response under negative pressure in forearm. Skin Res Technol. 2013;19:e356–65.

    Article  Google Scholar 

  • Martin P, Teodoro WR, Velosa AP, de Morais J, Carrasco S, Christmann RB, Goldenstein-Schainberg C, Parra ER, Katayama ML, Sotto MN, Capelozzi VL, Yoshinari NH. Abnormal collagen V deposition in dermis correlates with skin thickening and disease activity in systemic sclerosis. Autoimmun Res. 2012;11:827–35.

    Article  CAS  Google Scholar 

  • Murry BC, Wickett RR. Correlations between Dermal torque meter®, Cutometer®, and Dermal phase meter® measurements of human skin. Skin Res Technol. 1997;3:101–6.

    Article  Google Scholar 

  • Nikkels-Tassoudji N, Henry F, Piérard-Franchimont C, Piérard GE. Computerized evaluation of skin stiffening in scleroderma. Eur J Clin Invest. 1996;26:457–60.

    Article  CAS  PubMed  Google Scholar 

  • Pauling JD, Shipley JA, Harris ND, McHugh NJ. Use of infrared thermography as an endpoint in therapeutic trials of Raynaud’s phenomenon and systemic sclerosis. Clin Exp Rheumatol. 2012;30:S103–15.

    PubMed  Google Scholar 

  • Piérard GE. EEMCO guidance to the in vivo assessment of tensile functional properties of the skin. Part 1: relevance to the structures and ageing of the skin and subcutaneous tissues. Skin Pharmacol Physiol. 1999;12:352–62.

    Article  Google Scholar 

  • Piérard GE, Lapière CM. Microanatomy of the dermis in relation to relaxed skin tension lines and Langer’s lines. Am J Dermatopathol. 1987;9:219–24.

    Article  PubMed  Google Scholar 

  • Piérard GE, Kort R, Letawe C, Olemans C, Piérard-Franchimont C. Biomechanical assessment of photodamage. Derivation of a cutaneous extrinsic ageing score. Skin Res Technol. 1995a;1:17–20.

    Article  PubMed  Google Scholar 

  • Piérard GE, Nikkels-Tassoudji N, Piérard-Franchimont C. Influence of the test area on the mechanical properties of skin. Dermatology. 1995b;191:9–15.

    Article  PubMed  Google Scholar 

  • Piérard GE, Piérard S, Delvenne P, Piérard-Franchimont C. In vivo evaluation of the skin tensile strength by the suction method. Coping with hysteresis and creep extension. Int Sch Res Netw Dermatol. 2013a;841217:2013.

    Google Scholar 

  • Piérard GE, Hermanns-Lê T, Piérard-Franchimont C. Scleroderma: skin stiffness, assessment using the stress-strain relationship under progressive suction. Exp Opin Med Diagn. 2013b;7:119–25.

    Article  Google Scholar 

  • Piérard-Franchimont C, Nikkels-Tassoudji N, Lefèbvre P, Piérard GE. Subclinical skin stiffening in adults suffering from type 1 diabetes mellitus. A comparison with Raynaud’s syndrome. J Med Eng Technol. 1998;22:206–10.

    Article  PubMed  Google Scholar 

  • Pistorius MA, Carpentier PH. Minimal work-up for Raynaud syndrome: a consensus report. J Mal Vasc. 2012;37:207–12.

    Article  PubMed  Google Scholar 

  • Pope JE, Baron M, Bellamy N, Campbell J, Carette S, Chalmers I, Dales P, Hanly J, Kaminska EA, Lee P, et al. Variability of skin scores and clinical measurements in scleroderma. J Rheumatol. 1995;22:1271–6.

    CAS  PubMed  Google Scholar 

  • Reisfeld PL. A hard subject: use of Durometer to assess skin hardness. J Am Acad Dermatol. 1994;31:515.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, EEMCO group. EEMCO guidance to the in vivo assessment of tensile functional properties of the skin. Part 2: instrumentation and test modes. Skin Pharmacol Appl Skin Physiol. 2001;14:52–67.

    Article  CAS  PubMed  Google Scholar 

  • Sandford EY, Chen YI, Hunter I, Hillebrand G, Jones L. Capturing skin properties from dynamic mechanical analyses. Skin Res Technol. 2013;19:e339–48.

    Article  PubMed  Google Scholar 

  • Scheja A, Akesson A. Comparison of high frequency (20 MHz) ultrasound and palpation for the assessment of skin involvement in systemic sclerosis (scleroderma). Clin Exp Rheumatol. 1997;15:283–8.

    CAS  PubMed  Google Scholar 

  • Schlangen LJM, Brooken D, Van Kemenade PM. Correlations between small aperture skin suction parameters: statistical analysis and mechanical model. Skin Res Technol. 2003;9:122–30.

    Article  CAS  PubMed  Google Scholar 

  • Seyger MM, van den Hoogen FH, de Boo T, de Jong EM. Reliability of two methods to assess morphea: skin scoring and the use of a Durometer. J Am Acad Dermatol. 1997;37:793–6.

    Article  CAS  PubMed  Google Scholar 

  • Shang X, Yen MR, Gaber MW. Studies of biaxial mechanical properties and nonlinear finite element modeling of skin. Mol Cell Biomech. 2010;7:92–104.

    Google Scholar 

  • Walters R, Pulitzer M, Kamino H. Elastic fiber pattern in scleroderma/morphea. J Cutan Pathol. 2009;36:952–7.

    Article  PubMed  Google Scholar 

  • Zhang X, Osborn TG, Pittelkow MR, Qiang B, Kinnick RR, Greenleaf JF. Quantitative assessment of scleroderma by surface wave technique. Med Eng Phys. 2011;33:31–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérald E. Piérard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Piérard, G.E., Hermanns-Lê, T., Piérard-Franchimont, C. (2017). Skin Tensile Strength in Scleroderma. In: Humbert, P., Fanian, F., Maibach, H., Agache, P. (eds) Agache's Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-32383-1_133

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32383-1_133

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32381-7

  • Online ISBN: 978-3-319-32383-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics