Skip to main content

Mechanical Shunt Complications

  • Living reference work entry
  • First Online:
Pediatric Hydrocephalus

Abstract

Hydrocephalus is accumulation of excess cerebrospinal fluid (CSF) within the intracranial cavity. Any obstruction in circulation and increased production or decreased absorption of CSF may result in hydrocephalus. Hydrocephalus can be treated with either shunt implantation or endoscopic third ventriculostomy surgeries. Shunt systems are barium-labeled silicone tubes that also have valve system to control CSF flow from ventricular cavity into another body cavity where it can be absorbed. Hydrocephalus is a chronic disease; for that reason, most of the shunt patients will have their shunt systems throughout their lives. During this long time period, these patients may face shunt complications such as shunt infections, dynamic shunt complications, and mechanical shunt complications. In this chapter, we discussed mechanical shunt complications such as shunt obstruction, shunt fracture, shunt disconnection, shunt migration, and shunt misplacement. The patients with mechanical shunt complications may present with signs and symptoms of increased intracranial pressure, and there may be subcutaneous CSF accumulation along the shunt tract. Routine shunt series, abdominal ultrasonography, cranial and abdominal computerized tomography scans, and cranial magnetic resonance imaging can confirm the diagnosis. Treatment include removal of the either effected part or the whole shunt system and implantation of new shunt system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agha FP, Amendola MA, Shirazi KK, Amendola BE, Chandler WF (1983) Unusual abdominal complications of ventriculo-peritoneal shunts. Radiology 146(2):323–326

    Article  CAS  Google Scholar 

  • Aschoff A, Kremer P, Hashemi B, Kunze S (1999) The scientific history of hydrocephalus and its treatment. Neurosurg Rev 22(2–3):67–93; discussion 94–65

    Article  CAS  Google Scholar 

  • Barkovich AJ (1996) Pediatric neuroimaging, 2nd edn. Lippincott-Raven, Philedelphia, pp 439–475

    Google Scholar 

  • Bayston R, Bhundia C, Ashraf W (2005) Hydromer-coated catheters to prevent shunt infection? J Neurosurg 102(2 Suppl):207–212

    Article  Google Scholar 

  • Berhouma M, Messerer M, Houissa S, Khaldi M (2008) Transoral protrusion of a peritoneal catheter: a rare complication of ventriculoperitoneal shunt. Pediatr Neurosurg 44(2):169–171

    Article  Google Scholar 

  • Boch AL, Hermelin E, Sainte-Rose C, Sgouros S (1998) Mechanical dysfunction of ventriculoperitoneal shunts caused by calcification of the silicone rubber catheter. J Neurosurg 88(6):975–982

    Article  CAS  Google Scholar 

  • Browd SR, Gottfried ON, Ragel BT, Kestle JR (2006a) Failure of cerebrospinal fluid shunts: part II: overdrainage, loculation, and abdominal complications. Pediatr Neurol 34(3):171–176

    Article  Google Scholar 

  • Browd SR, Ragel BT, Gottfried ON, Kestle JR (2006b) Failure of cerebrospinal fluid shunts: part I: obstruction and mechanical failure. Pediatr Neurol 34(2):83–92

    Article  Google Scholar 

  • Caldarelli M, Di Rocco C, La Marca F (1996) Shunt complications in the first postoperative year in children with meningomyelocele. Childs Nerv Syst 12(12):748–754

    Article  CAS  Google Scholar 

  • Chen HH, Riva-Cambrin J, Brockmeyer DL, Walker ML, Kestle JR (2011) Shunt failure due to intracranial migration of BioGlide ventricular catheters. J Neurosurg Pediatr 7(4):408–412

    Article  Google Scholar 

  • Chung JJ, Yu JS, Kim JH, Nam SJ, Kim MJ (2009) Intraabdominal complications secondary to ventriculoperitoneal shunts: CT findings and review of the literature. AJR Am J Roentgenol 193(5):1311–1317

    Article  Google Scholar 

  • Collins P, Hockley AD, Woollam DH (1978) Surface ultrastructure of tissues occluding ventricular catheters. J Neurosurg 48(4):609–613

    Article  CAS  Google Scholar 

  • Desai KR, Babb JS, Amodio JB (2007) The utility of the plain radiograph “shunt series” in the evaluation of suspected ventriculoperitoneal shunt failure in pediatric patients. Pediatr Radiol 37(5):452–456

    Article  Google Scholar 

  • Di Rocco C, Massimi L, Tamburrini G (2006) Shunts vs endoscopic third ventriculostomy in infants: are there different types and/or rates of complications? A review. Childs Nerv Syst 22(12):1573–1589

    Article  Google Scholar 

  • Domenech E, Serrano C, Fernández-Hernández CM (2015) Neuroimaging in CSF shunt complications, complications of CSF shunting in hydrocephalus, prevention, identification and management. Springer, Switzerland, pp 33–72

    Google Scholar 

  • Dominguez CJ, Tyagi A, Hall G, Timothy J, Chumas PD (2000) Sub-galeal coiling of the proximal and distal components of a ventriculo-peritoneal shunt. An unusual complication and proposed mechanism. Childs Nerv Syst 16(8):493–495

    Article  CAS  Google Scholar 

  • Esposito C, Porreca A, Gangemi M, Garipoli V, De Pasquale M (1998) The use of laparoscopy in the diagnosis and treatment of abdominal complications of ventriculo-peritoneal shunts in children. Pediatr Surg Int 13(5–6):352–354

    Article  CAS  Google Scholar 

  • Flannery AM, Duhaime AC, Tamber MS, Kemp J, Pediatric Hydrocephalus Systematic Review & Evidence-Based Guidelines Task Force (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 3: endoscopic computer-assisted electromagnetic navigation and ultrasonography as technical adjuvants for shunt placement. J Neurosurg Pediatr 14(Suppl 1):24–29

    Article  Google Scholar 

  • Ghritlaharey RK, Budhwani KS, Shrivastava DK, Gupta G, Kushwaha AS, Chanchlani R, Nanda M (2007) Trans-anal protrusion of ventriculo-peritoneal shunt catheter with silent bowel perforation: report of ten cases in children. Pediatr Surg Int 23(6):575–580

    Article  Google Scholar 

  • Glatstein MM, Roth J, Scolnik D, Haham A, Rimon A, Koren L, Constantini S (2012) Late presentation of massive pleural effusion from intrathoracic migration of a ventriculoperitoneal shunt catheter: case report and review of the literature. Pediatr Emerg Care 28(2):180–182

    Article  Google Scholar 

  • Goeser CD, McLeary MS, Young LW (1998) Diagnostic imaging of ventriculoperitoneal shunt malfunctions and complications. Radiographics 18(3):635–651

    Article  CAS  Google Scholar 

  • Gower DJ, Lewis JC, Kelly DL Jr (1984) Sterile shunt malfunction. A scanning electron microscopic perspective. J Neurosurg 61(6):1079–1084

    Article  CAS  Google Scholar 

  • Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27(3):145–165; discussion 166–147

    Article  Google Scholar 

  • Hagmann CF, Halbherr M, Koller B, Wintermark P, Huisman T, Bucher HU, Swiss Neonatal N (2011) Interobserver variability in assessment of cranial ultrasound in very preterm infants. J Neuroradiol 38(5):291–297

    Article  CAS  Google Scholar 

  • Haralampopoulos F, Iliadis H, Karniadakis S, Koutentakis D (1996) Invasion of a peritoneal catheter into the inferior vena cava: report of a unique case. Surg Neurol 46(1):21–22

    Article  CAS  Google Scholar 

  • Kast J, Duong D, Nowzari F, Chadduck WM, Schiff SJ (1994) Time-related patterns of ventricular shunt failure. Childs Nerv Syst 10(8):524–528

    Article  CAS  Google Scholar 

  • Kemp J, Flannery AM, Tamber MS, Duhaime AC, Pediatric Hydrocephalus Systematic Review & Evidence-Based Guidelines Task Force (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 9: effect of ventricular catheter entry point and position. J Neurosurg Pediatr 14(Suppl 1):72–76

    Article  Google Scholar 

  • Lehnert BE, Rahbar H, Relyea-Chew A, Lewis DH, Richardson ML, Fink JR (2011) Detection of ventricular shunt malfunction in the ED: relative utility of radiography, CT, and nuclear imaging. Emerg Radiol 18(4):299–305

    Article  Google Scholar 

  • Levy RJ, Schoen FJ, Levy JT, Nelson AC, Howard SL, Oshry LJ (1983) Biologic determinants of dystrophic calcification and osteocalcin deposition in glutaraldehyde-preserved porcine aortic valve leaflets implanted subcutaneously in rats. Am J Pathol 113(2):143–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Limbrick DD Jr, Baird LC, Klimo P Jr, Riva-Cambrin J, Flannery AM, Pediatric Hydrocephalus Systematic Review & Evidence-Based Guidelines Task Force (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 4: cerebrospinal fluid shunt or endoscopic third ventriculostomy for the treatment of hydrocephalus in children. J Neurosurg Pediatr 14(Suppl 1):30–34

    Article  Google Scholar 

  • Lollis SS, Mamourian AC, Vaccaro TJ, Duhaime AC (2010) Programmable CSF shunt valves: radiographic identification and interpretation. AJNR Am J Neuroradiol 31(7):1343–1346

    Article  Google Scholar 

  • Lorenzo AV, Page LK, Watters GV (1970) Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain 93(4):679–692

    Article  CAS  Google Scholar 

  • Martínez-Lage JF, López-Guerrero AL, Almagro M-J (2015) Clinical manifestations of CSF shunt complications. In: Rocco CD, Turgut M, Jallo G, Martínez-Lage JF (eds) Complications of csf shunting in hydrocephalus, prevention, identification and management. Springer, Cham, pp 13–32

    Google Scholar 

  • Masuoka J, Mineta T, Kohata T, Tabuchi K (2005) Peritoneal shunt tube migration into the stomach – case report. Neurol Med Chir (Tokyo) 45(10):543–546

    Article  Google Scholar 

  • McLaurin R (1982) Shunt complications in pediatric neurosurgery, surgery of the devoloping nervous system. Grune & Stratton, New York, pp 243–253

    Google Scholar 

  • Miura FK, Andrade AF, Randi BA, Amato VS, Nicodemo AC (2014) Cerebrospinal fluid shunt infection caused by Corynebacterium sp.: case report and review. Brain Inj 28(9):1223–1225

    Article  Google Scholar 

  • Morell RC, Bell WO, Hertz GE, D’Souza V (1994) Migration of a ventriculoperitoneal shunt into the pulmonary artery. J Neurosurg Anesthesiol 6(2):132–134

    Article  CAS  Google Scholar 

  • Murtagh FR, Quencer RM, Poole CA (1980) Extracranial complications of cerebrospinal fluid shunt function in childhood hydrocephalus. AJR Am J Roentgenol 135(4):763–766

    Article  CAS  Google Scholar 

  • Nazaroglu H, Ozkan U, Ozmen CA, Akay HO (2009) Migration of ventriculoperitoneal shunt into the lung by passing through the liver and the diaphragm. Diagn Interv Radiol 15(1):19–21

    PubMed  Google Scholar 

  • Park CK, Wang KC, Seo JK, Cho BK (2000) Transoral protrusion of a peritoneal catheter: a case report and literature review. Childs Nerv Syst 16(3):184–189

    Article  CAS  Google Scholar 

  • Piatt JH Jr (1996) Pumping the shunt revisited. A longitudinal study. Pediatr Neurosurg 25(2):73–76; discussion 76–77

    Article  Google Scholar 

  • Ruggiero C, Spennato P, De Paulis D, Aliberti F, Cinalli G (2010) Intracardiac migration of the distal catheter of ventriculoperitoneal shunt: a case report. Childs Nerv Syst 26(7):957–962

    Article  Google Scholar 

  • Sainte-Rose C (1993) Shunt obstruction: a preventable complication. Pediatr Neurosurg 19(3):156–164

    Article  CAS  Google Scholar 

  • Sainte-Rose C, Piatt JH, Renier D, Pierre-Kahn A, Hirsch JF, Hoffman HJ, Humphreys RP, Hendrick EB (1991) Mechanical complications in shunts. Pediatr Neurosurg 17(1):2–9

    Article  Google Scholar 

  • Schievink WI, Wharen RE Jr, Reimer R, Pettit PD, Seiler JC, Shine TS (1993) Laparoscopic placement of ventriculoperitoneal shunts: preliminary report. Mayo Clin Proc 68(11):1064–1066

    Article  CAS  Google Scholar 

  • Sekhar LN, Moossy J, Guthkelch AN (1982) Malfunctioning ventriculoperitoneal shunts. Clinical and pathological features. J Neurosurg 56(3):411–416

    Article  CAS  Google Scholar 

  • Sivaganesan A, Krishnamurthy R, Sahni D, Viswanathan C (2012) Neuroimaging of ventriculoperitoneal shunt complications in children. Pediatr Radiol 42(9):1029–1046

    Article  Google Scholar 

  • Vajramani GV, Jones G, Bayston R, Gray WP (2005) Persistent and intractable ventriculitis due to retained ventricular catheters. Br J Neurosurg 19(6):496–501

    Article  CAS  Google Scholar 

  • Wallace AN, McConathy J, Menias CO, Bhalla S, Wippold FJ 2nd. (2014) Imaging evaluation of CSF shunts. AJR Am J Roentgenol 202(1):38–53

    Article  Google Scholar 

  • Wan KR, Toy JA, Wolfe R, Danks A (2011) Factors affecting the accuracy of ventricular catheter placement. J Clin Neurosci 18(4):485–488

    Article  Google Scholar 

  • Wang PP, Avelino AM (2005) Hydrocephalus in children. In: Rengach Setti S, Ellenbogen RG (eds) Principles of neurosurgery. Elsevier, China

    Google Scholar 

  • Wu Y, Green NL, Wrensch MR, Zhao S, Gupta N (2007) Ventriculoperitoneal shunt complications in California: 1990 to 2000. Neurosurgery 61(3):557–562; discussion 562–553

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Memet Özek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tanrıkulu, B., Özek, M.M. (2018). Mechanical Shunt Complications. In: Cinalli, G., Ozek, M., Sainte-Rose, C. (eds) Pediatric Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-31889-9_75-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31889-9_75-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31889-9

  • Online ISBN: 978-3-319-31889-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics