Skip to main content

PET/CT in RT Planning

  • Chapter
  • First Online:
PET Scan in Hodgkin Lymphoma

Abstract

Radiation therapy is a key component of combined modality therapy for Hodgkin’s lymphoma. In an effort to improve the therapeutic ratio and prevent late effects, radiation fields designed to encompass entire lymph node regions have recently been replaced with conformal methods of target volume delineation, known as involved-site radiation therapy (ISRT) and involved-node radiation therapy (INRT). Due to an increased risk of marginal misses with these new approaches, FDG-PET has become a critical aspect of modern radiation therapy planning, given its ability to identify areas of disease overlooked on CT. However, there are many challenges inherent to using PET for radiation planning. The current standard is a qualitative visual method, whereby PET/CT images are fused to the planning CT and the radiation oncologist contours target volumes using information from both image sets. Although not always possible, this method is best applied with input from an experienced radiologist or nuclear medicine physician given the complex nature of PET imaging and high rates of false positives. Due to a significant degree of inter- and intra-observer variability with this method, an effort has been made to explore the use of automated segmentation methods, which vary from simple standardized uptake value (SUV) cutoffs to more complex algorithms that incorporate signal-to-background ratios and sophisticated edge detection methodologies. This chapter covers the role of PET/CT in radiation planning for HL including automated and semiautomated contouring methods and the common pitfalls and artifacts in PET that are relevant when applied to radiation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleman BMP, van den Belt-Dusebout AW, Klokman WJ, et al. Long-term cause-specific mortality of patients treated for Hodgkin’s disease. J Clin Oncol. 2003;21:3431–9. doi:10.1200/JCO.2003.07.131.

    Article  PubMed  Google Scholar 

  2. Alkhawaldeh K, Alavi A. Quantitative assessment of FDG uptake in brown fat using standardized uptake value and dual-time-point scanning. Clin Nucl Med. 2008;33:663–7. doi:10.1097/RLU.0b013e318184b3de.

    Article  PubMed  Google Scholar 

  3. Bhatia S, Robison LL, Oberlin O, et al. Breast cancer and other second neoplasms after childhood Hodgkin’s disease. N Engl J Med. 1996;334:745–51. doi:10.1056/NEJM199603213341201.

    Article  CAS  PubMed  Google Scholar 

  4. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.

    PubMed  Google Scholar 

  5. Brink I, Reinhardt MJ, Hoegerle S, et al. Increased metabolic activity in the thymus gland studied with 18 F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med. 2001;42:591–5.

    CAS  PubMed  Google Scholar 

  6. Brinker H. A re-analysis of available dose-response and time-dose data in Hodgkin’s disease. Radiother Oncol. 1994;30:227.

    Article  Google Scholar 

  7. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86. doi:10.1200/JCO.2006.09.2403.

    Article  PubMed  Google Scholar 

  8. Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat (“USA-fat”): description on 18F-FDG PET/CT. J Nucl Med. 2003;44:170–6.

    CAS  PubMed  Google Scholar 

  9. Cook GJR, Fogelman I, Maisey MN. Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron-emission tomography scanning: potential for error in interpretation. Semin Nucl Med. 1996;26:308–14. doi:10.1016/S0001-2998(96)80006-7.

    Article  CAS  PubMed  Google Scholar 

  10. Daisne J-F, Sibomana M, Bol A, et al. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol. 2003;69:247–50. doi:10.1016/S0167-8140(03)00270-6.

    Article  PubMed  Google Scholar 

  11. Devita VT. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Ann Intern Med. 1970;73:881. doi:10.7326/0003-4819-73-6-881.

    Article  PubMed  Google Scholar 

  12. Drever L, Wilson R, McEwan A, et al. Comparison of three image segmentation techniques for target volume delineation in positron emission tomography. J Appl Clin Med Phys. 2007;8:93–109.

    Article  PubMed  Google Scholar 

  13. Freudenberg LS, Antoch G, Schütt P, et al. FDG-PET/CT in re-staging of patients with lymphoma. Eur J Nucl Med Mol Imaging. 2004;31:325–9. doi:10.1007/s00259-003-1375-y.

    Article  CAS  PubMed  Google Scholar 

  14. Geworski L, Knoop BO, de Wit M, et al. Multicenter comparison of calibration and cross calibration of PET scanners. J Nucl Med. 2002;43:635–9.

    PubMed  Google Scholar 

  15. Gilbert R. Radiotherapy in Hodgkin’s disease (malignant granulomatosis). Am J Roentgenol. 1939;41:198–241.

    Google Scholar 

  16. Girinsky T, Ghalibafian M, Bonniaud G, et al. Is FDG-PET scan in patients with early stage Hodgkin lymphoma of any value in the implementation of the involved-node radiotherapy concept and dose painting? Radiother Oncol. 2007;85:178–86. doi:10.1016/j.radonc.2007.07.003.

    Article  PubMed  Google Scholar 

  17. Girinsky T, Specht L, Ghalibafian M, et al. The conundrum of Hodgkin lymphoma nodes: to be or not to be included in the involved node radiation fields. The EORTC-GELA lymphoma group guidelines. Radiother Oncol. 2008;88:202–10. doi:10.1016/j.radonc.2008.05.012.

    Article  PubMed  Google Scholar 

  18. Girinsky T, van der Maazen R, Specht L, et al. Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother Oncol. 2006;79:270–7. doi:10.1016/j.radonc.2006.05.015.

    Article  PubMed  Google Scholar 

  19. Graham M, Peterson L, Hayward R. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol. 2000;27:647–55. doi:10.1016/S0969-8051(00)00143-8.

    Article  CAS  PubMed  Google Scholar 

  20. Gregoire V. Is there any future in radiotherapy planning without the use of PET: unraveling the myth…. Radiother Oncol. 2004;73:261–3. doi:10.1016/j.radonc.2004.10.005.

    Article  PubMed  Google Scholar 

  21. Hancock SL, Hoppe RT, Horning SJ, Rosenberg SA. Intercurrent death after Hodgkin disease therapy in radiotherapy and adjuvant MOPP trials. Ann Intern Med. 1988;109:183–9.

    Article  CAS  PubMed  Google Scholar 

  22. Hong R, Halama J, Bova D, et al. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Int J Radiat Oncol Biol Phys. 2007;67:720–6. doi:10.1016/j.ijrobp.2006.09.039.

    Article  PubMed  Google Scholar 

  23. Hutchings M, Loft A, Hansen M, et al. Clinical impact of FDG-PET/CT in the planning of radiotherapy for early-stage Hodgkin lymphoma. Eur J Haematol. 2007;78:206–12. doi:10.1111/j.1600-0609.2006.00802.x.

    Article  PubMed  Google Scholar 

  24. International Atomic Energy Agency (IAEA). IAEA-TECDOC-1603: the role of PET/CT in radiation treatment planning for cancer patient treatment. 2008.

    Google Scholar 

  25. Kaplan HS. The radical radiotherapy of regionally localized Hodgkin’s disease. Radiology. 1962;78:553–61. doi:10.1148/78.4.553.

    Article  CAS  PubMed  Google Scholar 

  26. Kaplan S. The treatment of Hodgkin’s disease. Med Clin North Am. 1966;50:1591–610.

    Article  CAS  PubMed  Google Scholar 

  27. Kaste SC, Howard SC, McCarville EB, et al. 18 F-FDG-avid sites mimicking active disease in pediatric Hodgkin’s. Pediatr Radiol. 2005;35:141–54. doi:10.1007/s00247-004-1340-3.

    Article  PubMed  Google Scholar 

  28. Kim CK, Gupta NC. Dependency of standardized uptake values of fluorine-18 fluorodeoxyglucose on body size: comparison of body surface area correction and lean body mass correction. Nucl Med Commun. 1996;17:890–4.

    Article  CAS  PubMed  Google Scholar 

  29. Krasin MJ, Hudson MM, Kaste SC. Positron emission tomography in pediatric radiation oncology: integration in the treatment-planning process. Pediatr Radiol. 2004;34:214–21. doi:10.1007/s00247-003-1113-4.

    Article  PubMed  Google Scholar 

  30. Lee YK, Cook G, Flower MA, et al. Addition of 18F-FDG-PET scans to radiotherapy planning of thoracic lymphoma. Radiother Oncol. 2004;73:277–83. doi:10.1016/j.radonc.2004.07.029.

    Article  PubMed  Google Scholar 

  31. Levine JM, Weiner M, Kelly KM. Routine use of PET scans after completion of therapy in pediatric Hodgkin disease results in a high false positive rate. J Pediatr Hematol Oncol. 2006;28:711–4. doi:10.1097/01.mph.0000243648.66734.eb.

    Article  PubMed  Google Scholar 

  32. Lewis PJ, Salama A. Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. J Nucl Med. 1994;35:1647–9.

    CAS  PubMed  Google Scholar 

  33. Lucignani G, Jereczek-Fossa BA, Orecchia R. The role of molecular imaging in precision radiation therapy for target definition, treatment planning optimisation and quality control. Eur J Nucl Med Mol Imaging. 2004;31:1059–63. doi:10.1007/s00259-004-1517-x.

    Article  PubMed  Google Scholar 

  34. Metwally H, Courbon F, David I, et al. Coregistration of prechemotherapy PET-CT for planning pediatric Hodgkin’s disease radiotherapy significantly diminishes interobserver variability of clinical target volume definition. Int J Radiat Oncol Biol Phys. 2011;80:793–9. doi:10.1016/j.ijrobp.2010.02.024.

    Article  PubMed  Google Scholar 

  35. Mutic S, Dempsey JF, Bosch WR, et al. Multimodality image registration quality assurance for conformal three-dimensional treatment planning. Int J Radiat Oncol. 2001;51:255–60. doi:10.1016/S0360-3016(01)01659-5.

    Article  CAS  Google Scholar 

  36. Nakahara T, Fujii H, Ide M, et al. FDG uptake in the morphologically normal thymus: comparison of FDG positron emission tomography and CT. Br J Radiol. 2001;74:821–4. doi:10.1259/bjr.74.885.740821.

    Article  CAS  PubMed  Google Scholar 

  37. Patel PM, Alibazoglu H, Ali A, et al. Normal thymic uptake of FDG on PET imaging. Clin Nucl Med. 1996;21:772–5.

    Article  CAS  PubMed  Google Scholar 

  38. Paulino AC, Margolin J, Dreyer Z, et al. Impact of PET-CT on involved field radiotherapy design for pediatric Hodgkin lymphoma. Pediatr Blood Cancer. 2012;58(6):860–4. doi:10.1002/pbc.23273.

    Article  PubMed  Google Scholar 

  39. Peters M. A study of survivals in Hodgkin’s disease treated radiologically. Am J Roentgenol Radium Ther. 1950;63:299–311.

    Google Scholar 

  40. Pusey WA. Cases of sarcoma and of Hodgkin’s disease treated by exposures to x-rays—a preliminary report. JAMA J Am Med Assoc. 1902;XXXVIII:166. doi:10.1001/jama.1902.62480030024001h.

    Google Scholar 

  41. Robertson VL, Anderson CS, Keller FG, et al. Role of FDG-PET in the definition of involved-field radiation therapy and management for pediatric Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys. 2011;80:324–32. doi:10.1016/j.ijrobp.2010.02.002.

    Article  PubMed  Google Scholar 

  42. Shahidi M, Kamangari N, Ashley S, et al. Site of relapse after chemotherapy alone for stage I and II Hodgkin’s disease. Radiother Oncol. 2006;78:1–5. doi:10.1016/j.radonc.2005.10.018.

    Article  PubMed  Google Scholar 

  43. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics. 1999;19:61–77. doi:10.1148/radiographics.19.1.g99ja0761, quiz 150–1.

    Article  CAS  PubMed  Google Scholar 

  44. Specht L, Yahalom J, Illidge T, et al. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys. 2014;89:854–62. doi:10.1016/j.ijrobp.2013.05.005.

    Article  PubMed  Google Scholar 

  45. Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med. 1996;23:1409–15.

    Article  CAS  PubMed  Google Scholar 

  46. Terezakis SA, Hunt MA, Kowalski A, et al. [18F]FDG-positron emission tomography coregistration with computed tomography scans for radiation treatment planning of lymphoma and hematologic malignancies. Int J Radiat Oncol Biol Phys. 2011;81:615–22. doi:10.1016/j.ijrobp.2010.06.044.

    Article  PubMed  Google Scholar 

  47. Walker AJ, Chirindel A, Hobbs RF, et al. Use of standardized uptake value thresholding for target volume delineation in pediatric Hodgkin lymphoma. Pract Radiat Oncol. 2015;5:219–27. doi:10.1016/j.prro.2014.12.004.

    Article  PubMed  Google Scholar 

  48. Wernecke K, Vassallo P, Rutsch F, et al. Thymic involvement in Hodgkin disease: CT and sonographic findings. Radiology. 1991;181:375–83. doi:10.1148/radiology.181.2.1924775.

    Article  CAS  PubMed  Google Scholar 

  49. Yahalom J, Mauch P. The involved field is back: issues in delineating the radiation field in Hodgkin’s disease. Ann Oncol. 2002;13 Suppl 1:79–83. doi:10.1093/annonc/mdf616.

    Article  PubMed  Google Scholar 

  50. Yaremko B, Riauka T, Robinson D, et al. Thresholding in PET images of static and moving targets. Phys Med Biol. 2005;50:5969–82. doi:10.1088/0031-9155/50/24/014.

    Article  PubMed  Google Scholar 

  51. Yeung HWD, Grewal RK, Gonen M, et al. Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med. 2003;44:1789–96.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie A. Terezakis MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Walker, A.J., Terezakis, S.A. (2016). PET/CT in RT Planning. In: Gallamini, A. (eds) PET Scan in Hodgkin Lymphoma. Springer, Cham. https://doi.org/10.1007/978-3-319-31797-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31797-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31795-3

  • Online ISBN: 978-3-319-31797-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics