Skip to main content

Brain Tumors

  • Chapter
  • First Online:
PET-CT and PET-MRI in Neurology

Abstract

Positron emission tomography / computed tomography (PET/CT) and PET / magnetic resonance (PET/MR) with several tracers has been used to investigate the cellular physiopathology of brain tumors. For prediction of tumor grading, [18F]-fluorodeoxyglucose ([18F]-FDG) is more accurate than most amino acid tracers, while amino acid tracers, typically 11C-methionine, L-3,4-dihydroxyphenylalanine ([18F]-fluorodopa) and to a lesser extent O-(2-[18F]-fluoroethyl)-L-tyrosine, are more accurate than [18F]-FDG for the distinction between tumor recurrence and radiation necrosis. Changes after therapy as well as baseline tracer uptake in untreated patients have prognostic value. Post-surgical scans can be used for identification of residual tumor. PET, in combination with MR, is increasingly used for the definition of the tumor volume that has to be targeted by radiation therapy. Identification of the metabolically active volume can also be used to direct stereotaxic biopsy. Other tracers have been developed to explore different biochemical processes, for example hypoxia ([18F]-fluoromisonidazole), DNA synthesis (3-deoxy-3-[18F]-fluorothymidine, and membrane proliferation (radiolabeled choline). However, these radiopharmaceuticals presently have a more uncertain role in the clinical routine, even though some interesting results are emerging from the first clinical studies. The recent development of PET/MR hybrid scanners has represented a technological breakthrough with immediate consequences on improved diagnostic and research capabilities, as well as on logistical issues favorable for the patient, who can perform two examinations at a single time (“one-stop-shop”). This is particularly true for simultaneous systems in which the PET is within the magnetic field and the traditional PET detection system, classically based on photomultipliers, is replaced by magnetic field-insensitive avalanche photodiodes or silicon-based elements. The combination of the PET/ and MR has already proved to provide a complex synergistic effect. However, the use of PET/MR scanners is currently limited to restricted research centers owing to high costs, demanding maintenance, and necessary interdisciplinary personnel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshar-Oromieh A, Giesel FL et al (2012) Detection of cranial meningiomas: comparison of (6)(8)Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging 39(9):1409–1415

    Article  PubMed  Google Scholar 

  2. Afshar-Oromieh A, Wolf MB et al (2015) Comparison of (6)(8)Ga-DOTATOC-PET/CT and PET/MRI hybrid systems in patients with cranial meningioma: initial results. Neuro Oncol 17(2):312–319

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alavi JB, Alavi A et al (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62(6):1074–1078

    Article  CAS  PubMed  Google Scholar 

  4. Barbosa Fde G, von Schulthess G et al (2015) Workflow in simultaneous PET/MRI. Semin Nucl Med 45(4):332–344

    Article  PubMed  Google Scholar 

  5. Bisdas S, Ritz R et al (2013) Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol 48(5):295–301

    Article  CAS  PubMed  Google Scholar 

  6. Boss A, Bisdas S et al (2010) Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 51(8):1198–1205

    Article  PubMed  Google Scholar 

  7. Boss A, Kolb A et al (2010) Diffusion tensor imaging in a human PET/MR hybrid system. Invest Radiol 45(5):270–274

    Article  PubMed  Google Scholar 

  8. Bruehlmeier M, Roelcke U et al (2004) Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J Nucl Med 45(11):1851–1859

    PubMed  Google Scholar 

  9. Buck AK, Nekolla S et al (2008) Spect/Ct. J Nucl Med 49(8):1305–1319

    Article  PubMed  Google Scholar 

  10. Catana C, Drzezga A et al (2012) PET/MRI for neurologic applications. J Nucl Med 53(12):1916–1925

    Article  PubMed  Google Scholar 

  11. Chao ST, Suh JH et al (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96(3):191–197

    Article  CAS  PubMed  Google Scholar 

  12. Choi SJ, Kim JS et al (2005) [18F]3'-deoxy-3'-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 32(6):653–659

    Article  PubMed  Google Scholar 

  13. Delso G, Furst S et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922

    Article  PubMed  Google Scholar 

  14. Di Chiro G, DeLaPaz RL et al (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32(12):1323–1329

    Article  PubMed  Google Scholar 

  15. Dunet V, Rossier C et al (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med 53(2):207–214

    Article  CAS  PubMed  Google Scholar 

  16. Filippi L, Schillaci O et al (2006) Usefulness of SPECT/CT with a hybrid camera for the functional anatomical mapping of primary brain tumors by [Tc99m] tetrofosmin. Cancer Biother Radiopharm 21(1):41–48

    Article  PubMed  Google Scholar 

  17. Filss CP, Galldiks N et al (2014) Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med 55(4):540–545

    Article  CAS  PubMed  Google Scholar 

  18. Fink J, Muzi M et al (2015) Multi-modality brain tumor imaging – MRI, PET, and PET/MRI. J Nucl Med 56(10):1554–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Floeth FW, Pauleit D et al (2007) Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 48(4):519–527

    Article  CAS  PubMed  Google Scholar 

  20. Fraioli F, Shankar A et al (2015) 18F-fluoroethylcholine (18F-Cho) PET/MRI functional parameters in pediatric astrocytic brain tumors. Clin Nucl Med 40(1):e40–e45

    Article  PubMed  Google Scholar 

  21. Garibotto V, Forster S et al (2013) Molecular neuroimaging with PET/MRI. Clin Transl Imaging 1(1):53–63

    Article  Google Scholar 

  22. Garibotto V, Heinzer S et al (2013) Clinical applications of hybrid PET/MRI in neuroimaging. Clin Nucl Med 38(1):e13–e18

    Article  PubMed  Google Scholar 

  23. Hara T, Kondo T et al (2003) Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg 99(3):474–479

    Article  PubMed  Google Scholar 

  24. Hatakeyama T, Kawai N et al (2008) 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 35(11):2009–2017

    Article  CAS  PubMed  Google Scholar 

  25. Hayashi M, Deguchi J et al (2005) Comparison of methods of attenuation and scatter correction in brain perfusion SPECT. J Nucl Med Technol 33(4):224–229

    PubMed  Google Scholar 

  26. Heiss P, Mayer S et al (1999) Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 40(8):1367–1373

    CAS  PubMed  Google Scholar 

  27. Henze M, Schuhmacher J et al (2001) PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 42(7):1053–1056

    CAS  PubMed  Google Scholar 

  28. Herholz K, Langen KJ et al (2012) Brain tumors. Semin Nucl Med 42(6):356–370

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hillner BE, Siegel BA et al (2011) Impact of dedicated brain PET on intended patient management in participants of the national oncologic PET Registry. Mol Imaging Biol 13(1):161–165

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huang SC, Phelps ME et al (1981) Error sensitivity of fluorodeoxyglucose method for measurement of cerebral metabolic rate of glucose. J Cereb Blood Flow Metab 1(4):391–401

    Article  CAS  PubMed  Google Scholar 

  31. Jansen NL, Graute V et al (2012) MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging 39(6):1021–1029

    Article  CAS  PubMed  Google Scholar 

  32. Karunanithi S, Sharma P et al (2013) 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 40(7):1025–1035

    Article  CAS  PubMed  Google Scholar 

  33. Kato T, Shinoda J et al (2008) Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol 29(6):1176–1182

    Article  CAS  PubMed  Google Scholar 

  34. Kim S, Chung JK et al (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32(1):52–59

    Article  CAS  PubMed  Google Scholar 

  35. Kubota R, Kubota K et al (1995) Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 36(3):484–492

    CAS  PubMed  Google Scholar 

  36. Milker-Zabel S, Zabel-du Bois A et al (2006) Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys 65(1):222–227

    Article  PubMed  Google Scholar 

  37. Morana G, Piccardo A et al (2014) Value of 18F-3,4-dihydroxyphenylalanine PET/MR image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study. J Nucl Med 55(5):718–723

    Article  CAS  PubMed  Google Scholar 

  38. Muzi M, Spence AM et al (2006) Kinetic analysis of 3'-deoxy-3'-18F-fluorothymidine in patients with gliomas. J Nucl Med 47(10):1612–1621

    CAS  PubMed  Google Scholar 

  39. Neuner I, Kaffanke JB et al (2012) Multimodal imaging utilising integrated MR-PET for human brain tumour assessment. Eur Radiol 22(12):2568–2580

    Article  PubMed  Google Scholar 

  40. Nihashi T, Dahabreh IJ et al (2013) Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol 34(5):944–950, S941-911

    Article  CAS  PubMed  Google Scholar 

  41. Ohtani T, Kurihara H et al (2001) Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med 28(11):1664–1670

    Article  CAS  PubMed  Google Scholar 

  42. Patronas NJ, Di Chiro G et al (1982) Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 144(4):885–889

    Article  CAS  PubMed  Google Scholar 

  43. Patronas NJ, Di Chiro G et al (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62(6):816–822

    Article  CAS  PubMed  Google Scholar 

  44. Piroth MD, Holy R et al (2011) Prognostic impact of postoperative, pre-irradiation (18)F-fluoroethyl-l-tyrosine uptake in glioblastoma patients treated with radiochemotherapy. Radiother Oncol 99(2):218–224

    Article  CAS  PubMed  Google Scholar 

  45. Pirotte BJ, Levivier M et al (2009) Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery 64(3):471–481

    Article  PubMed  Google Scholar 

  46. Preuss M, Werner P et al (2014) Integrated PET/MRI for planning navigated biopsies in pediatric brain tumors. Childs Nerv Syst 30(8):1399–1403

    Article  PubMed  Google Scholar 

  47. Queiroz MA, Delso G et al (2015) Dose optimization in TOF-PET/MR compared to TOF-PET/CT. PLoS One 10(7):e0128842

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ratib O, Beyer T (2011) Whole-body hybrid PET/MRI: ready for clinical use? Eur J Nucl Med Mol Imaging 38(6):992–995

    Article  PubMed  Google Scholar 

  49. Schlemmer HP, Pichler BJ et al (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248(3):1028–1035

    Article  PubMed  Google Scholar 

  50. Schwenzer NF, Stegger L et al (2012) Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients-current state of image quality. Eur J Radiol 81(11):3472–3478

    Article  CAS  PubMed  Google Scholar 

  51. Sokoloff L, Reivich M et al (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916

    Article  CAS  PubMed  Google Scholar 

  52. Swanson KR, Chakraborty G et al (2009) Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med 50(1):36–44

    Article  PubMed  PubMed Central  Google Scholar 

  53. Talbot JN, Kerrou K et al (2007) FDOPA PET has clinical utility in brain tumour imaging: a proposal for a revision of the recent EANM guidelines. Eur J Nucl Med Mol Imaging 34(7):1131–1132, author reply 1133–1134

    Article  PubMed  Google Scholar 

  54. Terakawa Y, Tsuyuguchi N et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699

    Article  PubMed  Google Scholar 

  55. Thorwarth D, Muller AC et al (2013) Combined PET/MR imaging using (68)Ga-DOTATOC for radiotherapy treatment planning in meningioma patients. Recent Results Cancer Res 194:425–439

    Article  CAS  PubMed  Google Scholar 

  56. Utriainen M, Komu M et al (2003) Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J Neurooncol 62(3):329–338

    Article  CAS  PubMed  Google Scholar 

  57. Valk PE, Mathis CA et al (1992) Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 33(12):2133–2137

    CAS  PubMed  Google Scholar 

  58. Van Laere K, Ceyssens S et al (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32(1):39–51

    Article  CAS  PubMed  Google Scholar 

  59. von Schulthess GK, Veit-Haibach P (2015) Guest editorial. Semin Nucl Med 45(3):189–191

    Article  Google Scholar 

  60. Weber W, Bartenstein P et al (1997) Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med 38(5):802–808

    CAS  PubMed  Google Scholar 

  61. Wester HJ, Herz M et al (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40(1):205–212

    CAS  PubMed  Google Scholar 

  62. Zaidi H, Ojha N et al (2011) Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol 56(10):3091–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Giovacchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giovacchini, G., Salati, V., Garibotto, V. (2016). Brain Tumors. In: Ciarmiello, A., Mansi, L. (eds) PET-CT and PET-MRI in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-31614-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31614-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31612-3

  • Online ISBN: 978-3-319-31614-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics