Skip to main content
Log in

Nanocalorimetric Characterization of the Heterogeneous Nucleation of Rapidly Solidified Bismuth Droplets Embedded in a Zinc Matrix

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this paper, Zn-10Bi (wt.%) alloy with Bi droplets in size from micro- to nanometers embedded in the Zn matrix was prepared. Nanocalorimetry was used to investigate the melting and solidification behavior of the embedded Bi droplets. In the heating process, two endothermic peaks were observed attributing to the high sensitivity of the nanocalorimeter. One is close to the eutectic temperature of Zn-Bi alloy (527 K), while the other is close to the melting point of bulk Bi (544 K). In the cooling process, the Bi droplets solidify in a wide temperature range. The results demonstrate that the Bi droplets melt at the higher temperature but their solidification demand a larger undercooling. In addition, the nucleation kinetics of rapidly solidified nano-sized Bi droplets was studied based on the hemispherical cap model of heterogeneous nucleation, and the calculated results reveal the validity of classical heterogeneous nucleation theory in nano-scale at relative high cooling rates. In a word, due to the high sensitivity and large controllable cooling rate, nanocalorimetry will be a promising technique to investigate the rapid solidification behavior of embedded nano-sized droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Turnbull, J. Chem. Phys. 18, 198 (1950).

    Article  Google Scholar 

  2. J.H. Perepezko, P.G. Höckel, and J.S. Paik, Thermochim. Acta 388, 129 (2002).

    Article  Google Scholar 

  3. G. Wilde, J.L. Sebright, and J.H. Perepezko, Acta Mater. 54, 4759 (2006).

    Article  Google Scholar 

  4. J.H. Perepezko, J.L. Sebright, P.G. Höckel, and G. Wilde, Mater. Sci. Eng., A 326, 144 (2002).

    Article  Google Scholar 

  5. D. Turnbull, J. Chem. Phys. 20, 411 (1952).

    Article  Google Scholar 

  6. J.H. Perepezko, Mater. Sci. Eng., A 178, 105 (1994).

    Article  Google Scholar 

  7. W.T. Kim, D.L. Zhang, and B. Cantor, Metall. Trans. A 22, 2487 (1991).

    Article  Google Scholar 

  8. H.W. Sheng, K. Lu, and E. Ma, Acta Mater. 46, 5195 (1998).

    Article  Google Scholar 

  9. J.C. Park, W.T. Kim, D.H. Kim, and J.R. Kim, Mater. Sci. Eng., A 304, 225 (2001).

    Article  Google Scholar 

  10. A. Singh, H. Somekawa, Y. Matsushita, and A.P. Tsai, Philos. Mag. 92, 1106 (2012).

    Article  Google Scholar 

  11. W.T. Kim and B. Cantor, J. Mater. Sci. 26, 2868 (1991).

    Article  Google Scholar 

  12. D.L. Zhang and B. Cantor, Philos. Mag. A 62, 557 (1990).

    Article  Google Scholar 

  13. K.I. Moore, D.L. Zhang, and B. Cantor, Acta Metall. Mater. 38, 1327 (1990).

    Article  Google Scholar 

  14. D.L. Zhang, K. Chattopadhyay, and B. Cantor, J. Mater. Sci. 26, 1531 (1991).

    Article  Google Scholar 

  15. R. Goswami and K. Chattopadhyay, Philos. Mag. Lett. 72, 411 (1995).

    Article  Google Scholar 

  16. J.H. Li, M.Z. Zarif, M. Albu, B.J. McKay, F. Hofer, and P. Schumacher, Acta Mater. 72, 80 (2014).

    Article  Google Scholar 

  17. W.T. Kim and B. Cantor, Acta Metall. Mater. 40, 3339 (1992).

    Article  Google Scholar 

  18. E. Zhuravlev and C. Schick, Thermochim. Acta 505, 1 (2010).

    Article  Google Scholar 

  19. Y.L. Gao, E. Zhuravlev, C.D. Zou, B. Yang, Q.J. Zhai, and C. Schick, Thermochim. Acta 482, 1 (2009).

    Article  Google Scholar 

  20. B.G. Zhao, L.F. Li, Q.J. Zhai, and Y.L. Gao, Appl. Phys. Lett. 103, 131913 (2013).

    Article  Google Scholar 

  21. B. Yang, J.H. Perepezko, J.W.P. Schmelzer, Y.L. Gao, and C. Schick, J. Chem. Phys. 140, 104513 (2014).

    Article  Google Scholar 

  22. B. Yang, A.S. Abyzov, E. Zhuravlev, Y.L. Gao, J.W.P. Schmelzer, and C. Schick, J. Chem. Phys. 138, 054501 (2013).

    Article  Google Scholar 

  23. B. Yang, Y.L. Gao, C.D. Zou, Q.J. Zhai, A.S. Abyzov, E. Zhuravlev, J.W.P. Schmelzer, and C. Schick, Appl. Phys. A 104, 189 (2011).

    Article  Google Scholar 

  24. B.G. Zhao, J. Zhao, W.P. Zhang, B. Yang, Q.J. Zhai, C. Schick, and Y.L. Gao, Thermochim. Acta 565, 194 (2013).

    Article  Google Scholar 

  25. B.G. Zhao, L.F. Li, B. Yang, M. Yan, Q.J. Zhai, and Y.L. Gao, J. Alloys Compd. 580, 386 (2013).

    Article  Google Scholar 

  26. R. Goswami and K. Chattopadhyay, Acta Mater. 52, 5503 (2004).

    Article  Google Scholar 

  27. A.G. Gillen and B. Cantor, Acta Metall. 33, 1813 (1985).

    Article  Google Scholar 

  28. K.A.Q. O’Reilly and B. Cantor, Acta Metall. Mater. 43, 405 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. Also, the National Natural Science Foundation of China (51171105, 50971086) and the 085 project in Shanghai University are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulai Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhao, B., Yang, B. et al. Nanocalorimetric Characterization of the Heterogeneous Nucleation of Rapidly Solidified Bismuth Droplets Embedded in a Zinc Matrix. JOM 67, 2881–2886 (2015). https://doi.org/10.1007/s11837-014-1214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1214-6

Keywords

Navigation