Skip to main content
Log in

Ions in liquid metal clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

From the results of computer simulations, especially of 13-atom metal clusters by molecular dynamics, we derive a theory of the solid–liquid phase transition in metal clusters that connects to the jellium model. We analyze the nature of the ion’s behavior in liquid clusters. As a result, we find a dynamical coexistence among the cluster’s configurational states create the liquid aggregate state of this cluster. It follows from the entropy analysis that motions of the ions in liquid metal clusters explore a selective set of ion configurations, rather than following independent motions in a self-consistent cluster field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Piotrowski MJ, Piquini P, Da Silva JLF (2010) Phys Rev B 81(1–14):155466

    Google Scholar 

  2. Larsen AH, Kleis J, Thygesen KS, Nrskov JK, Jacobsen KW (2011) Phys Rev B 84(1–13):245429

    Article  Google Scholar 

  3. Chou JP, Hsing CR, Wei CM, Cheng C, Chang CM (2013) J Phys Condens Matter 25(1–8):125305

    Article  CAS  Google Scholar 

  4. Jellinek J, Beck TL, Berry RS (1986) J Chem Phys 84:2783–2794

    Article  CAS  Google Scholar 

  5. Davis HL, Jellinek J, Berry RS (1987) J Chem Phys 86:6456–6469

    Article  CAS  Google Scholar 

  6. Arslan H, Güven MH (2005) N J Phys 7:60

    Article  Google Scholar 

  7. Berry RS, Jellinek J, Natanson G (1984) Phys Rev A 30:919–931

    Article  CAS  Google Scholar 

  8. Berry RS, Beck TL, Davis HL, Jellinek J (1988) Adv Chem Phys 90(Part 2):75–138

  9. Berry RS (1993) Chem Rev 93:2379–2394

    Article  CAS  Google Scholar 

  10. Berry RS (1999) In: Jellinek J (ed) Theory of atomic and molecular clusters. Springer, Berlin, pp 1–26

  11. Berry RS, Smirnov BM (2013) Phys Rep 527:205–250

    Article  CAS  Google Scholar 

  12. Doye JPK, Wales DJ (1995) J Chem Phys 102:9659–9672

    Article  CAS  Google Scholar 

  13. Berry RS, Smirnov BM (2004) JETP 98:366–373

    Article  CAS  Google Scholar 

  14. Berry RS, Smirnov BM (2005) Phys Uspekhi 48:345–388

    Article  CAS  Google Scholar 

  15. Sebetci A, Guvenc ZB (2004) Model Simul Mater Sci Eng 12:1131–1138

    Article  CAS  Google Scholar 

  16. Arslan H, Güven MH (2006) Acta Phys Slovac 56:511–520

    CAS  Google Scholar 

  17. Yildirim EK, Atis M, Guvenc ZB (2007) Phys Scr 75:111–118

    Article  CAS  Google Scholar 

  18. Wales DJ (2003) Energy landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  19. Hoare MR, Pal P (1971) Adv Phys 20:161–196

    Article  CAS  Google Scholar 

  20. Hoare MR, Pal P (1975) Adv Phys 24:645–678

    Article  CAS  Google Scholar 

  21. Hoare MR (1979) Adv Chem Phys 40:49–135

    CAS  Google Scholar 

  22. Smirnov BM, Berry RS (2008) Phase transitions of simple systems. Springer, Berlin

    Google Scholar 

  23. Mackay AL (1962) Acta Crystallogr 15:916–918

    Article  CAS  Google Scholar 

  24. Sutton AP, Finnis MW, Pettifor DG, Ohta Y (1988) J Phys C 21:35–66

    Article  Google Scholar 

  25. Zhou Y, Karplus M, Ball KD, Berry RS (2002) J Chem Phys 116:2323–2329

    Article  CAS  Google Scholar 

  26. Berry RS, Smirnov BM (2009) Low Temp Phys 35:256–264

    Article  CAS  Google Scholar 

  27. Berry RS, Smirnov BM (2001) J Chem Phys 114:6816–6823

    Article  CAS  Google Scholar 

  28. Berry RS, Smirnov BM (2005) J Noncryst Sol 351:1543–1550

    Article  CAS  Google Scholar 

  29. Cheng HP, Berry RS (1992) Phys Rev A 45:7969–7980

    Article  CAS  Google Scholar 

  30. Sutton AP, Chen J (1990) Philos Mag Lett 61:139–146

    Article  Google Scholar 

  31. Häberlen OD, Chung S-C, Stener M, Rösch N (1997) J Chem Phys 106:5189–5201

  32. Doye JPK, Wales DJ (1997) J Chem Soc Faraday Trans 93:4233–4243

    Article  CAS  Google Scholar 

  33. Doye JPK, Wales DJ (1998) N J Chem 22:733–744

    Article  CAS  Google Scholar 

  34. Wilson NT, Johnston RL (2000) Eur Phys J D 12:161–169

    Article  CAS  Google Scholar 

  35. Darby S, Mortimer-Jones TV, Johnston RL, Roberts C (2002) J Chem Phys 116:1536–1550

    Article  CAS  Google Scholar 

  36. Wang J, Wang G, Zhao J (2002) Phys Rev B 66(1–6):035418

    Article  Google Scholar 

  37. Oviedo J, Palmer RE (2002) J Chem Phys 117:9548–9551

    Article  CAS  Google Scholar 

  38. Johansson MP, Lechtken A, Schooss D, Kappes MM, Furche F (2008) Phys Rev A 77(1–7):053202

    Article  Google Scholar 

  39. Garzon IL, Jellinek J (1993) Z Phys D 26:316–318

    Article  CAS  Google Scholar 

  40. Ekardt W (1984) Phys Rev B 29:1558–1564

    Article  CAS  Google Scholar 

  41. Ekardt W (1985) Phys Rev B 31:6360–6370

    Article  CAS  Google Scholar 

  42. Chou MY, Cohen ML (1986) Phys Lett A 113:420–424

    Article  Google Scholar 

  43. Manninen M (1986) Phys Rev B 34:6886–6894

    Article  CAS  Google Scholar 

  44. Cohen ML, Chou MY, Knight WD, de Heer WA (1987) J Phys Chem 91:3141–3149

    Article  CAS  Google Scholar 

  45. Yannouleas C, Broglia RA, Brack M, Bortignon PF (1989) Phys Rev Lett 63:255–258

    Article  CAS  Google Scholar 

  46. Brack M (1989) Phys Rev B 39:3533–3542

    Article  Google Scholar 

  47. Nishioka H, Hansen K, Mottelson BR (1990) Phys Rev B 42:9377–9386

    Article  CAS  Google Scholar 

  48. Genzken O, Brack M (1991) Phys Rev Lett 67:3286–3289

    Article  CAS  Google Scholar 

  49. de Heer WA (1993) Rev Mod Phys 65:611–676

    Article  Google Scholar 

  50. Thomson JJ (1904) Philos Mag 7:237

    Article  CAS  Google Scholar 

  51. Wigner EP, Seitz F (1934) Phys Rev 46:509–524

    Article  CAS  Google Scholar 

  52. Wigner EP (1934) Phys Rev 46:1002–1011

    Article  CAS  Google Scholar 

  53. Kittel C (1970) Thermal physics. Wiley, New York

    Google Scholar 

  54. Kittel C, Kroemer H (1980) Thermal physics. Wiley, New York

    Google Scholar 

  55. Smirnov BM (1999) Clusters and small particles in gases and plasmas. Springer, New York

    Google Scholar 

  56. Landau LD, Lifshitz EM (1980) Statistical physics, vol 1. Pergamon Press, Oxford

    Google Scholar 

  57. Smirnov BM (2006) Principles of statistical physics. Wiley VCH, Berlin

    Book  Google Scholar 

  58. Berry RS, Smirnov BM (2009) J Chem Phys 130(1–8):064302

    Article  Google Scholar 

  59. Berry RS, Smirnov BM (2009) Phys Uspekhi 52:137–164

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stephen Berry.

Additional information

Dedicated to Professor Greg Ezra and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berry, R.S., Smirnov, B.M. Ions in liquid metal clusters. Theor Chem Acc 133, 1543 (2014). https://doi.org/10.1007/s00214-014-1543-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1543-0

Keywords

Navigation