Skip to main content

Controls on Distribution Patterns of Biological Soil Crusts at Micro- to Global Scales

  • Chapter
  • First Online:
Biological Soil Crusts: An Organizing Principle in Drylands

Abstract

Biological soil crusts (biocrusts) are heterogeneously distributed in space, and the drivers of their distribution depend on the spatial scale of observation. Globally, there are about 1544 cyanobacteria, algae, bryophyte, and lichen species reported as components of biocrusts. At the global scale, the degree and age of isolation of land masses may dictate distribution of these species and the similarities of the floras of different continents. At intracontinental and smaller scales, climate strongly influences abundance and community composition of biocrusts. Within drylands, biocrusts become more abundant and diverse with increases in precipitation. The seasonality of rainfall is about equally important, with regions receiving the most precipitation in winter exhibiting the highest abundance. At ecoregional and smaller scales, edaphic gradients become particularly influential. The most significant soil properties influencing the cover, richness, and composition of biocrusts in dryland environments are soil texture, pH, and calcareousness. Additionally, gypsiferous soils are often associated with distinct floras and high abundance and diversity of biocrusts, especially lichens. At local to microscales, biocrusts often are better developed in habitats with lower radiation loads such as polar-oriented slopes or shaded habitats. Also at small scales, vascular plant canopies buffer microclimate for biocrusts, but also can exert negative influences such as burial by litter. While our knowledge of biocrust distribution has advanced rapidly, there are considerable geographic and taxonomic gaps in our knowledge and a pronounced lack of truly global studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abed RMM, Al-Kharesi S, Schramm A, Robinson MD (2010) Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. FEMS Microbiol Ecol 72:418–428

    Article  CAS  PubMed  Google Scholar 

  • Abed RMM, Al-Sadi AM, Al-Shehi M, Al-Hinai S, Robinson MD (2013) Diversity of free-living and lichenized fungal communities in biological soil crust of the Sultanate of Oman and their role in improving soil properties. Soil Biol Biochem 57:695–705

    Article  CAS  Google Scholar 

  • Azúa-Bustos A, González-Silva C, Mancilla RA, Salas L, Palma RE, Wynne JJ, McKay CP (2009) Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave. Microb Ecol 58:485–496. doi:10.1007/s00248-009-9500-5

    Article  PubMed  Google Scholar 

  • Azúa-Bustos A, González-Silva C, Mancilla RA, Salas L, Gómez-Silva B, McKay CP, Vicuña R (2011) Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb Ecol 61:568–581

    Article  PubMed  Google Scholar 

  • Beaugendre N, Choney A, Sannier C, Malam Issa O, Desprat JF, Cerdan O (2012) A predictive model of spatial distribution of Biological Soil Crust in the Sahel from local to regional scale. Paper presented at the European Geosciences Union General Assembly, Vienna, Austria, 22–27 Apr 2012

    Google Scholar 

  • Belnap J, Lange OL (eds) (2003) Biological soil crusts: structure, function and management. Springer, Berlin

    Google Scholar 

  • Belnap J, Büdel B, Lange OL (2003) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 3–30

    Chapter  Google Scholar 

  • Belnap J, Welter JR, Grimm NB, Barger NN, Ludwig JA (2005) Linkages between microbial and hydrologic processes in arid and semi-arid watersheds. Ecology 86:298–307

    Article  Google Scholar 

  • Belnap J, Miller DM, Bedford DR, Phillips SL (2014) Pedological and geological relationships with soil lichen and moss distribution in the eastern Mojave Desert, CA, USA. J Arid Environ 106:45–57

    Article  Google Scholar 

  • Bontemps S, Defourny P, Radoux J, van Bogaert E, Lamarche C, Achard F, Mayaux P, Boettcher M, Brockmann C, Kirches G, Zülkhe M, Kalogirou V, Arino O (2013) Consistent global land cover maps for climate modeling communities: current achievements of the ESA’s land cover CCI. Paper presented at the ESA Living Planet Symposium, Edinburgh, United Kingdom, 9–13 Sept 2013

    Google Scholar 

  • Bowker MA, Belnap J (2008) A simple classification of soil types as habitats of biological soil crusts on the Colorado Plateau, USA. J Veg Sci 19:31–840

    Article  Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Phillips SL (2005) Evidence for micronutrient limitation of biological soil crusts: importance to arid-lands restoration. Ecol Appl 15:1941–1951

    Article  Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Goldstein H (2006a) Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. J Appl Ecol 43:152–163

    Article  Google Scholar 

  • Bowker MA, Belnap J, Miller ME (2006b) Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangel Ecol Manag 59:519–529

    Article  Google Scholar 

  • Briggs A, Morgan JW (2008) Morphological diversity and abundance of biological soil crusts differ in relation to landscape setting and vegetation type. Aust J Bot 56:245–253

    Google Scholar 

  • Bryce SA, Strittholt JR, Ward BC, Bachelet DM (2012) Colorado Plateau rapid ecoregional assessment report. Bureau of Land Management, Denver

    Google Scholar 

  • Büdel B (2003) Synopsis: comparative biogeography of soil-crust biota. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 141–152

    Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    Article  PubMed  Google Scholar 

  • Büdel B, Colesie C, Green TGA, Grube M, Lázaro Suau R, Loewen-Schneider K, Maier S, Peer T, Pintado A, Raggio J, Ruprecht U, Sancho L, Schroeter B, Türk R, Weber B, Wedin M, Westberg M, Williams L, Zheng L (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe—the Soil Crust International project (SCIN). Biodivers Conserv 23:1639–1658

    Article  PubMed  PubMed Central  Google Scholar 

  • Concostrina-Zubiri L, Martínez I, Rabasa SG, Escudero A (2013) The influence of environmental factors on biological soil crust: from a community perspective to a species level approach. J Veg Sci 25(2):503–513. doi:10.1111/jvs.12084

    Article  Google Scholar 

  • Csotonyi JT, Addicott JF (2004) Influence of trampling-induced microtopography on growth of the soil crust bryophyte Ceratodon purpureus. Can J Bot 82:1382–1392

    Article  Google Scholar 

  • De los Rios A, Raggio J, Pérez-Ortega S, Vivas M, Pintado A, Green TGA, Ascaso C, Sancho LG (2011) Anatomical, morphological and ecophysiological strategies in Placopsis pycnotheca (lichenized fungi, Ascomycota) allowing rapid colonization of recently deglaciated soils. Flora 206:857–864

    Article  Google Scholar 

  • Dettweiler-Robinson E, Bakker JD, Grace JB (2013a) Controls of biological soil crust cover and composition shift with succession in sagebrush shrub-steppe. J Arid Environ 94:96–104

    Article  Google Scholar 

  • Dettweiler-Robinson E, Ponzetti JM, Bakker JD (2013b) Long-term changes in biological soil crust cover and composition. Ecol Process 2:5

    Article  Google Scholar 

  • Dojani S, Kauff F, Weber B, Büdel B (2014) Genotypic and phenotypic diversity of cyanobacteria in biological soil crusts of the Succulent Karoo and Nama Karoo of Southern Africa. Microb Ecol 67:286–301

    Article  PubMed  Google Scholar 

  • Dunkerley DL, Brown KJ (1995) Runoff and runon areas in a patterned chenopod shrubland, arid western New South Wales, Australia: characteristics and origin. J Arid Environ 30:41–55

    Article  Google Scholar 

  • Eldridge DJ (1996) Distribution and floristics of terricolous lichens in soil crusts in arid and semi-arid New South Wales, Australia. Aust J Bot 44:581–599

    Article  Google Scholar 

  • Eldridge DJ (2003) Biological soil crusts of Australia. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 119–132

    Google Scholar 

  • Eldridge DJ, Koen TB (1998) Cover and floristics of microphytic soil crusts in relation to indices of landscape health. Plant Ecol 137:101–114

    Article  Google Scholar 

  • Eldridge DJ, Tozer ME (1997) Environmental factors relating to the distribution of terricolous bryophytes and lichens in semi-arid Eastern Australia. Bryologist 100:28–39

    Article  Google Scholar 

  • Eldridge DJ, Zaady E, Shachak M (2002) The impact of disturbance on runoff and sediment production and its implications for the management of desert ecosystems. Landsc Ecol 17:587–597

    Article  Google Scholar 

  • Eldridge DJ, Freudenberger D, Koen TB (2005) Diversity and abundance of biological soil crust taxa in relation to fine- and coarse-scale disturbances in a grassy eucalypt woodland in eastern Australia. Plant Soil 281:255–268

    Article  CAS  Google Scholar 

  • Flechtner VR (2007) North American desert microbiotic soil crust communities. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, Dordrecht, pp 539–551

    Google Scholar 

  • Flechtner VR, Johansen JR, Clark WH (1998) Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Nat 58:295–311

    Google Scholar 

  • Flechtner VR, Johansen JR, Belnap J (2008) The biological soil crusts of the San Nicolas Island: enigmatic algae from a geographically isolated ecosystem. West N Am Nat 68:405–436

    Article  Google Scholar 

  • Forest HS, Weston CR (1966) Blue-green algae from the Atacama Desert of Northern Chile. J Phycol 2:163–164

    Article  CAS  PubMed  Google Scholar 

  • Frey W, Herrnstadt I, Kürschner H (1990) Verbreitung und Soziologie terrestrischer Bryophytengesellschaften in der Jüdäischen Wüste. Phytocoenologia 19:233–265

    Article  Google Scholar 

  • Fritsch FE (1916) The morphology and ecology of an extreme terrestrial form of Zygnema (Zygogonium) ericetorum (Kuetz.) Hansg. Ann Bot 30:135–149

    Article  Google Scholar 

  • Galun M, Bubrick P, Garty J (1982) Structural and metabolic diversity of two desert-lichen populations. J Hattori Bot Lab 53:321–324

    Google Scholar 

  • Garcia-Pichel F, Belnap J (2003) Small scale environments and distribution of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 193–202

    Google Scholar 

  • Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Portrafka RM (2013) Temperatures drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577

    Article  CAS  PubMed  Google Scholar 

  • George DB, Davidson DW, Schleip KC, Patrell-Kim LJ (2000) Microtopography of microbiotic crusts on the Colorado Plateau, and the distribution of component organisms. West N Am Nat 60:343–354

    Google Scholar 

  • Haarmeyer DH, Luther-Mosebach J, Dengler J, Schmiedel U, Finckh M et al (2010) Biodiversity in southern Africa. In: Patterns at local scale—the BIOTA observatories, vol 1. Klaus Hess Publishers, Göttingen, Windhoek, pp 1–801

    Google Scholar 

  • Hawkes CV, Flechtner VR (2002) Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microb Ecol 43:1–12

    Article  CAS  PubMed  Google Scholar 

  • Hernandez RR, Knudsen K (2012) Late-successional biological soil crusts in a biodiversity hotspot: an example of congruency in species richness. Biodivers Conserv 21:1015–1031

    Article  Google Scholar 

  • Hernstadt I, Kidron G (2005) Reproductive strategies of Bryum dunense in three microhabitats in the Negev Desert. Bryologist 108:101–109

    Article  Google Scholar 

  • Hu C, Zhang D, Huang Z, Liu Y (2003) The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil 257:97–111

    Article  CAS  Google Scholar 

  • Kidron GJ, Vonshak A, Dor I, Barinova S, Abeliovich A (2010) Properties and spatial distribution of microbiotic crusts in the Negev Desert, Israel. Catena 82:92–101

    Article  CAS  Google Scholar 

  • Lalley JS, Viles HA, Copeman N, Cowley C (2006) The influence of multi-scale environmental variables on the distribution of terricolous lichens in a fog desert. J Veg Sci 17:831–838

    Article  Google Scholar 

  • Lange OL (2003) Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin, pp 217–240

    Google Scholar 

  • Langhans TM, Storm C, Schwabe A (2010) Regeneration processes of biological soil crusts, macro-cryptogams and vascular plant species after fine-scale disturbance in a temperate region: recolonization or successional replacement? Flora 205:46–60

    Article  Google Scholar 

  • Lewis LA, Flechtner VR (2002) Green algae (Chlorophyta) of desert microbiotic crusts: diversity of North American taxa. Taxon 51:443–451

    Article  Google Scholar 

  • Li X-R, He M-Z, Zerbe S, Li X-J, Liu L-C (2010) Micro-geomorphology determines community structure of biological soil crusts at small scales. Earth Surf Process Landf 35:932–940

    Article  CAS  Google Scholar 

  • Lobel S, Dengler J, Hobohm C (2006) Species richness of vascular plants, bryophytes and lichens in dry grasslands: the effects of environment, landscape structure and competition. Folia Geobot 41:377–393

    Article  Google Scholar 

  • Loppi S, Boscagli A, De Dominicis V (2004) Ecology of soil lichens from Pliocene clay badlands of central Italy in relation to geomorphology and vascular vegetation. Catena 55:1–15

    Article  Google Scholar 

  • Ludwig J, Tongway D, Freudenberger D, Noble J, Hodgkinson K (1997) Landscape ecology: functions and management. CSIRO, Collingwood

    Google Scholar 

  • Maestre FT (2003) Small scale spatial patterns of two soil lichens in semi-arid Mediterranean steppe. Lichenologist 35:71–81

    Article  Google Scholar 

  • Maestre FT, Cortina J (2002) Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil 241:279–291

    Article  CAS  Google Scholar 

  • Malam Issa O, Trichet J, Défarge C, Couté A, Valentin C (1999) Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37:175–187

    Article  Google Scholar 

  • Malam Issa O, Rajot JL, Languille J, Joulian C, Naisse C (2010) Microbiotic soil crusts distribution and characteristics across latitudinal gradient in Sahelian part of Western Niger. Paper presented at Biological Soil Crusts in Ecosystems—their Diversity, Ecology, and Management Workshop Zellingen-Retzbach, Germany, 22–25 Aug 2010

    Google Scholar 

  • Marsh J, Nouvet S, Sanborn P, Coxson D (2006) Composition and function of biological soil crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane). Can J Bot 84:717–736

    Article  Google Scholar 

  • Marshall WA, Chalmers MO (1997) Airborne dispersal of Antarctic soil algae and cyanobacteria. Ecography 20:585–594

    Article  Google Scholar 

  • Martínez I, Escudero A, Maestre FT (2006) Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments. Aust J Bot 54:339–348

    Article  Google Scholar 

  • McCune B, Rosentreter R (2007) Biotic soil crust lichens of the Columbia Basin. Northwest Lichenologists, Corvallis, pp 1–105

    Google Scholar 

  • Miller DM, Bedford DR, Hughson DL, McDonald EV, Robinson SE, Schmidt KM (2009) Mapping Mojave Desert ecosystem properties with surficial geology. In: Webb RH, Fenstermaker LF, Heaton JS, Hughson DL, McDonald EV, Miller DM (eds) The Mojave Desert. University of Nevada Press, Reno, pp 225–251

    Google Scholar 

  • Montoya H, Gómez J, Vera G (1998) Cultivo de cianobacterias de costras algal-liquénicas de las Lomas de Pachacamac, Lima. Biotempo 3:7–16

    Google Scholar 

  • Nagy ML, Pérez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245

    Article  CAS  PubMed  Google Scholar 

  • Nash TH III, White SL, Marsh JE (1977) Lichen and moss distribution and biomass in hot desert ecosystems. Bryologist 80:470–479

    Article  Google Scholar 

  • Novichkova-Ivanova LN (1972) Soil algae of middle Asia deserts. USSR, Leningrad, pp 180–182

    Google Scholar 

  • Novichkova-Ivanova LN (1980) Bodenalgen der phytozönosen von Sahara-Gobi Wüstengebieten. Akademie der Wissenschaft Sow. Union

    Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Ochoa-Hueso R, Hernandez RR, Pueyo J, Manrique E (2011) Spatial distribution and physiology of biological soil crusts from semi-arid central Spain are related to soil chemistry and shrub cover. Soil Biol Biochem 43:1894–1901

    Article  CAS  Google Scholar 

  • Pallas PS (1776) Reise durch verschiedene Provinzen des Russischen Reiches in einem ausführlichen Auszuge. Johann Georg Fleischer, Frankfurt

    Google Scholar 

  • Peterson FF (1981) Landforms of the basin and range, defined for soil survey. Technical Bulletin, 28

    Google Scholar 

  • Pharo EJ, Beattie AJ (1997) Bryophyte and lichen diversity: a comparative study. Austral Ecol 22:151–162

    Article  Google Scholar 

  • Phillipson J (1935) Some algae of Victorian soils. Proc Roy Soc Victoria 47:262–287

    Google Scholar 

  • Pichrtova M, Veselá J, Holzinger A, Hájek T. (2013) Diversity and desiccation tolerance of Zygnema and Zygnemopsis from the Arctic and Antarctica. 10th International Phycological Congress (4–10 August) Poster

    Google Scholar 

  • Pietrasiak N, Johansen JR, Drenovsky RE (2011a) Geologic composition influences distribution of microbiotic crusts in the Mojave and Colorado Deserts at the regional scale. Soil Biol Biochem 43:9767–9974

    Article  CAS  Google Scholar 

  • Pietrasiak N, Johansen JR, LaDoux T, Graham RC (2011b) Comparison of disturbance impacts to and spatial distribution of biological soil crusts in the little San Bernardino Mountains of Joshua Tree National Park, California. West N Am Nat 71:539–552

    Article  Google Scholar 

  • Pietrasiak N, Drenovsky RE, Santiago LS, Graham RC (2014) Biogeomorphology of a Mojave Desert landscape—configurations and feedbacks of abiotic and biotic land surfaces during landform evolution. Geomorphology 206:23–36

    Article  Google Scholar 

  • Pintado A, Sancho LG, Green TGA, Blanquer JM, Lazaro R (2005) Functional ecology of the biological soil crust in semiarid SE Spain: sun and shade populations of Diploschistes diacapsis (Ach.) Lumbsch. Lichenologist 37:425–432

    Article  Google Scholar 

  • Pócs T (2009) Cyanobacterial crust types, as strategies for survival in extreme habitats. Acta Bot Hung 51(1–2):147–178

    Article  Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. PNAS 106:19964–19969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponzetti JM, McCune B (2001) Biotic soil crusts of Oregon’s shrub steppe: community composition in relation to soil chemistry, climate, and livestock activity. Bryologist 104:212–225

    Article  Google Scholar 

  • Pushkareva E, Elster J (2013) Biodiversity and ecological classification of cryptogamic soil crusts in the vicinity of Petunia Bay, Svalbard. Czech Polar Rep 3:7–18

    Article  Google Scholar 

  • Read CF, Duncan DH, Vesk PA, Elith J (2008) Biological soil crust distribution is related to patterns of fragmentation and land use in a dryland agricultural landscape of southern Australia. Landsc Ecol 23:1093–1105

    Article  Google Scholar 

  • Read CF, Duncan DH, Vesk PA, Elith J (2011) Surprisingly fast recovery of biological soil crusts following livestock removal in southern Australia. J Veg Sci 22:905–916

    Article  Google Scholar 

  • Reed SC, Coe KC, Sparks JP, Houseman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Chang 2:752–755

    Article  CAS  Google Scholar 

  • Rivera-Aguilar V, Montejano G, Rodríguez-Zaragoza S, Durán-Díaz A (2006) Distribution and composition of cyanobacteria, mosses and lichens of the biological soil crusts of the Tehuacán Valley, Puebla, México. J Arid Environ 67:208–225

    Article  Google Scholar 

  • Rogers RW (1972) Soil surface lichens in arid and sub- arid south-eastern Australia. II. Phytosociology and geographic zonation. Aust J Bot 20:215–227

    Article  Google Scholar 

  • Rogers RW (1973) Soil surface lichens in arid and sub- arid south-eastern Australia. III. The relationship between distribution and environment. Aust J Bot 20:301–316

    Article  Google Scholar 

  • Rogers RW (2006) Soil surface lichens on a 1500 kilometre climatic gradient in subtropical eastern Australia. Lichenologist 38:565–576

    Article  Google Scholar 

  • Root HT, McCune B (2012) Regional patterns of biological soil crust lichen species composition related to vegetation, soils, and climate in Oregon, USA. J Arid Environ 79:93–100

    Article  Google Scholar 

  • Root HT, Miller JED, McCune B (2011) Biotic soil crust lichen diversity and conservation in shrub-steppe habitats of Oregon and Washington. Bryologist 114:796–812

    Article  Google Scholar 

  • Rosentreter R, Belnap J (2003) Biological soil crusts of North America. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 31–50

    Google Scholar 

  • Rosentreter R, Bowker M, Belnap J (2007) A field guide to biological soil crusts of western U.S. drylands: common lichens and bryophytes. U.S. Government Printing Office, Denver

    Google Scholar 

  • Rosentreter R, Rai H, Upreti DK (2014) Distribution ecology of soil crust lichens in India: a comparative assessment with global patterns. In: Rai H, Upreti DK (eds) Terricolous lichens in India, vol 1, Diversity patterns and distribution ecology. Springer, Berlin, pp 21–31

    Chapter  Google Scholar 

  • Serpe M, Roberts E, Eldridge DJ, Rosentreter R (2013) Bromus tectorum litter alters photosynthetic characteristics of biological soil crusts from a semiarid shrubland. Soil Biol Biochem 60:220–230

    Article  CAS  Google Scholar 

  • Starks TL, Shubert LE (1979) Algal colonization on a reclaimed surface mined area in western North Dakota. In: Wali MK (ed) Ecology and coal resource development. Pergamon Press, New York, pp 652–660

    Chapter  Google Scholar 

  • Steven B, Gallegos-Graves LV, Belnap J, Kuske CR (2013) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113

    Article  CAS  PubMed  Google Scholar 

  • Stewart KJ, Coxson D, Grogan P (2011) Nitrogen inputs by associative cyanobacteria across a low arctic tundra landscape. Arct Antarct Alp Res 43:267–278

    Article  Google Scholar 

  • Thomas AD, Dougill AJ (2007) Spatial and temporal distribution of cyanobacterial soil crusts in the Kalahari: implications for soil surface properties. Geomorphology 85:17–29

    Article  Google Scholar 

  • Thompson DB, Walker LR, Landau FH, Stark LR (2005) The influence of elevation, shrub species, and biological soil crust on fertile islands in the Mojave Desert, USA. J Arid Environ 61:609–629

    Article  Google Scholar 

  • Tirkey J, Adhikary SP (2005) Cyanobacteria in biological soil crusts of India. Curr Sci 89:515–521

    Google Scholar 

  • Tongway DJ, Ludwig JA (1994) Small-scale patch heterogeneity in semi-arid landscapes. Pac Conserv Biol 1:201–208

    Article  Google Scholar 

  • Ullmann I, Büdel B (2003) Biological soil crusts of Africa. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 107–118

    Google Scholar 

  • Valentin C, Rajot JL, Mitja D (2004) Responses of soil crusting, runoff and erosion to fallowing in the sub-humid and semi-arid regions of West Africa. Agric Ecosyst Environ 104:287–302

    Article  Google Scholar 

  • Veste M, Littman T, Breckle SW, Yair A (2001) The role of biological soil crusts on desert sand dunes in the Northwest Negev, Israel. In: Breckle SW, Veste M, Wucherer W (eds) Sustainable land-use in deserts. Springer, Berlin, pp 357–367

    Chapter  Google Scholar 

  • Williams W, Büdel B (2012) Species diversity, biomass and long-term patterns of biological soil crusts with special focus on Cyanobacteria of the Acacia aneura Mulga Lands of Queensland, Australia. Algol Stud 140:23–50

    Article  Google Scholar 

  • Williams AJ, Buck BJ, Beyene MA (2012) Biological soil crusts in the Mojave Desert, USA: micromorphology and Pedogenesis. Soil Sci Soc Am J 76:1685–1695

    Article  CAS  Google Scholar 

  • Williams AJ, Buck BJ, Soukup DA, Merkler DJ (2013) Geomorphic controls on biological soil crust distribution: a conceptual model from the Mojave Desert (USA). Geomorphology 195:99–109

    Article  Google Scholar 

  • Zaady E, Arbel S, Barkai D, Sarig S (2013) Long-term impact of agricultural practices on biological soil crusts and their hydrological processes in a semiarid landscape. J Arid Environ 90:5–11

    Article  Google Scholar 

  • Zedda L, Gröngröft A, Schultz M, Petersen A, Mills A, Rambold G (2011) Distribution patterns of soil lichens across the principal biomes of southern Africa. J Arid Environ 75:215–220

    Article  Google Scholar 

  • Zhang YM, Chen J, Wang L, Wang XQ, Gu ZH (2007) The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. J Arid Environ 68:599–610

    Article  Google Scholar 

  • Zhang BC, Zhang YM, Downing A, Nlu Y (2011) Distribution and composition of cyanobacteria and microalgae associated with biological soil crusts in the Gurbantunggut Desert, China. Arid Land Res Manag 25:275–293

    Article  CAS  Google Scholar 

  • Zhang J, Liu G, Xu M, Xu M, Yamanaka N (2013) Influence of vegetation factors on biological soil crust cover on rehabilitated grassland in the hilly Loess Plateau, China. Environ Earth Sci 68:1099–1105

    Article  Google Scholar 

  • Zhao J, Zhang B, Zhang Y (2008) Chlorophytes of biological soil crusts in Gurbantunggut Desert, Xinjiang Autonomous Region, China. Front Biol China 3:40–44

    Article  Google Scholar 

  • Zhao HL, Guo YR, Zhou RL, Drake S (2010) Biological soil crust and surface soil properties in different vegetation types of Horqin Sand Land, China. Catena 82:70–76

    Article  CAS  Google Scholar 

  • Zhao HL, Guo YR, Zhou RL, Drake S (2011) The effects of plantation development on biological soil crust and topsoil properties in a desert in northern China. Geoderma 160:367–372

    Article  CAS  Google Scholar 

  • Zhao Y, Qin N, Weber B, Xu M (2014) Response of biological soil crusts to raindrop erosivity and underlying influences in the hilly Loess Plateau region, China. Biodivers Conserv 23:1669–1686

    Article  Google Scholar 

Download references

Acknowledgments

MAB acknowledges support from the Bureau of Land Management. N. Beaugendre, O. Malam Issa, C Valentin, JL Rajot, JF Desprats, and O Cerdan contributed to the case study “Ecoregional Patterns in the Sahel (Africa).” T. Arundel provided GIS assistance to the case study “Ecoregional Patterns on the Colorado Plateau (USA).” Amanda Williams and Elsevier kindly furnished permission to use Fig. 10.5. JB received support from the USGS Ecosystems program. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Bowker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bowker, M.A. et al. (2016). Controls on Distribution Patterns of Biological Soil Crusts at Micro- to Global Scales. In: Weber, B., Büdel, B., Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_10

Download citation

Publish with us

Policies and ethics