Skip to main content

Cascade Representations for the Navier–Stokes Equations

  • Chapter
  • First Online:
Rabi N. Bhattacharya

Part of the book series: Contemporary Mathematicians ((CM))

  • 1029 Accesses

Abstract

The basic equations governing the motion of a fluid are well understood. For simplicity, we shall refer to the case of an incompressible, constant density, viscous Newtonian fluid; the velocity vector field \(u\left (t,x\right )\) and pressure scalar field \(p\left (t,x\right )\) satisfy the classical Navier–Stokes equations (in dimension 3) with viscosity ν > 0

$$\displaystyle{ \begin{array}{rl} \partial _{t}u + (u \cdot \nabla )u + \nabla p& =\nu \varDelta u, \\ \mathop{\mathrm{div}}\nolimits u& = 0,\end{array} }$$
(15.1)

with appropriate initial and boundary conditions depending on the problem. For relatively simple fluid motions, these equations give us a very good tool for simulations and physical understanding. But there are complex fluid motions, those usually called turbulent, where special features are experimentally or numerically observed which do not have a clear explanation yet from the Navier–Stokes equations. In a sense, there is something at the foundation of fluid dynamics that is still unclear. For later reference, let us mention that this happens when a certain parameter R, called Reynolds number, is very large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For instance, following Le Jan and Sznitman [19], for the three-dimensional Navier–Stokes we set \(\chi _{k}(t) = \vert k\vert ^{2}u_{k}(t)\).

  2. 2.

    In fact, when pruning a real tree, a good gardener always keeps the main growing direction of each main branch.

References

  1. Y. Bakhtin, E. I. Dinaburg, Y. G. Sinai, On solutions with infinite energy and enstrophy of the Navier-Stokes system (Russian), Uspekhi Mat. Nauk 59 (2004), no. 6(360), 55–72, translation in Russian Math. Surveys 59 (2004), no. 6, 1061–1078.

    Google Scholar 

  2. D. Barbato, F. Morandin, M. Romito, Global regularity for a logarithmically supercritical hyperdissipative dyadic equation, Dyn. Partial Differ. Equ. 11 (2014), no. 1, 39–52.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Barbato, L. A. Bianchi, F. Flandoli, F. Morandin, A dyadic model on a tree, J. Math. Phys. 54 (2013), no. 2, 021507, 20 pp. 

    Google Scholar 

  4. Bhattacharya, R., L. Chen, S. Dobson, R. B. Guenther, C. Orum, M. Ossiander, E. Thomann, E. C. Waymire, Majorizing kernels and stochastic cascades with applications to incompressible Navier-Stokes equations, Trans. Amer. Math. Soc. 355 (2003), n. 12, 5003–5040.

    Google Scholar 

  5. Bhattacharya, R., L. Chen, R. B. Guenther, C. Orum, M. Ossiander, E. Thomann, E. C. Waymire, Semi-Markov cascade representations of local solutions to 3d-incompressible Navier-Stokes, in IMA Volumes in Mathematics and its Applications 140, Probability and partial differential equations in modern applied mathematics, eds. J. Duan and E. C.Waymire, Springer-Verlag 2004, NY.

    Google Scholar 

  6. D. Blömker, M. Romito, and R. Tribe, A probabilistic representation for the solutions to some non-linear PDEs using pruned branching trees, Ann. Inst. H. Poincaré Probab. Statist. 43 (2007), no. 2, 175–192.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Busnello, A probabilistic approach to the two-dimensional Navier-Stokes equations, Ann. Probab. 27 (1999), no. 4, 1750–1780.

    Article  MathSciNet  MATH  Google Scholar 

  8. Busnello, B. F. Flandoli, M. Romito, A probabilistic representation for the vorticity of a 3D viscous fluid and for general systems of parabolic equations, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 2, 295–336.

    Google Scholar 

  9. M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, Handbook of Mathematical Fluid Dynamics. Vol. III, 161–244, North-Holland, Amsterdam, 2004.

    Google Scholar 

  10. L. Chen, R. B. Guenther, S.-C. Kim, E. A. Thomann, E. C. Waymire, A rate of convergence for the LANS-α regularization of Navier-Stokes equations, J. Math. Anal. Appl. 348 (2008), no. 2, 637–649.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Cheskidov, S. Friedlander, N. Pavlovic, Inviscid dyadic model of turbulence: the fixed point and Onsager’s conjecture, J. Math. Phys. 48 (2007), no. 6, 065503, 16 pp.

    Google Scholar 

  12. C. L. Fefferman, Existence and smoothness of the Navier-Stokes equations, the millennium prize problems, Clay Math. Inst., Cambridge 2006, 57–67.

    MATH  Google Scholar 

  13. U. Frisch, Turbulence, Cambridge University Press, Cambridge (1995).

    MATH  Google Scholar 

  14. G. Gallavotti, Meccanica dei Fluidi, quaderni CNR-GNFM n. 52, Roma 1996; see also Foundations of Fluid Dynamics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2002.

    Google Scholar 

  15. M. Gubinelli, Rooted trees for 3D Navier-Stokes equation, Dyn. Partial Differ. Equ. 3 (2006), no. 2, 161–172.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Ikeda, M. Nagasawa, S. Watanabe, Branching Markov processes I, J. Math. Kyoto Univ. 8 (1968), 233–278.

    MathSciNet  MATH  Google Scholar 

  17. T. Kato, Strong L p solutions of the Navier-Stokes equations in \(\mathbb{R}^{m}\) and with applications to weak solutions, Math. Z. 187 (1984), 471–480.

    Google Scholar 

  18. A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR 30 (1941), 301–305; reprinted on the Proceedings: Mathematical and Physical Sciences, Vol. 434, No. 1890, Turbulence and Stochastic Process: Kolmogorov’s Ideas 50 Years On (Jul. 8, 1991), pp. 9–13, The Royal Society.

    Google Scholar 

  19. Le Jan, Y. and A.S. Sznitman, Stochastic cascades and 3-dimensional Navier-Stokes equations, Probab. Theory and Rel. Fields 109 (1997), 343–366.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. A. López-Mimbela, A. Wakolbinger, Length of Galton-Watson trees and blow-up of semilinear systems, J. Appl. Probab. 35 (1998), no. 4, 802–811.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Comm. Pure Appl. Math. 28 (1975), 323–331.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. V. Mendes, F. Cipriano, A stochastic representation for the Poisson-Vlasov equation, Commun. Nonlinear Sci. Numer. Simul. 13 (2008), no. 1, 221–226.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Morandin, A resummed branching process representation for a class of nonlinear ODEs, Electron. Comm. Probab. 10 (2005), 1–6.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. C. Orum, Stochastic cascades and 2D Fourier Navier-Stokes equations, in Lectures on Multiscale and Multiplicative Processes, 2002 (unpublished).

    Google Scholar 

  25. C. Orum, M. Ossiander, Exponent bounds for a convolution inequality in Euclidean space with applications to the Navier-Stokes equations, Proc. Amer. Math. Soc. 141 (2013), no. 11, 3883–3897.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Ossiander, A probabilistic representation of solutions of the incompressible Navier-Stokes equations in \(\mathbb{R}^{3}\), Probab. Theory and Relat. Fields 133 (2005) 267–298.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1, Incompressible Models, Oxford University Press, New York, 1996.

    Google Scholar 

  28. A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math. 50, 12 (1997), 1261–1286.

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. G. Sinai, Power series for solutions of the 3D-Navier-Stokes system on \(\mathbb{R}^{3}\), J. Stat. Phys. 121 (2005), no. 5–6, 779–803.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Sinai, A new approach to the study of the 3D-Navier-Stokes system, Prospects in mathematical physics, 223–229, Contemp. Math. 437, Amer. Math. Soc., Providence, RI, 2007.

    Google Scholar 

  31. A. V. Skorohod, Branching diffusion processes, Teor. Verojatnost. i Primenen. 9 (1964), 492–497.

    MathSciNet  Google Scholar 

  32. E. A. Thomann, R. B. Guenther, The fundamental solution of the linearized Navier-Stokes equations for spinning bodies in three spatial dimensions–time dependent case, J. Math. Fluid Mech. 8 (2006), no. 1, 77–98.

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Waymire, Probability and incompressible Navier-Stokes equations: An overview of some recent developments, Probability Surveys 2 (2005), 1–32.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Flandoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Flandoli, F., Romito, M. (2016). Cascade Representations for the Navier–Stokes Equations. In: Denker, M., Waymire, E. (eds) Rabi N. Bhattacharya. Contemporary Mathematicians. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-30190-7_15

Download citation

Publish with us

Policies and ethics