Skip to main content
Log in

On the Use of the Riesz Transforms to Determine the Pressure Term in the Incompressible Navier-Stokes Equations on the Whole Space

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We give some conditions under which the pressure term in the incompressible Navier-Stokes equations on the entire \(d\)-dimensional Euclidean space is determined by the formula \(\nabla p = \nabla \left (\sum _{i,j=1}^{d} \mathcal{R}_{i} \mathcal{R}_{j} (u_{i} u_{j} - F_{i,j}) \right )\), where \(d \in \{2, 3\}\), \({\textbf{u}} := (u_{1}, \ldots ,u_{d})\) is the fluid velocity, \(\mathbb{F}:= (F_{i,j})_{1\le i,j\le d}\) is the forcing tensor, and for all \(k \in \{1, \ldots , d\}\), \(\mathcal{R}_{k}\) is the \(k\)-th Riesz transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basson, A.: Solutions spatialement homogènes adaptées des équations de Navier–Stokes. Thèse, Université d’Évry (2006)

  2. Bradshaw, Z., Tsai, T.P.: On the local pressure expansion for the Navier-Stokes equations (2020). Preprint arXiv:2001.11526

  3. Bradshaw, Z., Kukavica, I., Tsai, T.P.: Existence of global weak solutions to the Navier-Stokes equations in weighted spaces (2019). Preprint arXiv:1910.06929v1

  4. Fernández-Dalgo, P.G., Jarrín, O.: Existence of infinite-energy and discretely self-similar global weak solutions for 3D MHD equations (2019). Preprint arXiv:1910.11267v2

  5. Fernández-Dalgo, P.G., Lemarié–Rieusset, P.G.: Characterisation of the pressure term in the incompressible Navier–Stokes equations on the whole space (2020). Preprint arXiv:2001.10436

  6. Fernández-Dalgo, P.G., Lemarié–Rieusset, P.G.: Weak solutions for Navier–Stokes equations with initial data in weighted \(L^{2}\) spaces. Arch. Ration. Mech. Anal. (2020). https://doi.org/10.1007/s00205-020-01510-w

    Article  MATH  Google Scholar 

  7. Grafakos, L.: Modern Fourier Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 250. Springer, New York (2009)

    Book  Google Scholar 

  8. Lemarié-Rieusset, P.G.: Recent Developments in the Navier-Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC, Boca Raton (2002)

    Book  Google Scholar 

  9. Lemarié-Rieusset, P.G.: The Navier-Stokes Problem in the 21st Century. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  10. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  11. Wolf, J.: On the local pressure of the Navier-Stokes equations and related systems. Adv. Differ. Equ. 22, 305–338 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for carefully reading our manuscript as well as for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borys Álvarez-Samaniego.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Samaniego, B., Álvarez-Samaniego, W.P. & Fernández-Dalgo, P.G. On the Use of the Riesz Transforms to Determine the Pressure Term in the Incompressible Navier-Stokes Equations on the Whole Space. Acta Appl Math 176, 10 (2021). https://doi.org/10.1007/s10440-021-00446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00446-x

Keywords

Mathematics Subject Classification (2010)

Navigation