Skip to main content

Low Field Methods (GMR, Hall Probes, etc.)

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Advanced Non-Destructive Evaluation

Abstract

Low-field nondestructive evaluation techniques have witnessed considerable improvements with the development of highly sensitive magnetic field sensors. Low-field techniques have brought several advantages like high resolution, high signal-to-noise ratio, and improved detection capabilities. This chapter begins with the importance of high-frequency eddy current testing and its limitation due to skin effect. It further presents the recently developed pulsed eddy current-based NDE to overcome the skin effect. Subsequently, this chapter presents the developments on increasing the sensitivity of low-field sensors by developing new probe designs and materials. A subsection presents the principles of operation of the available low-field sensors. The implementation of these low-field sensors in nondestructive evaluation has been discussed. It also presents the methods to reduce the sensor size for low footprints and increase the sensitivity. The chapter discusses the application of the low-field sensors in a detailed subsection with details on the implementation, its capabilities, and advantages. Finally, the chapter discusses the nondestructive applications of the low-field sensors with details on the implementation, its capabilities, and advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Afzal M, Udpa S (2002) Advanced signal processing of magnetic flux leakage data obtained from seamless gas pipeline. NDT E Int 35:449–457

    Article  Google Scholar 

  • Aguila-Muñoz J, Espina-Hernández JH, Pérez-Benítez JA, Caleyo F, Hallen JM (2016) A magnetic perturbation GMR-based probe for the nondestructive evaluation of surface cracks in ferromagnetic steels. NDT&E Int 79:132–141

    Article  Google Scholar 

  • Arismendi NOR, Pacheco ER, López OP, Espina Hernández JH, Benitez JAP (2018) Classification of artificial near-side cracks in aluminium plates using a GMR-based eddy current probe. In: 2018 international conference on electronics, communications and computers (CONIELECOMP), Cholula, Mexico

    Google Scholar 

  • Bai X, Fang Y, Lin W, Wang L, Ju BF (2014) Saliency-based defect detection in industrial images by using phase spectrum. IEEE Trans Ind Inform 10:2135–2145

    Article  Google Scholar 

  • Bailey J, Long N, Hunze A (2017) Eddy current testing with giant magnetoresistance (GMR) sensors and a pipe-encircling excitation for evaluation of corrosion under insulation. Sensors 17:2229. https://doi.org/10.3390/s17102229

    Article  Google Scholar 

  • Behun L, Smetana M, Capova K (2018) Comparison of detection abilities between fluxgate and GMR magnetometer in inverse ECT of deep lying cracks. In: 2018 ELEKTRO, Mikulov

    Google Scholar 

  • Birosca S, Buffiere JY, Garcia-Pastor FA, Karadge M, Babout L, Preuss M (2009) Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction. Acta Mater 57:5834–5847

    Article  Google Scholar 

  • Buchanan DS, Crum DB, Cox D, Wikswo JP (1989) MicroSQUID: a close-spaced four channel magnetometer. In: Advances in biomagnetism. Springer, Boston, pp 677–679

    Chapter  Google Scholar 

  • Campbell WH (1969) Induction loop antennas for geomagnetic field variation measurements. ESSA technical report ERL123-ESL6

    Google Scholar 

  • Carreon H (2006) Thermoelectric detection of the magnetic field by fluxgate gradiometer on subsurface tin inclusions embedded in a copper bar. NDT&E Int 39:22–28

    Article  Google Scholar 

  • Carreon H, Nagy PB, Nayfeh AH (2000) Thermoelectric detection of spherical tin inclusions in copper by magnetic sensing. J Appl Phys 88:6495

    Article  Google Scholar 

  • Caruso MJ, Bratland T, Smith CH, Schneider R (1998) A new perspective on magnetic field sensing. Sensors-Peterborough 15:34–47

    Google Scholar 

  • Chen W, Liu W, Li K, Wang P, Zhu H, Zhang Y, Hang C (2018) Rail crack recognition based on adaptive weighting multi-classifier fusion decision. Measurement 123:102–114

    Article  Google Scholar 

  • Cheng WY (2014) Pulsed eddy current characterization of local wall-thinning. Int J Appl Electromagn Mech 45:179–184

    Article  Google Scholar 

  • Cheng Y, Deng Y, Bai L, Chen K (2013) Enhanced laser-based magneto-optic imaging system for nondestructive evaluation applications. IEEE Trans Instrum Meas 62:1192–1198

    Article  Google Scholar 

  • Clarke DB (1999) Demagnetization factors of ringcores. IEEE Trans Magn 35:4440–4444

    Article  Google Scholar 

  • Coramik M, Ege Y (2017) Discontinuity inspection in pipelines: a comparison review. Measurement 111:359–373

    Article  Google Scholar 

  • Deng Y, Liu X (2011) Electromagnetic imaging methods for nondestructive evaluation applications. Sensors 11:11774–11808

    Article  Google Scholar 

  • Deng Y, Liu X, Fan Y, Zeng Z, Udpa L, Shih W (2006) Characterization of magneto-optic imaging data for aircraft inspection. IEEE Trans Magn 42:3228–3230

    Article  Google Scholar 

  • Deng Y, Liu X, Udpa L (2012) Magneto-optic imaging for aircraft skins inspection: a probability of detection study of simulated and experimental image data. IEEE Trans Reliab 61:901–908

    Article  Google Scholar 

  • Dogaru T, Smith ST (2001) Giant magnetoresistance-based eddy-current sensor. IEEE Trans Magn 37:3831–3838

    Article  Google Scholar 

  • Dong L, Xu B, Dong S, Song L, Chen Q, Wang D (2009) Stress dependence of the spontaneous stray field signals of ferromagnetic steelic fields. NDT&E Int 42:323–327

    Article  Google Scholar 

  • Ege Y, Coramık M, Kabadayi M, Cıtak H, Kalender O, Yürüklü E, Kurt U, Nazlıbilek S (2016) Anomaly detection with low magnetic flux: a fluxgate sensor network application. Measurement 81:43–56

    Article  Google Scholar 

  • Espinosa AG, Rosero A, Cusido J, Romeral L, Ortega JA (2007) Fault detection by means of Hilbert Huang transform of the stator current in a PMSM with demagnetization. IEEE Trans Energy Convers 25:312–318

    Article  Google Scholar 

  • Fan M, Cao B, Sunny AI, Li W, Tian G, Ye B (2017) Pulsed eddy current thickness measurement using phase features immune to liftoff effect. NDT&E Int 86:123–131

    Article  Google Scholar 

  • Fitzpatrick G, Thome D, Skaugset R, Shih E, Shih W (1993) Magneto-optical/Eddy current imaging of aging aircraft – a new NDI technique. Mater Eval 12:1402–1407

    Google Scholar 

  • Fitzpatrick GL, Thome DK, Skaugset RL, Shih WCL (1996) Magneto-Optic/Eddy Current Imaging of Subsurface Corrosion and Fatigue Cracks in Aging Aircraft, Review of Progress In Quantitative Nondestructive Evaluation, Plenum Press, New York. vol 15, pp 1159–1166

    Chapter  Google Scholar 

  • Gabler S, Heurer H, Heinrich G (2015) Measuring and imaging permittivity of insulators using high-frequency eddy-current devices. IEEE Trans Instrum Meas 64:2227–2238

    Article  Google Scholar 

  • García-Martín J, Gómez-Gil J, Vázquez-Sánchez E (2011) Non-destructive techniques based on eddy current testing. Sensors 11:2525–2565

    Article  Google Scholar 

  • Goktas T, Lee KW, Zafarani M, Akin B (2016) Analysis of magnet defect faults in permanent magnet synchronous motors through fluxgate sensors. In 2016 IEEE applied power electronics conference and exposition (APEC), Long Beach, 20–24

    Google Scholar 

  • Han JS, Park JH (2004) Detection of corrosion steel under an organic coating by infrared photography. Corros Sci 46:787–793

    Article  Google Scholar 

  • Hato T, Tanabe K (2018) Long period of time cooling technique using liquid nitrogen for HTS-SQUID system. IEEE Trans Appl Supercond 28:1–4

    Article  Google Scholar 

  • Hatsukade Y, Tanaka S (2016) Mobile NDE system utilizing robust HTS-SQUID magnetometer for use in unshielded environments. IEEE Trans Appl Supercond 26:1–4

    Article  Google Scholar 

  • Hatsukade Y, Kobayashi T, Nakaie S, Masutani N, Tanaka Y (2017) Novel remote NDE technique for pipes combining HTS-SQUID and ultrasonic guided wave. IEEE Trans Appl Supercond 27:1–4

    Article  Google Scholar 

  • He Y, Tian G, Pan M, Chen D (2014) Non-destructive testing of low-energy impact in CFRP laminates and interior defects in honeycomb sandwich using scanning pulsed eddy current. Compos Part B Eng 59:196–203

    Article  Google Scholar 

  • Hwang J, Lee J, Kwon S (2009) The application of a differential-type Hall sensors array to the nondestructive testing of express train wheels. NDT & E Int 42:34–41

    Article  Google Scholar 

  • Jander A, Smith C, Schneider R, (2005) Magnetoresistive sensors for nondestructive evaluation. In: Proceedings of SPIE 5770, Advanced sensor technologies for nondestructive evaluation and structural health monitoring, San Diego

    Google Scholar 

  • Jenks WG, Sadeghi SSH, Wikswo JP (1997) SQUIDs for nondestructive evaluation. J Phys D Appl Phys 30:293

    Article  Google Scholar 

  • Jun J, Lee J (2008) Nondestructive evaluation of a crack on austenitic stainless steel using a sheet type induced current and a Hall sensor array. J Mech Sci Technol 22:1684–1691

    Article  Google Scholar 

  • Jun J, Hwang J, Lee J (2007) Quantitative nondestructive evaluation of the crack on the austenite stainless steel using the induced eddy current and the Hall sensor array. In: 2007 IEEE instrumentation & measurement technology conference IMTC, Warsaw

    Google Scholar 

  • Kapsalis VC (2017) Advances in magnetic field sensors. IOP Conf Series 939:012026

    Google Scholar 

  • Karpenko O, Ye C, Udpa L (2017) Dual frequency fusion for defect signal enhancement in EC-GMR inspecton of riveted multilayer structures. NDT & E Int 92:97–103

    Article  Google Scholar 

  • Kasai N, Isikawa N, Yamakawa H, Chinose K, Nakayama S, Odagawa A (1997) Nondestructive detection of dislocations in steel using a SQUID gradiometer. IEEE Trans Appl Supercond 7:2315–2318

    Article  Google Scholar 

  • Kaur A, Gupta A, Aggarwal H, Arora K, Garg N, Sharma M, Sharma S, Aggarwal N, Sapra G, Goswamy JK (2018a) Non-destructive evaluation and development of a new wire rope tester using parallely magnetized NdFeB magnet segments. J Nondestruct Eval 37:1–8

    Article  Google Scholar 

  • Kaur A, Gupta A, Aggarwal H, Sharma M, Sharma S, Aggarwal N, Sapra G, Goswamy JK (2018b) Selection of a Hall sensor for usage in a wire rope tester. In: Computational signal, processing and analysis. Springer Nature Singapore Pte Ltd, Singapore, pp 361–371

    Chapter  Google Scholar 

  • Kim HM, Heo CG, Cho SH, Park GS (2018a) Determination scheme for accurate defect depth in underground pipeline inspection by using magnetic flux leakage sensors. IEEE Trans Magn 54:6202805

    Google Scholar 

  • Kim HM, Yoo HR, Park GS (2018b) A new design of MFL sensors for self-driving NDT robot to avoid getting stuck in curved underground pipelines. IEEE Trans Magn 54:6202705

    Google Scholar 

  • Le M, Lee J, Jun J, Kim J, Moh S, Shin K (2013) Hall sensor array based validation of estimation of crack size in metals using magnetic dipole models. NDT&E Int 53:18–25

    Article  Google Scholar 

  • Lee SJ, Song SH, Jiles DC, Hauser H (2005) Magnetooptic sensor for remote evaluation of surfaces. IEEE Trans Magn 41:2257–2259

    Article  Google Scholar 

  • Lenz J, Edelstein S (2006) Magnetic sensors and their applications. IEEE Sensors J 6:631–649

    Article  Google Scholar 

  • Li W, Yuan X, Chen G, Ge J, Yin X, Li K (2016) High sensitivity rotating alternating current field measurement for arbitrary-angle underwater cracks. NDT&E Int 79:123–131

    Article  Google Scholar 

  • Li F, Feng J, Zhang H, Liu J, Lu S, Ma D (2018) Quick reconstruction of arbitrary pipeline defect profiles from MFL measurements employing modified harmony search algorithm. IEEE Trans Instrum Meas 67:2200–2213

    Article  Google Scholar 

  • Liu X, Deng Y, Zeng Z, Udpa L, Udpa SS (2009) Model-based inversion technique using element-free Galerkin method and state space search. IEEE Trans Magn 45:1486–1489

    Article  Google Scholar 

  • Liu B, Cao Y, Zhang H, Lin YR, Sun WR, Xu B (2015a) Weak magnetic flux leakage: A possible method for studying pipeline defects located either inside or outside the structures. NDT & E Int 74:81–86

    Google Scholar 

  • Liu B, Fu Y, Jian R (2015b) Modelling and analysis of magnetic memory testing method based on the density functional theory. Nondestr Test Eval 30:13–25

    Article  Google Scholar 

  • Lu S, Feng J, Li F, Liu J (2017) Precise inversion for the reconstruction of arbitrary defect profiles considering velocity effect in magnetic flux leakage testing. IEEE Trans Magn 53:6201012

    Google Scholar 

  • Meola C (2007) A new approach for estimation of defects detection with infrared thermography. Mater Lett 61:747–750

    Article  Google Scholar 

  • Merwa R, Hollaus K, Oszkar B, Scharfetter H (2004) Detection of brain oedema using magnetic induction tomography: a feasibility study of the likely sensitivity and detectability. Physiol Meas 25:347–354

    Article  Google Scholar 

  • Miri-Hakimabad H, Panjeh H, Vejdaninoghreiyan A (2008) Experimental optimization of a landmine detection facility using PGNAA method. Nucl Sci Tech 19:109–112

    Article  Google Scholar 

  • Morozov M, Tian GY, Edgar D (2009) Comparison of PEC and SFEC NDE techniques. Nondestr Test Eval 24:153–164

    Article  Google Scholar 

  • Morozov M, Tian GY, Withers PJ (2010) The pulsed eddy current response to applied loading of various aluminium alloys. NDT & E Int 43:493–500

    Article  Google Scholar 

  • Nagendran R, Mohanty I, Thanikai Arasu V, Baskaran R (2018) Transient eddy current NDE system based on fluxgate sensor for the detection of defects in multilayered conducting material. J Nondestruct Eval 37:52

    Google Scholar 

  • Nair NV, Melapudi VR, Jimenez HR, Liu X, Deng Y, Zeng Z, Udpa L, Moran TJ, Udpa SS (2006) A GMR-based eddy current system for NDE of aircraft structures. IEEE Trans Magn 42:3312–3314

    Article  Google Scholar 

  • Okolo CK, Meydan T (2017) Axial magnetic field sensing for pulsed magnetic flux leakage hairline crack detection and quantification. In: 2017 IEEE sensors, Glasgow

    Google Scholar 

  • Oota A, Miyake K, Sugiyama D, Aoki H (2001) Observation of changes in magnetic images due to a strain or fatigue progress in austenite stainless steels using a scanning Hall-sensor microscope. J Nondestruct Eval 20:87–94

    Article  Google Scholar 

  • Orlando L, Slob E (2009) Using multicomponent GPR to monitor cracks in a historical building. J Appl Geophys 67:327–334

    Article  Google Scholar 

  • Ostafin M, Nogaj B (2007) 14N-NQR based device for detection of explosives in landmines. Measurement 40:43–54

    Article  Google Scholar 

  • Pelkner M, Reimund V, Erthner T, Panke N, Kreutzbruck M (2014) Automated inspection of surface breaking cracks using GMR sensor arrays. AIP Conf Proc 1581:1393–1399

    Article  Google Scholar 

  • Piao G, Guo J, Hu T, Leung H, Deng Y (2019) Fast reconstruction of 3-D defect profile from MFL signals using key physics-based parameters and SVM. NDT & E Int 103:26–38

    Google Scholar 

  • Pinotti E, Puppin E (2014) Simple lock-in technique for thickness measurement of metallic plates. IEEE Trans Instrum Meas 63:479–484

    Article  Google Scholar 

  • Popovic RS (2003) Hall effect devices. Taylor & Francis Group, LLC, Boca Raton

    Book  Google Scholar 

  • Prance RJ, Clark TD, Prance H (2000) Ultra low noise induction magnetometer for variable temperature operation. Sens Actuators A 85:361–364

    Article  Google Scholar 

  • Prieto MD, Espinosa AG, Ruiz JR, Urresty JC, Ortega JA (2011) Feature extraction of demagnetization faults in permanent-magnet synchronous motors based on box-counting fractal dimension. IEEE Trans Ind Electron 58:1594–1605

    Article  Google Scholar 

  • Prokopovych IB, Osadchuk VA (2011) Construction of the equation for the influence of stresses on magnetic permeability by the method of free deformation. Mater Sci 46:517–524

    Article  Google Scholar 

  • Pullen AL, Charlton PC, Pearson NR, Whitehead NJ (2018) Magnetic flux leakage scanning velocities for tank floor inspection. IEEE Trans Mag 54:7402608

    Article  Google Scholar 

  • Ramos HG, Ribeiro AL (2014) Present and future impact of magnetic sensors in NDE. Procedia Eng 86:406–419

    Article  Google Scholar 

  • Ramos HMG, Postolache O, Alegria FC, Ribeiro AL (2009) Using the skin effect to estimate cracks depths in metallic structures. In: I2MTC 2009 – international instrumentation and measurement, Singapore

    Google Scholar 

  • Rifai D, Abdalla AN, Ali K, Razali R (2016) Giant magnetoresistance sensors: a review on structures and non-destructive eddy current testing applications. Sensors 16:298

    Article  Google Scholar 

  • Riggs LS, Mooney JE, Lawrence DE (2001) Identification of metallic mine-like objects using low frequency magnetic fields. IEEE Trans Geosci Remote Sens 39:56–66

    Article  Google Scholar 

  • Riley CD, Jewell GW, Howe D (2000) Design of impulse magnetizing fixtures for the radial homopolar magnetization of isotropic NdFeB ringmagnets. IEEE Trans Magn 36:3846–3857

    Article  Google Scholar 

  • Ripka P (1992) Review of fluxgate sensors. Sens Actuators A 33:129–141

    Article  Google Scholar 

  • Ripka P (2003) Advances in fluxgate sensors. Sens Actuators A 106:8–14

    Article  Google Scholar 

  • Ripka P, Primdahl F (2000) Tuned current-output fluxgate. Sens Actuators A 82:160–165

    Article  Google Scholar 

  • Rosell A, Ye C, Deng Y, Udpa L, Udpa S (2018) Linear excitation eddy current probe for multi-layered CFRP inspection. In: 12th European conference on non-destructive testing, Gothenburg

    Google Scholar 

  • Sasi B, Arjun V, Mukhopadhyay CK, Rao BPC (2018) Enhanced detection of deep seated flaws in 316 stainless steel plates using integrated EC-GMR sensor. Sens Actuators A 275:44–50

    Article  Google Scholar 

  • Sharatchandra Singh W, Purnachandra Rao B, Mukhopadhyay CK, Jayakumar T (2015) Detection of localized damage in water wall tubes of thermal power plants using GMR sensor array based magnetic flux leakage technique. J Nondestruct Eval 34:1–7

    Article  Google Scholar 

  • Sharatchandra Singh W, Stegemann R, Kreutzbruck M, Mukhopadhyay CK, Purnachandra Rao B (2018) Mapping of deformation-induced magnetic fields in carbon steels using a GMR sensor based metal magnetic memory technique. J Nondestruct Eval 37:1–8

    Article  Google Scholar 

  • Shi Y, Zhang C, Li R, Cai M, Jia G (2015) Theory and application of magnetic flux leakage pipeline detection. Sensors 15:31036–31055

    Article  Google Scholar 

  • Smith RA, Hugo GR (2001) Transient eddy-current NDE for ageing aircraft. Insight 43:14–20

    Google Scholar 

  • Smith CH, Schneider RW, Dogaru T, Smith ST (2003) GMR magnetic sensor arrays for NDE eddy current testing. AIP Conf Proc 657:419–426

    Article  Google Scholar 

  • Sophian A, Tian GY, Taylor D, Rudlin J (2001) Electromagnetic and eddy current NDT: a review. Insight 43:302–306

    Google Scholar 

  • Sophian A, Tian GY, Taylor D, Rudlin J (2002) Design of a pulsed eddy current sensor for detection of defects in aircraft lap-joints. Sens Actuators A 101:92–98

    Article  Google Scholar 

  • Suresh V, Abudhahir A, Daniel J (2017) Development of magnetic flux leakage measuring system for detection of defect in small diameter steam generator tube. Measurement 95:273–279

    Article  Google Scholar 

  • Tai CC, Rose JH, Moulder JC (1996) Thickness and conductivity of metallic layers from pulsed eddy-current measurements. Rev Sci Instrum 67:3965–3972

    Article  Google Scholar 

  • Tanaka S, Natsume M, Uchida M, Hotta N, Matsuda T, Spanut ZA, Hatsukade Y (2004) Measurement of metallic contaminants in food with a high-Tc SQUID. Supercond Sci Technol 17:620

    Article  Google Scholar 

  • Tanaka S, Akai T, Hatsukade Y, Ohtani T, Suzuki S (2009) High Tc SQUID system for detection of small metallic contaminant in industrial products. IEEE Trans Appl Supercond 19:882–885

    Article  Google Scholar 

  • Tavarozzi I, Comani S, Del Gratta C, Di Luzio S, Romani GL, Gallina S, Zimarino M, Brisinda D, Fenici R, De Caterina R (2002) Magnetocardiography: current status and perspectives. Part II: clinical applications. Ital Heart J 3:151–165

    Google Scholar 

  • Thollon F, Burais N (1995) Geometrical optimization of sensors for eddy currents non-destructive testing and evaluation. IEEE Trans Magn 31:2026–2031

    Article  Google Scholar 

  • Tse PW, Liu XC, Liu ZH, Wu B, He CF, Wang XJ (2011) An innovative design for using flexible printed coils for magnetostrictive-based longitudinal guided wave sensors in steel strand inspection. Smart Mater Struct 20:055001

    Article  Google Scholar 

  • Tumanski S (2007) Induction coil sensors – a review. Meas Sci Technol 18:R31

    Article  Google Scholar 

  • Tumanski S (2013) Modern magnetic field sensors – a review. Organ 89:1–12

    Google Scholar 

  • Urresty JC, Riba JR, Romeral L (2013) A back-emf based method to detect magnet failures in PMSMs. IEEE Trans Magn 49:591–598

    Article  Google Scholar 

  • Wang P, Xiong L, Sun Y, Wang H, Tian G (2014) Features extraction of sensor array based PMFL technology for detection of rail cracks. Measurement 47:613–626

    Article  Google Scholar 

  • Wang Z, Zhang S, Wan Z, Zhang M (2017) Analysis of non-destructive testing of three-dimensional braided composites based on SQUID. Nondestr Test Eval 32:21–35

    Article  Google Scholar 

  • Wei G, Jianxin C (2002) A transducer made up of fluxgate sensors for testing wire rope defects. IEEE Trans Instrum Meas 51:120–124

    Article  Google Scholar 

  • Weischedel HR, Ramsey RP (1989) Electromagnetic testing: a reliable method for the inspection of wire rope in the service. NDT&E Int 22:155–161

    Google Scholar 

  • Weisenstock H (1991) A review of SQUID magnetometry applied to nondestructive evaluation. IEEE Trans Magn 27:3231–3236

    Article  Google Scholar 

  • Wikswo JP, Ma YP, Sepulveda NG, Tan S, Thomas IM, Lauder A (1993) Magnetic susceptibility imaging for nondestructive evaluation. IEEE Trans Appl Supercond 3:1995–2002

    Article  Google Scholar 

  • Wu D, Liu Z, Wang X, Su L (2017) Composite magnetic flux leakage detection method for pipelines using alternating magnetic field excitation. NDT&E Int 91:148–155

    Article  Google Scholar 

  • Xie M, Schneiderman JF, Chukharkin M, Kalabukhov A, Whitmarsh S, Lundqvist D, Winkler D (2015) High-Tc SQUID vs. low-Tc SQUID-based recordings on a head phantom: benchmarking for magnetoencephalography. IEEE Trans Appl Supercond 25:1–5

    Article  Google Scholar 

  • Xu Z, Wu X, Li J, Kang Y (2012) Assessment of wall thinning in insulated ferromagnetic pipes using the time-to-peak of differential pulsed eddy-current testing signals. NDT&E Int 51:24–29

    Article  Google Scholar 

  • Yang G, Zeng Z, Deng Y, Liu X, Udpa L, Tamburrino A, Udpa SS (2012) 3D EC-GMR sensor system for detection of subsurface defects at steel fastener sites. NDT & E Int 50:20–28

    Article  Google Scholar 

  • Yang G, Dib G, Udpa L, Tamburrino A, Udpa SS (2015) Rotating field EC-GMR sensor for crack detection at fastener site in layered structures. IEEE Sensors J 15:463–470

    Article  Google Scholar 

  • Ye C, Huang Y, Udpa L, Udpa S, Tamburrino A (2016) Magnetoresistive sensor with magnetic balance measurement for inspection of defects under magnetically permeable fasteners. IEEE Sensors J 16:2331–2338

    Article  Google Scholar 

  • Ye C, Rosell A, Udpa L (2018a) Using Magnetoresistive sensors in nondestructive testing. Mater Eval 76:144–154

    Google Scholar 

  • Ye C, Wang Y, Tao Y (2018b) High-density large-scale TMR sensor array for magnetic field imaging. IEEE Trans Instrum Meas. https://doi.org/10.1109/TIM.2018.2866299

    Article  Google Scholar 

  • Yu Y, Yan Y, Wang F, Tian GY, Zhang D (2014) An approach to reduce lift-off noise in pulsed eddy current nondestructive technology. NDT&E Int 63:1–6

    Article  Google Scholar 

  • Yuan X, Li W, Chen G, Yin X, Ge J (2017) Circumferential current field testing system with TMR sensor array for non-contact detection and estimation of cracks on power plant piping. Sensors Actuators A 263:542–553

    Article  Google Scholar 

  • Yuan X, Li W, Chen G, Yin X, Ge J, Yang W, Liu J, Ma W (2018) Inner circumferential current field testing system with TMR sensor arrays for inner-wall cracks inspection in aluminum tubes. Measurement 122:232–239

    Article  Google Scholar 

  • Zeng Z, Liu X, Deng Y, Udpa L, Xuan L, Shih WCL, Fitzpatrick GL (2006) A parametric study of magneto-optic imaging using finite-element analysis applied to aircraft rivet site inspection. IEEE Trans Magn 42:3737–3744

    Article  Google Scholar 

  • Zhang J, Yuan M, Song SJ, Kim HJ (2015) Precision measurement of coating thickness on ferromagnetic tube using pulsed eddy current technique. Int J Precis Eng Manuf 16:1723–1728

    Article  Google Scholar 

  • Zhao Y, Li XM, Lin L, Lei MK (2011) Measurements of coating density using ultrasonic reflection coefficient phase spectrum. Ultrasonics 51:596–601

    Article  Google Scholar 

  • Zhou D, Wang J, He Y, Chen D, Li K (2016) Influence of metallic shields on pulsed eddy current sensor for ferromagnetic materials defect detection. Sensor Actuat A 248:162–172

    Article  Google Scholar 

  • Zhou D, Pan M, He Y, Du B (2017) Stress detection and measurement in ferromagnetic metals using pulse electromagnetic method with U-shaped sensor. Measurement 105:136–145

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the US Department Energy under the award number: DE-FE0031650.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Deng .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rathod, V.T., Banerjee, P., Deng, Y. (2019). Low Field Methods (GMR, Hall Probes, etc.). In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Non-Destructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-30050-4_32-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30050-4_32-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30050-4

  • Online ISBN: 978-3-319-30050-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Low Field Methods (GMR, Hall Probes, etc.)
    Published:
    22 June 2019

    DOI: https://doi.org/10.1007/978-3-319-30050-4_32-2

  2. Original

    Low Field Methods (GMR, Hall Priobes, etc.)
    Published:
    21 February 2019

    DOI: https://doi.org/10.1007/978-3-319-30050-4_32-1