Skip to main content

Water Resources in the Rupestrian Grasslands of the Espinhaço Mountains

  • Chapter
  • First Online:
Ecology and Conservation of Mountaintop grasslands in Brazil

Abstract

The rupestrian grasslands in Minas Gerais State comprise headwaters of important watersheds that drainages for millions citizens in over 400 cities in São Francisco and Doce river basins. The human activities in the rupestrian grasslands include domestic supply, agriculture, forestry, cattle raising, industry, and mineral extraction. This chapter addresses the ecological conditions of streams in terms of water quality (physical and chemical characteristics, nutrient availability), habitat quality and structure (diversity of benthic macroinvertebrates, structure of the riparian vegetation, riparian food webs, invertebrate drift), and ecosystem functioning (allochthonous and autochthonous production, dynamics of coarse and fine particulate organic matter, leaf litter breakdown of native and alien species). A synthesis of 20 years of ongoing research on the headwaters in the rupestrian grasslands is included, together with perspectives for future conservation and management of water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan JD (2004) Landscape and riverscapes: The influence of land use on river ecosystems. Ann Rev Ecol Evol Syst 35:257–284

    Article  Google Scholar 

  • Allan JD, Castillo MM (2007) Stream ecology: Structure and function of running waters. Springer, Netherlands

    Book  Google Scholar 

  • Alves CBM, Lean CG, Brito MFG, Santos ACA (2008) Biodiversidade e conservação de peixes do complexo do Espinhaço. Megadiv 4:145–164

    Google Scholar 

  • Alvim EACC, Medeiros AO, Rezende RS, Gonçalves JF (2015) Small leaf breakdown in a Savannah headwater stream. Limnol 51:131–138

    Google Scholar 

  • Barbosa FAR, Galdean N (1997) Ecological taxonomy: A basic tool for biodiversity conservation. Tren Ecol Evol 12:359–360

    Article  CAS  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2007) Ecologia: de indivíduos a ecossistemas. Artmed, São Paulo

    Google Scholar 

  • Benda L, Hassan MA, Church M, May CL (2005) Geomorphology of steepland headwaters: The transition from hill slopes to channels. J Am Water Res Assoc 41:835–851

    Article  Google Scholar 

  • Boyero L, Pearson R, Dudgeon D, Graça MAS, Gessner MO, Albarino R, Ferreira V, Mathuriau C, Boulton A, Arunachalam M, Callisto M, Chauvet E, Ramirez A, Chara J, Moretti MS, Gonçalves JFJr (2011a) Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecol 92:1839–1848

    Google Scholar 

  • Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, Graça MAS, Dudgeon D, Boulton AJ, Callisto M, Chauvet E, Helson JE, Bruder A, Albariño RJ, Yule CM, Arunachalam M, Davies JN, Figueroa R, Flecker AS, Ramírez A, Death RG, Iwata T, Mathooko JM, Mathuriau C, Gonçalves, JF, Moretti MS, Jinggut T, Lamothe S, M Erimba C, Ratnarajah L, Schindler MH, Castela J, Buria LM, Cornejo A, Villanueva V, West DC (2011b) A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol Lett 14:289–294

    Google Scholar 

  • Boyero L, Pearson RG, Dudgeon D, Ferreira V, Graça MAS, Gessner MO, Boulton AJ, Chauvet E, Yule CM, Albariño RJ, Ramírez A, Helson JE, Callisto M, Arunachalam M., Chará J, Figueroa R, Mathooko JM, Gonçalves JF, Moretti MS, Chará-Serna AM, Davies JN, Encalada A, Lamothe S, Buria LM, Castela J, Cornejo A, Li AOY, M’Erimba C, Villanueva VD, Zúñiga C, Swan CM, Barmuta LA (2012) Global patterns of stream detritivore distribution: Implications for biodiversity loss in changing climates. Global Ecol Biogeog 21:134–141

    Google Scholar 

  • Boyero L, Pearson R, Gessner MO, Dudgeon D, Ramirez A, Yule C, Callisto M, Pringle C, Encalada A, Arunachalam M, Mathooko J, Helson J, Rincon J, Bruder A, Cornejo A, Flecker AS, Mathuriau C, Merimba C, Moretti MS, Gonçalves JF, Jinggut T (2015a) Leaf-litter breakdown in tropical streams: Is variability the norm? Freshwat Sci. doi:10.1086/681093

    Google Scholar 

  • Boyero L, Pearson R, Swan CM, Hui C, Albarino R, Arunachalan R, Callisto M, Chara J, Chara-Serna AM, Chauvet E, Cornejo A, Dudgeon D, Encalada A, Ferreira V, Gessner MO, Gonçalves JF, Graça MAS, Helson J, MathookoJ, McKie B, Moretti MS, Yule C (2015b) Latitudinal gradient of nestedness and its potential drivers in stream detritivores. Ecography 38:1–7

    Google Scholar 

  • Callisto M, Goulart MD (2005) Invertebrate drift along a longitudinal gradient in a Neotropical stream in Serra do Cipó National Park, Brazil. Hydrobiol 539:47–56

    Article  Google Scholar 

  • Callisto M, Graça MAS (2013) The quality and availability of fine particulate organic matter for collector species in headwater streams. Int Rev Hydrobiol. doi:10.1002/iroh.201301524

    Google Scholar 

  • Callisto M, Goulart M, Medeiros AO, Moreno P, Rosa CA (2004) Diversity assessment of benthic macroinvertebrates, yeasts, and microbiological indicators along a longitudinal gradient in Serra do Cipó, Brazil. Braz J Biol 64:743–755

    Article  CAS  PubMed  Google Scholar 

  • Callisto M, Gonçalves JF, Graca MAS (2007) Leaf litter as a possible food source for chironomids in headwater streams. Rev Brasil Zool 24:442–448

    Google Scholar 

  • Castro DMP, Hughes RM, Callisto M (2013a) Effects of flow fluctuations on the daily and seasonal drift of invertebrates in a tropical river. Ann Limnol Int J Limnol. doi:10.1051/limn/2013051

    Google Scholar 

  • Castro DMP, Hughes RM, Callisto M (2013b) Influence of peak flow changes on the macroinvertebrate drift downstream of a Brazilian hydroelectric dam. Braz J Biol 73:775–782

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, MacNally R, Bond N, Lake PS (2008) Macroinvertebrate diversity in headwater streams: A review. Freshwat Biol 53:1707–1721

    Article  Google Scholar 

  • Collen B, Boehm M (2012) The growing availability of invertebrate extinction risk assessments—A response to Cardoso et al. (October 2011): Adapting the IUCN red list criteria for invertebrates. Biol Conserv 149:145–146

    Google Scholar 

  • Collen B, Whitton F, Dyer EE, Baillie JEM, Cumberlidge N, Darwall WRT, Richman NI, Pollock C, Soulsby A-M, Bohm M (2013) Global patterns of freshwater species diversity, threat and endemism. Global Ecol Biogeog. doi:10.1111/geb.12096

    Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  PubMed  Google Scholar 

  • Fernandes GW, Barbosa NPU, Negreiros D, Paglia AP (2014) Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Nat Cons 12:162–165

    Article  Google Scholar 

  • Finn DS, Poff NL (2005) Variability and convergence in benthic communities along the longitudinal gradients of four physically similar rocky mountain streams. Freshwat Biol 50:243–261

    Article  Google Scholar 

  • França JS, Gregório RS, D’Arc JD, Gonçalves JF, Ferreira FA, Callisto M (2009) Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream. Mar Fresh Res 60:990–998

    Google Scholar 

  • Frissel CA, Liss WJ, Warren CE, Hurley MD (1986) A hierarchical framework for stream habitat classification—viewing streams in a watershed context. Environ Manag 10:199–214

    Article  Google Scholar 

  • Galdean N, Barbosa FAR, Callisto M, Rocha LA, Margarida MGSMM (1999) A proposed typology for the rivers of Serra do Cipó (Minas Gerais, Brazil) based on the diversity of benthic macroinvertebrates and the existing habitats. Trav Mus Natl Hist Nat Grigore Antipa 41:445–453

    Google Scholar 

  • Galdean N, Callisto M, Barbosa FAR (2000) Lotic ecosystems of Serra do Cipó, Southeast Brazil: Water quality and a tentative classification based on the benthic macroinvertebrate community. Aq Ecosyst Heal Manag 3:545–552

    Google Scholar 

  • Gonçalves JF, Callisto M (2013) Organic-matter dynamics in the riparian zone of a tropical headwater stream in Southern Brazil. Aquat Bot 109:8–13

    Google Scholar 

  • Gonçalves JF, França JS, Callisto M (2006a) Dynamics of allochthonous organic matter in a tropical Brazilian headstream. Braz Arch Biol Technol 49:967–973

    Google Scholar 

  • Gonçalves JF, França JS, Medeiros AO, Rosa CA, Callisto M (2006b) Leaf breakdown in a tropical stream. Int Rev Hydrobiol 91:164–177

    Google Scholar 

  • Gonçalves JF, Graça MAS, Callisto M (2006c) Leaf-litter breakdown in 3 streams in temperate, mediterranean, and tropical Cerrado climates. J N Am Benthol Soc 25:344–355

    Google Scholar 

  • Gonçalves JF, Graça MAS, Callisto M (2007) Litter decomposition in a cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwat Biol 52:1440–1451

    Google Scholar 

  • Gonçalves JF, Martins RT, Ottoni BMP, Couceiro SRM (2014) Uma visão sobre a decomposição foliar em sistemas aquáticos brasileiros. In: Hamada N, Nessimian J.L, Querino R.B (eds). Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. 1ed. Manaus: Editora do INPA, vol. I, pp. 89–116

    Google Scholar 

  • Hughes RM, Peck DV (2008) Acquiring data for large aquatic resource surveys: The art of compromise among science, logistics, and reality. J N Am Benthol Soc 27:837–859

    Article  Google Scholar 

  • Janzen DH (1974) Tropical blackwater rivers, animals, and mast fruiting by the dipterocarpaceae. Biotropica 6:69–103

    Article  Google Scholar 

  • Kominoski JS, Rosemond AD (2012) Conservation from the bottom up: Forecasting effects of global change on dynamics of organic matter and management needs for river networks. Freshwat Sci 31:51–68

    Article  Google Scholar 

  • Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450

    Article  Google Scholar 

  • Leite FSF, Juncá FA, Eterovick PC (2008) Status do conhecimento, endemismo e conservação de anfíbios anuros da Cadeia do Espinhaço, Brasil. Megadiv 4:182–200

    Google Scholar 

  • Ligeiro R, Melo AS, Callisto M (2010a) Spatial scale and the diversity of macroinvertebrates in a neotropical catchment. Freshw Biol 55:424–435

    Article  Google Scholar 

  • Ligeiro R, Moretti MS, Gonçalves JF, Callisto M (2010b) What is more important for invertebrate colonization in a stream with low-quality litter inputs: Exposure time or leaf species? Hydrobiol 235:1–2

    Google Scholar 

  • Macedo DR, Hughes RM, Ligeiro R, Ferreira W, Castro MA, Junqueira NT, Oliveira DR, Firmiano KR, Kaufmann PR, Pompeu PS, Callisto M (2014) The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landsc Ecol 29:1001–1016

    Article  Google Scholar 

  • Medeiros AO, Callisto M, Graça MAS, Ferreira V, Rosa CA, França JS, Eller AP, Rezende RS, Gonçalves JF (2015) Microbial colonization and litter decomposition in a cerrado stream is limited by low dissolved nutrient concentration: Evidence from a manipulative experiment. Limnetica (in press) 34:283–292

    Google Scholar 

  • Melo AS, Shneck F, Hepp LU, Simões NR, Siqueira T, Bini LM (2011) Focusing on variation: Methods and applications of the concept of beta diversity in aquatic ecosystems. Acta Limnol Bras 23:318–331

    Article  Google Scholar 

  • Moretti M, Gonçalves JF, Callisto M (2007a) Leaf breakdown in two tropical streams: Differences between single and mixed species packs. Limnol 37:250–258

    Google Scholar 

  • Moretti MS, Gonçalves JF, Ligeiro R, Callisto M (2007b) Invertebrates colonization on native tree leaves in a neotropical stream (Brazil). Int Rev Hydrobiol 92:199–210

    Google Scholar 

  • Piggott JJ, Nyougi DK, Townsend CR, Mathaei CD (2015) Multiple stressors and stream ecosystem functioning: Climate warming and agricultural stressors interact to affect processing of organic matter. J Appl Ecol. doi:10.1111/1365-2664.12480

    Google Scholar 

  • Stendera S, Adrian R, Bonada B, Cañedo-Argüelles M, Hungueny B, Januschke K, Pletterbauer F, Hering D (2012) Drivers and stressors of freshwater biodiversity patterns across different ecosystems and scales: A review. Hydrobiol 696:1–28

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K (2006) Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecol 87:2697–2708

    Article  Google Scholar 

  • Veech JA, Summerville KS, Crist TO, Gering JC (2002) The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:3–9

    Article  Google Scholar 

  • Wantzen KM, Wagner R, Suetfeld R, Junk WJ (2002) How do plant–herbivore interactions of trees influence coarse detritus processing by shredders in aquatic ecosystems of different latitudes? Verh Int Ver Theor Angew Limnol 28:815–821

    Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monog 26:1–80

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Geraldo W. Fernandes for the invitation to contribute with this chapter and for his constructive comments on early versions. Manuel Graça and Irineu Bianchini offered carefull reading and insights to previous version of this chapter. Our studies have been supported by Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), P&D ANEEL (GT-487) and CEMIG-Programa Peixe Vivo. MC was awarded research productivity grants CNPq (No. 303380/2015-2) and CNPq research grant (446155/2014-4) and Minas Gerais researcher grant FAPEMIG PPM-77/13 and PPM IX-02/2015. JFG-Jr was supported by CNPq (Proc. 472.328/01–8), FAPEMIG (Proc. 1085/03, APQ-2051-5.03/07, and FAPEMIG/PRONEX 20/2006, 465/07) and PADI-Project AWARE Foundation. The authors are grateful for the logistical support provided by IBAMA, IEF-MG and the US Fish and Wildlife Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Callisto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Callisto, M., Gonçalves, J.F., Ligeiro, R. (2016). Water Resources in the Rupestrian Grasslands of the Espinhaço Mountains. In: Fernandes, G. (eds) Ecology and Conservation of Mountaintop grasslands in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-29808-5_5

Download citation

Publish with us

Policies and ethics