Skip to main content

Dementias of the Alzheimer Type: Views Through the Lens of Evolutionary Biology Suggest Amyloid-Driven Brain Aging Is Balanced Against Host Defense

  • Chapter
  • First Online:
Evolutionary Thinking in Medicine

Abstract

We propose that Alzheimer’s disease (AD) and related neurodegenerative conditions can be best understood within an evolutionary framework as a trade-off with host defense, with the apoE allele system as an example. This chapter reviews this hypothesis and evaluates the relevant evidence. We focus the “Darwinian lens” on two major features of human aging: First, inflammatory changes with mild amyloid deposits and modest synapse loss that arise in shorter lived species during aging; second, we contrast these mild changes with the more aggressive neurodegenerative changes of AD found only in humans. To some extent, mild AD-like changes arise at later ages in primate species with widely differing life spans from lines that diverged 50 or more million years ago. We discuss the changing role of host defense in modern human populations that are under greatly reduced natural selection from infectious agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finch CE, Austad CE (2015) Is Alzheimer disease uniquely human? Commentary Neurobiol Aging 36:553–555

    Article  PubMed  Google Scholar 

  2. Finch CE (2007) The biology of human longevity: nutrition, inflammation, and aging in the evolution of lifespans. Academic Press, San Diego

    Google Scholar 

  3. Gearing M, Tigges J, Mori H, Mirra SS (1996) A beta40 is a major form of beta-amyloid in nonhuman primates. Neurobiol Aging 17:903–908

    Article  CAS  PubMed  Google Scholar 

  4. Perez SE, Raghanti MA, Hof PR, Kramer L, Ikonomovic MD, Lacor PN, Erwin JM, Sherwood CC, Mufson EJ (2013) Alzheimer’s disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). J Comparative Neurol 521:4318–4338

    Google Scholar 

  5. Rosen RF, Farberg AS, Gearing M, Dooyema J, Long PM, Anderson DC, Davis-Turak J, Coppola G, Geschwind DH, Pare JF et al (2008) Tauopathy with paired helical filaments in an aged chimpanzee. J Comp Neurol 509:259–270

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schultz C, Hubbard GB, Tredici KD, Braak E, Braak H (2001) Tau pathology in neurons and glial cells of aged baboons. Adv Exp Med Biol 487:59–69

    Article  CAS  PubMed  Google Scholar 

  7. Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gazzaley AH, Thakker MM, Hof PR, Morrison JH (1997) Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys. Neurobiol Aging 18:549–553

    Article  CAS  PubMed  Google Scholar 

  9. Rapoport SI (1989) Hypothesis: Alzheimer’s disease is a phylogenetic disease. Med Hypotheses 29:147–150

    Article  CAS  PubMed  Google Scholar 

  10. Huang B, Marois Y, Roy R, Julien M, Guidoin R (1992) Cellular reaction to the Vascugraft polyesterurethane vascular prosthesis: in vivo studies in rats. Biomaterials 13:209–216

    Article  PubMed  Google Scholar 

  11. Jacobsen KT, Iverfeldt K (2009) Amyloid precursor protein and its homologues: a family of proteolysis-dependent receptors. Cell Mol Life Sci: CMLS 66:2299–2318

    Article  CAS  PubMed  Google Scholar 

  12. Finch CE, Austad SN (2012) Primate aging in the mammalian scheme: the puzzle of extreme variation in brain aging. Age (Dordrecht, Netherlands) 34:1075–1091

    Google Scholar 

  13. Merrill DA, Masliah E, Roberts JA, McKay H, Kordower JH, Mufson EJ, Tuszynski MH (2011) Association of early experience with neurodegeneration in aged primates. Neurobiol Aging 32:151–156

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goodall J (1986) The Chimpanzees of combe. Harvard University Press, Massachusetts

    Google Scholar 

  15. Finch CE, Stanford CB (2004) Meat-adaptive genes and the evolution of slower aging in humans. Q Rev Biol 79:3–50

    Article  CAS  PubMed  Google Scholar 

  16. Finch CE (1990) Longevity, senescence, and the genome. University of Chicago Press, Chicago

    Google Scholar 

  17. Finch CE, Holmes DJ (2010) Ovarian aging in developmental and evolutionary context. Ann NY Acad Sci 1204:82–94

    Article  PubMed  Google Scholar 

  18. Williams GC (1957) Pleiotropy, Natural selection, and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  19. Kirkwood TB, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci 332:15–24

    Article  CAS  PubMed  Google Scholar 

  20. Finch CE (2010) Evolution in health and medicine Sackler colloquium: evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc Natl Acad Sci USA 107(Suppl 1):1718–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poirier J, Miron J, Picard C, Gormley P, Theroux L, Breitner J, Dea D (2014) Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiol Aging 35(Suppl 2):S3–10

    Article  CAS  PubMed  Google Scholar 

  22. Roses AD, Lutz MW, Saunders AM, Goldgaber D, Saul R, Sundseth SS, Akkari PA, Roses SM, Gottschalk WK, Whitfield KE et al (2014) African-American TOMM40’523-APOE haplotypes are admixture of West African and Caucasian alleles. Alzheimer’s Dement J Alzheimer’s Assoc 10(592–601):e592

    Article  Google Scholar 

  23. Schachter F, Faure-Delanef L, Guenot F, Rouger H, Froguel P, Lesueur-Ginot L, Cohen D (1994) Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 6:29–32

    Article  CAS  PubMed  Google Scholar 

  24. Payami H, Zareparsi S, Montee KR, Sexton GJ, Kaye JA, Bird TD, Yu CE, Wijsman EM, Heston LL, Litt M et al (1996) Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease: a possible clue to the higher incidence of Alzheimer disease in women. Am J Hum Genet 58:803–811

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Altmann A, Tian L, Henderson VW, Greicius MD (2014) Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol 75:563–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suri S, Heise V, Trachtenberg AJ, Mackay CE (2013) The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE varepsilon2. Neurosci Biobehav Rev 37:2878–2886

    Article  CAS  PubMed  Google Scholar 

  27. Huang Y, Mahley RW (2014) Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis 72(A):3–12

    Google Scholar 

  28. Naj AC, Jun G, Reitz C, Kunkle BW, Perry W, Park YS, Beecham GW, Rajbhandary RA, Hamilton-Nelson KL, Wang LS et al (2014) Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: a genome-wide association study. J Am Med Association, Neurol 71:1394–1404

    Google Scholar 

  29. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE et al (2010) The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 5:e9505

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mahley RW, Weisgraber KH, Huang Y (2009) Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res 50(Suppl):S183–188

    PubMed  PubMed Central  Google Scholar 

  31. Martin GM (1999) APOE alleles and lipophylic pathogens. Neurobiol Aging 20:441–443

    Article  CAS  PubMed  Google Scholar 

  32. Fullerton SM, Clark AG, Weiss KM, Nickerson DA, Taylor SL, Stengard JH, Salomaa V, Vartiainen E, Perola M, Boerwinkle E et al (2000) Apolipoprotein E variation at the sequence haplotype level: implications for the origin and maintenance of a major human polymorphism. Am J Hum Genet 67:881–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McIntosh AM, Bennett C, Dickson D, Anestis SF, Watts DP, Webster TH, Fontenot MB, Bradley BJ (2012) The apolipoprotein E (APOE) gene appears functionally monomorphic in chimpanzees (Pan troglodytes). PLoS One 7:e47760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh PP, Singh M, Mastana SS (2006) APOE distribution in world populations with new data from India and the UK. Ann Hum Biol 33:279–308

    Article  CAS  PubMed  Google Scholar 

  35. Raffai RL, Dong LM, Farese RV Jr, Weisgraber KH (2001) Introduction of human apolipoprotein E4 “domain interaction” into mouse apolipoprotein E. Proc Natl Acad Sci USA 98:11587–11591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cacciottollo M, Morgan TE, Finch CE (2013) Chimpanzee apolipoprotein E comparison with human apoE3 and -E4 for effect on neuronal outgrowth. In: 4th Annual Symposium: “ApoE, ApoE Receptors, and Neurodegeneration”, Georgetown University, Washington, DC, 3–5 June 2013

    Google Scholar 

  37. Bellosta S, Nathan BP, Orth M, Dong LM, Mahley RW, Pitas RE (1995) Stable expression and secretion of apolipoproteins E3 and E4 in mouse neuroblastoma cells produces differential effects on neurite outgrowth. J Biol Chem 270:27063–27071

    Article  CAS  PubMed  Google Scholar 

  38. Pitas RE, Ji ZS, Weisgraber KH, Mahley RW (1998) Role of apolipoprotein E in modulating neurite outgrowth: potential effect of intracellular apolipoprotein E. Biochem Soc Trans 26:257–262

    Article  CAS  PubMed  Google Scholar 

  39. Vamathevan JJ, Hasan S, Emes RD, Amrine-Madsen H, Rajagopalan D, Topp SD, Kumar V, Word M, Simmons MD, Foord SM et al (2008) The role of positive selection in determining the molecular cause of species differences in disease. BMC Evol Biol 8:273

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mastana SS, Calderon R, Pena J, Reddy PH, Papiha SS (1998) Anthropology of the apoplipoprotein E (apo E) gene: low frequency of apo E4 allele in Basques and in tribal (Baiga) populations of India. Ann Hum Biol 25:137–143

    Article  CAS  PubMed  Google Scholar 

  41. Hu P, Qin YH, Jing CX, Lu L, Hu B, Du PF (2011) Does the geographical gradient of ApoE4 allele exist in China? A systemic comparison among multiple Chinese populations. Mol Biol Rep 38:489–494

    Article  CAS  PubMed  Google Scholar 

  42. Singh P, Singh M, Gerdes U, Mastana SS (2001) Apolipoprotein E polymorphism in India: high APOE*E3 allele frequency in Ramgarhia of Punjab. Anthropologischer Anzeiger; Bericht uber die biologisch-anthropologische Literatur 59:27–34

    Google Scholar 

  43. Zekraoui L, Lagarde JP, Raisonnier A, Gerard N, Aouizerate A, Lucotte G (1997) High frequency of the apolipoprotein E*4 allele in African pygmies and most of the African populations in sub-Saharan Africa. Hum Biol 69:575–581

    CAS  PubMed  Google Scholar 

  44. Wozniak MA, Riley EM, Itzhaki RF (2004) Apolipoprotein E polymorphisms and risk of malaria. J Med Genet 41:145–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rougeron V, Woods CM, Tiedje KE, Bodeau-Livinec F, Migot-Nabias F, Deloron P, Luty AJ, Fowkes FJ, Day KP (2013) Epistatic Interactions between apolipoprotein E and hemoglobin S Genes in regulation of malaria parasitemia. PLoS One 8:e76924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aucan C, Walley AJ, Hill AV (2004) Common apolipoprotein E polymorphisms and risk of clinical malaria in the Gambia. J Med Genet 41:21–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fujioka H, Phelix CF, Friedland RP, Zhu X, Perry EA, Castellani RJ, Perry G (2013) Apolipoprotein E4 prevents growth of malaria at the intraerythrocyte stage: implications for differences in racial susceptibility to Alzheimer’s disease. J Health Care Poor Underserved 24(Suppl. 4):70–78

    PubMed  Google Scholar 

  48. Soares HD, Potter WZ, Pickering E, Kuhn M, Immermann FW, Shera DM, Ferm M,Dean RA, Simon AJ, Swenson F, Siuciak JA, Kaplow J, Thambisetty M, Zagouras P, Koroshetz WJ, Wan HI, Trojanowski JQ, Shaw LM, Biomarkers Consortium Alzheimer’s Disease Plasma Proteomics Project (2012) Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch Neurol 69:1310–1317

    Google Scholar 

  49. Gale SC, Gao L, Mikacenic C, Coyle SM, Rafaels N, Murray Dudenkov T, Madenspacher JH, Draper DW, Ge W, Aloor JJ, Azzam KM, Lai L, Blackshear PJ, Calvano SE, Barnes KC, Lowry SF, Corbett S, Wurfel MM, Fessler MB (2014) APOε4 is associated with enhanced in vivo innate immune responses in human subjects. J Allergy Clin Immunol 134:127–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fabris C, Vandelli C, Toniutto P, Minisini R, Colletta C, Falleti E, Smirne C, Pirisi M (2011) Apolipoprotein E genotypes modulate fibrosis progression in patients with chronic hepatitis C and persistently normal transaminases. J Gastroenterol Hepatol 26:328–333

    Article  CAS  PubMed  Google Scholar 

  51. Zhao Y, Ren Y, Zhang X, Zhao P, Tao W, Zhong J, Li Q, Zhang XL (2014) Ficolin-2 inhibits hepatitis C virus infection, whereas apolipoprotein E3 mediates viral immune escape. J Immunol 193:783–796

    Article  CAS  PubMed  Google Scholar 

  52. Burt TD, Agan BK, Marconi VC, He W, Kulkarni H, Mold JE, Cavrois M, Huang Y, Mahley RW, Dolan MJ et al (2008) Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE epsilon4/epsilon4 genotype accelerates HIV disease progression. Proc Natl Acad Sci USA 105:8718–8723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuhlmann I, Minihane AM, Huebbe P, Nebel A, Rimbach G (2010) Apolipoprotein E genotype and hepatitis C, HIV and herpes simplex disease risk: a literature review. Lipids Health Dis 9:8

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shaw P, Lerch JP, Pruessner JC, Taylor KN, Rose AB, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN (2007) Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study. Lancet Neurol 6:494–500

    Article  CAS  PubMed  Google Scholar 

  55. Knickmeyer RC, Wang J, Zhu H, Geng X, Woolson S, Hamer RM, Konneker T, Lin W, Styner M, Gilmore JH (2014) Common variants in psychiatric risk genes predict brain structure at birth. Cereb Cortex 24:1230–1246

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang C, Wilson WA, Moore SD, Mace BE, Maeda N, Schmechel DE, Sullivan PM (2005) Human apoE4-targeted replacement mice display synaptic deficits in the absence of neuropathology. Neurobiol Dis 18:390–398

    Article  CAS  PubMed  Google Scholar 

  57. Oria RB, Patrick PD, Oria MO, Lorntz B, Thompson MR, Azevedo OG, Lobo RN, Pinkerton RF, Guerrant RL, Lima AA (2010) ApoE polymorphisms and diarrheal outcomes in Brazilian shanty town children. Braz J Med Biol Res 43:249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mitter SS, Oria RB, Kvalsund MP, Pamplona P, Joventino ES, Mota RM, Goncalves DC, Patrick PD, Guerrant RL, Lima AA (2012) Apolipoprotein E4 influences growth and cognitive responses to micronutrient supplementation in shantytown children from northeast Brazil. Clinics (Sao Paulo, Brazil) 67:11–18

    Google Scholar 

  59. Azevedo OG, Bolick DT, Roche JK, Pinkerton RF, Lima AA, Vitek MP, Warren CA, Oriá RB, Guerrant RL (2014) Apolipoprotein E plays a key role against cryptosporidial infection in transgenic undernourished mice. PLoS One 9(2):e89562

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jasienska G, Ellison PT, Galbarczyk A, Jasienski M, Kalemba-Drozdz M, Kapiszewska M, Nenko I, Thune I, Ziomkiewicz A (2015) Apolipoprotein E (ApoE) polymorphism is related to differences in potential fertility in women: a case of antagonistic pleiotropy? Proc R Soc Lond B Biol Sci 282(1803):20142395

    Article  Google Scholar 

  61. Seger JB, Jane H (1987) What is bet-hedging? In: Partridge PHHL (ed) Oxford surveys in evolutionary biology. Oxford University Press, Oxford, pp 182–211

    Google Scholar 

  62. Rea SL, Wu D, Cypser JR, Vaupel JW, Johnson TE (2005) A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Genet 37:894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martin (2009) Epigenetic gambling and epigenetic drift as an antagonistic pleiotropic mechanism of aging. Aging Cell 8:761–764

    Google Scholar 

  64. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dolle ME, Calder RB, Chisholm GB, Pollock BH, Klein CA et al (2006) Incsed cell-to-cell variation in gene expression in ageing mouse heart. Nature 441:1011–1014

    Article  CAS  PubMed  Google Scholar 

  66. Martin (2012) Stochastic modulations of the pace and patterns of ageing: impacts on quasi-stochastic distributions of multiple geriatric pathologies. Mech Ageing Dev 133:107–111

    Google Scholar 

  67. Wang SC, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 3:e2698

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kirkwood TB, Finch CE (2002) Ageing: the old worm turns more slowly. Nature 419:794–795

    Article  CAS  PubMed  Google Scholar 

  69. Medawar PB (1952) An unsolved problem in biology: an inaugural lecture delivered at University College. H.K. Lewis and Company, London

    Google Scholar 

  70. Haldane JBS (1941) New paths in genetics. George Allen & Unwin Limited, London

    Google Scholar 

  71. Chouraki V, Seshadri S (2014) Genetics of Alzheimer’s disease. Adv Genet 87:245–294

    Article  PubMed  Google Scholar 

  72. Karch CM, Cruchaga C, Goate AM (2014) Alzheimer’s disease genetics: from the bench to the clinic. Neuron 83:11–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lord J, Lu AJ, Cruchaga C (2014) Identification of rare variants in Alzheimer’s disease. Front Genet 5:369

    Article  PubMed  PubMed Central  Google Scholar 

  75. Reitz C (2014) Genetic loci associated with Alzheimer’s disease. Future Neurol 9:119–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Irwin DJ, Abrams JY, Schonberger LB, Leschek EW, Mills JL, Lee VM, Trojanowski JQ (2013) Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol 70:462–468

    Article  PubMed  PubMed Central  Google Scholar 

  77. Watts JC, Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB (2014) Serial propagation of distinct strains of Abeta prions from Alzheimer’s disease patients. Proc Natl Acad Sci USA 111:10323–10328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Morales R, Callegari K, Soto C (2015) Prion-like features of misfolded Abeta and tau aggregates. Virus Res

    Google Scholar 

  79. White MR, Kandel R, Tripathi S, Condon D, Qi L, Taubenberger J, Hartshorn KL (2014) Alzheimer’s associated beta-amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes. PLoS One 9:e101364

    Article  PubMed  PubMed Central  Google Scholar 

  80. Theendakara V, Patent A, Peters Libeu CA, Philpot B, Flores S, Descamps O, Poksay KS, Zhang Q, Cailing G, Hart M et al (2013) Neuroprotective sirtuin ratio reversed by ApoE4. Proc Natl Acad Sci USA 110:18303–18308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Middleton PJ, Petric M, Kozak M, Rewcastle NB, McLachlan DR (1980) Herpes-simplex viral genome and senile and presenile dementias of Alzheimer and Pick. Lancet 1:1038

    Article  CAS  PubMed  Google Scholar 

  82. Ball MJ (1982) Limbic predilection in Alzheimer dementia: is activated herpesvirus involved? Can J Neurol Sci 9:303–306

    Article  CAS  PubMed  Google Scholar 

  83. Lin WR, Shang D, Wilcock GK, Itzhaki RF (1995) Alzheimer’s disease, herpes simplex virus type 1, cold sores and apolipoprotein E4. Biochem Soc Trans 23:594s

    Article  CAS  PubMed  Google Scholar 

  84. Sanchez EL, Lagunoff M (2015) Viral activation of cellular metabolism. Virology 479-480C:609–618

    Google Scholar 

  85. Maheshwari P, Eslick GD (2015) Bacterial infection and Alzheimer’s disease: a meta-analysis. J Alzheimer’s Dis: JAD 43:957–966

    PubMed  Google Scholar 

  86. Lathe R, Sapronova A, Kotelevtsev Y (2014) Atherosclerosis and Alzheimer diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatrics 14:36

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhang MY, Katzman R, Salmon D, Jin H, Cai GJ, Wang ZY, Qu GY, Grant I, Yu E, Levy P et al (1990) The prevalence of dementia and Alzheimer’s disease in Shanghai, China: impact of age, gender, and education. Ann Neurol 27:428–437

    Article  CAS  PubMed  Google Scholar 

  88. Letenneur L, Launer LJ, Andersen K, Dewey ME, Ott A, Copeland JR, Dartigues JF, Kragh-Sorensen P, Baldereschi M, Brayne C et al (2000) Education and the risk for Alzheimer’s disease: sex makes a difference. EURODEM pooled analyses. EURODEM Incidence Research Group. Am J Epidemiol 151:1064–1071

    Article  CAS  PubMed  Google Scholar 

  89. Jefferson AL, Gibbons LE, Rentz DM, Carvalho JO, Manly J, Bennett DA, Jones RN (2011) A life course model of cognitive activities, socioeconomic status, education, reading ability, and cognition. J Am Geriatric Soc 59:1403–1411

    Article  Google Scholar 

  90. Landau SM, Marks SM, Mormino EC, Rabinovici GD, Oh H, O’Neil JP, Wilson RS, Jagust WJ (2012) Association of lifetime cognitive engagement and low beta-amyloid deposition. Arch Neurol 69:623–629

    Article  PubMed  PubMed Central  Google Scholar 

  91. Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11:1006–1012

    Article  PubMed  PubMed Central  Google Scholar 

  92. Steffener J, Barulli D, Habeck C, O’Shea D, Razlighi Q, Stern Y (2014) The role of education and verbal abilities in altering the effect of age-related gray matter differences on cognition. PLoS One 9:e91196

    Article  PubMed  PubMed Central  Google Scholar 

  93. Vitek MP, Christensen DJ, Wilcock D, Davis J, Van Nostrand WE, Li FQ, Colton CA (2012) APOE-mimetic peptides reduce behavioral deficits, plaques and tangles in Alzheimer’s disease transgenics. Neuro-Degenerative Dis 10:122–126

    Article  CAS  Google Scholar 

  94. Gao H, Granka JM, Feldman MW (2010) On the classification of epistatic interactions. Genetics 184(3):827–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Calenda A, Jallageas V, Silhol S, Bellis M, Bons N (1995) Identification of a unique apolipoprotein E allele in Microcebus murinus; ApoE brain distribution and co-localization with beta-amyloid and tau proteins. Neurobiol Dis 2:169–176

    Article  CAS  PubMed  Google Scholar 

  96. Bons N, Rieger F, Prudhomme D, Fisher A, Krause KH (2006) Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer’s disease? Genes Brain Behav 5:120–130

    Article  CAS  PubMed  Google Scholar 

  97. Kraska A, Dorieux O, Picq JL, Petit F, Bourrin E, Chenu E, Volk A, Perret M, Hantraye P, Mestre-Frances N et al (2011) Age-associated cerebral atrophy in mouse lemur primates. Neurobiol Aging 32:894–906

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bertrand A, Pasquier A, Petiet A, Wiggins C, Kraska A, Joseph-Mathurin N, Aujard F, Mestre-Frances N, Dhenain M (2013) Micro-MRI study of cerebral aging: ex vivo detection of hippocampal subfield reorganization, microhemorrhages and amyloid plaques in mouse lemur primates. PLoS One 8:e56593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science 235:873–877

    Article  CAS  PubMed  Google Scholar 

  100. Elfenbein HA, Rosen RF, Stephens SL, Switzer RC, Smith Y, Pare J, Mehta PD, Warzok R, Walker LC (2007) Cerebral beta-amyloid angiopathy in aged squirrel monkeys. Histol Histopathol 22:155–167

    CAS  PubMed  Google Scholar 

  101. Chambers JK, Kuribayashi H, Ikeda S, Une Y (2010) Distribution of neprilysin and deposit patterns of Abeta subtypes in the brains of aged squirrel monkeys (Saimiri sciureus). Amyloid: Int J Exp Clin Investig 17:75–82

    Google Scholar 

  102. Ndung’u M, Hartig W, Wegner F, Mwenda JM, Low RW, Akinyemi RO, Kalaria RN (2012) Cerebral amyloid beta(42) deposits and microvascular pathology in ageing baboons. Neuropathol Appl Neurobiol 38:487–499

    Article  PubMed  Google Scholar 

  103. Mestre-Frances N, Keller E, Calenda A, Barelli H, Checler F, Bons N (2000) Immunohistochemical analysis of cerebral cortical and vascular lesions in the primate Microcebus murinus reveal distinct amyloid beta1-42 and beta1-40 immunoreactivity profiles. Neurobiol Dis 7:1–8

    Article  CAS  PubMed  Google Scholar 

  104. Geula C, Nagykery N, Wu CK (2002) Amyloid-beta deposits in the cerebral cortex of the aged common marmoset (Callithrix jacchus): incidence and chemical composition. Acta Neuropathol 103:48–58

    Article  CAS  PubMed  Google Scholar 

  105. Wu CK, Nagykery N, Hersh LB, Scinto LF, Geula C (2003) Selective age-related loss of calbindin-D28k from basal forebrain cholinergic neurons in the common marmoset (Callithrix jacchus). Neuroscience 120:249–259

    Article  CAS  PubMed  Google Scholar 

  106. Leuner B, Kozorovitskiy Y, Gross CG, Gould E (2007) Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci USA 104:17169–17173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Knuesel I, Nyffeler M, Mormede C, Muhia M, Meyer U, Pietropaolo S, Yee BK, Pryce CR, LaFerla FM, Marighetto A et al (2009) Age-related accumulation of Reelin in amyloid-like deposits. Neurobiol Aging 30:697–716

    Article  CAS  PubMed  Google Scholar 

  108. Carlyle BC, Nairn AC, Wang M, Yang Y, Jin LE, Simen AA, Ramos BP, Bordner KA, Craft GE, Davies P et al (2014) cAMP-PKA phosphorylation of tau confers risk for degeneration in aging association cortex. Proc Natl Acad Sci USA 111:5036–5041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gearing M, Rebeck GW, Hyman BT, Tigges J, Mirra SS (1994) Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer disease. Proc Natl Acad Sci USA 91:9382–9386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hussain I, Fabregue J, Anderes L, Ousson S, Borlat F, Eligert V, Berger S, Dimitrov M, Alattia JR, Fraering PC et al (2013) The role of gamma-secretase activating protein (GSAP) and imatinib in the regulation of gamma-secretase activity and amyloid-beta generation. J Biol Chem 288:2521–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shibuya Y, Chang CC, Huang LH, Bryleva EY, Chang TY (2014) Inhibiting ACAT1/SOAT1 in microglia stimulates autophagy-mediated lysosomal proteolysis and increases Abeta1-42 clearance. J Neurosci 34:14484–14501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Martin (2014) Nature, nurture and chance: their roles in interspecific and intraspecific modulations of aging. In: Sprott R (ed) Annual review of gerontology and geriatrics: genetics, vol 34. Springer, New York

    Google Scholar 

Download references

Acknowledgements

CEF thanks Troy Locker-Palmer for excellent graphics in Fig. 19.1. CEF is grateful for support from the National Institutes of Health (P01-AG026572) to Roberta D Brinton, PI, Project 2 (CEF), and encouragement by the Center for Academic Research and Training in Anthropogeny (CARTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caleb E. Finch Ph.D. .

Editor information

Editors and Affiliations

Glossary

Amyloids and Aβ peptides

Amyloid refers to a large group of proteins or peptides that are rich in β-helical sheets of amino acids and are prone to form insoluble aggregates within tissues. The aggregates that are among the classical diagnostic features of Alzheimer’s disease are known as Amyloid beta, or Aβ. There are several varieties, all of which are derived from a much larger precursor protein (APP, or the β-APP). The two Aβ peptides that have been most investigated are Aβ 1–40 (with forty amino acids) and Aβ 1–42 (forty-two amino acids). The name amyloid is derived from a chemical test for starch (an iodine test) used by the famous pathologist Rudolph Virchow in the mid-nineteenth century to determine the nature of waxy material he found in livers of some autopsied subjects. Virchow was prescient in using the suffix “–oid” (like starch), as this and all other types of amyloids turned out to be proteins. Amyloids, however, co-precipitate with hyaluronan sulfate proteoglycans, hence the positive iodine test!

Aging

Aging can be defined as a collection of gradual and insidious declines in multiple cellular physiological functions, which reduce responses to stress, increase the risk of chronic disease, and accelerate the probability of death during later adult ages

Amino acid residues

Proteins consist of strings of amino acids. When amino acids are linked, molecules of water are lost and the resulting amino acids are referred to as amino acid residues

APOE

This is the accepted abbreviation for a gene that codes for the apolipoprotein E protein. By convention, the abbreviations for genes are both capitalized and italicized; the related protein is also capitalized, but not italicized. Human populations have three different forms (alleles) of this gene, each differing slightly by amino acid sequence. The most common allele is E4, where E stands for epsilon. The least common allele, E2, is associated with lesser risk for Alzheimer’s disease. E4 is the major risk factor for late-onset Alzheimer’s disease

APP

Abbreviation for β-amyloid precursor protein (see Aβ peptides, above)

Astrocytes

The name of this major brain cell represents its typical star-like shapes. They provide neurons with lipids carried by apolipoprotein E

Entorhinal cortex

This is the part of the medial temporal cortex of the brain that connects the hippocampus to other areas of the cerebral cortex and is therefore an essential hub in the networks involved in learning and memory

Epigenetic drift

Epigenetics literally means “on top of” the genes. It involves chemical changes to the basic nucleotide base pairs of the DNA and of its associated proteins known as histones. In so doing, these chemical alterations change the expression of genes during cell differentiation and in certain pathological conditions. These chemical marks and their associate alterations in gene expression gradually change during aging, a process known as epigenetic drift

Epistatic gene interaction

Genes do not work in a vacuum. They are dependent upon interactions with other genes, variations at which can modulate the phenotype of the organism. For a fuller account of the origins and evolution of this concept, its terminology and its classifications, consult [94]

Lipid-binding terminus

Proteins and fatty substances (lipids) can be bound together in the same molecule. Characteristic sequences of amino acids have evolved to provide specificity for such interactions. These sequences can occur at different regions of the protein. For the case of apolipoprotein E (APOE), this binding occurs near the carboxyl end (C-terminus)

Neurite

A neurite is a projection from a neuron. These can be axons, the long neurites along which impulses are conducted from the cell body to other cells, or they can be dendrites, the short, branched extensions that transmit signals across the synapse

PiB

Abbreviation for Pittsburgh (Pi) Compound B, a radioactive compound related to a dye that has long been used to stain deposits of amyloid for the microscopic detection of amyloids. When used with positron emission tomography (PET scans), PiB detects deposits of amyloid in the brains of living patients and thus can help with the diagnosis of Alzheimer’s disease in very early stages. Thus, PiB can also document the effects of therapies designed to reverse or slow the rate of progression of the disease

Plasticity

In evolutionary biology, plasticity usually refers to the process of one genotype leading to various phenotypes depending on the environment. A broader use has developed among biogerontologists to represent the different timing of aging processes within phylogenetic clades, as shown in Fig. 19.1

Public allele system

This term represents a polymorphic gene (one with several variants, each of which has frequencies greater that ~1 %) that is widely found in different human populations. Its effects upon a given phenotype are generally predictable, as in the classic example of sickle-cell hemoglobin (see trade-offs)

Selective advantage

This term applies to alleles or groups of alleles or to certain phenotypes whose gene actions lead to a greater probability of survival in a given environment

TNFα

This gene encodes a multifunctional proinflammatory cytokine that belongs to the tumor necrosis factor (TNF) superfamily

Trade-offs

This term is used here to refer to gene actions that can exhibit differential effects on phenotypes depending upon the environment or the stage of the life cycle. A classic example is sickle-cell hemoglobin, in which heterozygotes have resistance to malaria, whereas homozygotes suffer painful tissue damage

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Finch, C.E., Martin, G.M. (2016). Dementias of the Alzheimer Type: Views Through the Lens of Evolutionary Biology Suggest Amyloid-Driven Brain Aging Is Balanced Against Host Defense. In: Alvergne, A., Jenkinson, C., Faurie, C. (eds) Evolutionary Thinking in Medicine. Advances in the Evolutionary Analysis of Human Behaviour. Springer, Cham. https://doi.org/10.1007/978-3-319-29716-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29716-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29714-9

  • Online ISBN: 978-3-319-29716-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics