We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

The Parameterization Method in KAM Theory | SpringerLink
Skip to main content

The Parameterization Method in KAM Theory

  • Chapter
  • First Online:
The Parameterization Method for Invariant Manifolds

Part of the book series: Applied Mathematical Sciences ((AMS,volume 195))

  • 1864 Accesses

Abstract

This chapter is devoted to the parameterization method in KAM theory, also referred to as KAM theory without action-angle coordinates. The chapter states and proves a KAM theorem in a posteriori format, with explicit bounds suitable to be applied in an effective and quantitative way. The reader can skip the proof without losing the flavor of the application of the method. We have included full descriptions of the derived algorithms, and applications to the examples that follow, which are: application of the theorem (by hand calculations) to obtain persistence of the golden invariant curve for tiny values of the parameter of the standard map, numerical continuation of this same curve up to values close to the breakdown, and computation of 2D KAM tori in the Froeschlé map.

A.H. acknowledges support from the Spanish grants MTM2009-09723, MTM2012-32541 and MTM2015-67724-P, and by the Catalan grants 2009-SGR-67 and 2014-SGR-1145. A.L. acknowledges support from postdoctoral positions in the Juan de la Cierva Fellowship JCI-2010-06517 (years from 2012 to 2014) and in the ERC Starting grant 335079 (from 2015), the Spanish grant MTM2012-32541, the ICMAT-Severo Ochoa grant SEV-2015-0554 (MINECO), and the Catalan grants 2009-SGR-859 and 2014-SGR-1145.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the present chapter, we consider the study of primary or rotational tori (homotopic to the zero section \( \mathbb{T} \times \{ 0\} \)) but all methods and ideas can be directly adapted to deal with secondary tori.

  2. 2.

    A function \( u: \mathbb{R}^{d} \rightarrow \mathbb{R} \) is 1-periodic if \( u(\theta +e) = u(\theta ) \) for all \( \theta \in \mathbb{R}^{d} \) and \( e \in \mathbb{Z}^{d} \). A function \( u: \mathbb{T}^{d} \rightarrow \mathbb{R} \) is viewed as a 1-periodic function \( u: \mathbb{R}^{d} \rightarrow \mathbb{R} \). Similarly, a function \( g: \tilde{\mathcal{A}}\rightarrow \mathbb{R} \) is 1-periodic in x if g(x + e, y) = g(x, y) for all \( x \in \mathbb{R}^{d} \) and \( e \in \mathbb{Z}^{d} \). A function \( g: \mathcal{A}\rightarrow \mathbb{R} \) is viewed as a function \( g: \tilde{\mathcal{A}}\rightarrow \mathbb{R} \) that is 1- periodic in x.

References

  1. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, third ed., Encyclopaedia of Mathematical Sciences, vol. 3, Springer-Verlag, Berlin, 2006.

    Google Scholar 

  2. R. Abraham and J. E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1978.

    Google Scholar 

  3. V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk 18 (1963), no. 5 (113), 13–40.

    Google Scholar 

  4. V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Russ. Math. Surveys 18 (1963), 85–192.

    Article  MathSciNet  Google Scholar 

  5. M. Berti, Nonlinear oscillations of Hamiltonian PDEs, Progress in Nonlinear Differential Equations and their Applications, 74, Birkhäuser Boston Inc., Boston, MA, 2007.

    Google Scholar 

  6. G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method, Nuovo Cimento B (11) 79 (1984), no. 2, 201–223.

    Google Scholar 

  7. H. W. Broer, H. Hanßmann, À. Jorba, J. Villanueva, and F. Wagener, Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach, Nonlinearity 16 (2003), no. 5, 1751–1791.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. W. Broer, G. B. Huitema, and M. B. Sevryuk, Quasi-periodic motions in families of dynamical systems. Order amidst chaos, Lecture Notes in Math., Vol 1645, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  9. H. W. Broer, G. B. Huitema, and F. Takens, Unfoldings of quasi-periodic tori, Mem. Amer. Math. Soc. 83 (1990), no. 421, 1–81, 171–175.

    Google Scholar 

  10. E. M. Bollt and J. D. Meiss, Breakup of invariant tori for the four-dimensional semi-standard map, Phys. D 66 (1993), no. 3–4, 282–297.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. B. Bost, Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolmogorov, Arnold, Moser, Rüssmann, Zehnder, Herman, Pöschel, …), Astérisque (1986), no. 133–134, 113–157, Seminar Bourbaki, Vol. 1984/85.

    Google Scholar 

  12. J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices (1994), no. 11, 475ff., approx. 21 pp. (electronic).

    Google Scholar 

  13. J. B. Bost, On Melnikov’s persistency problem, Math. Res. Lett. 4 (1997), no. 4, 445–458.

    Google Scholar 

  14. J. B. Bost, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math. 2 (1998), no. 148, 363–439.

    Google Scholar 

  15. H. W. Broer, KAM theory: the legacy of A. N. Kolmogorov’s 1954 paper. Comment on: “The general theory of dynamic systems and classical mechanics” (French) [in proceedings of the international congress of mathematicians, amsterdam, 1954, vol. 1, 315–333, Erven P. Noordhoff N.V., Groningen, 1957], Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 4, 507–521.

    Google Scholar 

  16. M. Canadell, Computation of normally hyperbolic invariant manifolds, Ph.D. thesis, Departament de Matemàtica Aplicada i Analísi, Universitat de Barcelona, 2014.

    Google Scholar 

  17. A. Celletti and L. Chierchia, Construction of Analytic KAM Surfaces and Effective Stability Bounds, Comm. Math. Phys. 118 (1988), no. 1, 199–161.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. J. Capiński, On the stability of realistic three-body problems, Comm. Math. Phys. 186 (1997), no. 2, 413–449.

    Article  MathSciNet  Google Scholar 

  19. M. J. Capiński, KAM stability and celestial mechanics, Mem. Amer. Math. Soc. 187 (2007), no. 878, viii+134.

    Google Scholar 

  20. R. Calleja, A. Celletti, and R. de la Llave, A KAM theory for conformally symplectic systems: efficient algorithms and their validation, J. Differential Equations 255 (2013), no. 5, 978–1049.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Calleja and R. de la Llave, Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps, Nonlinearity 22 (2009), no. 6, 1311–1336.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. J. Capiński, A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification, Nonlinearity 23 (2010), no. 9, 2029–2058.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, vol. 1764, Springer-Verlag, Berlin, 2001.

    Book  MATH  Google Scholar 

  24. R. Calleja and J.-Ll. Figueras, Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map, Chaos 22 (2012), 033114.

    Google Scholar 

  25. M. Canadell and A. Haro, Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori, F. Casas, V. Martínez (eds.), Advances in Differential Equations and Applications, SEMA SIMAI Springer Series, vol. 4, Springer, 2014.

    Google Scholar 

  26. M. J. Capiński, A KAM-like theorem for quasi-periodic normally hyperbolic invariant tori, Preprint, 2015.

    Google Scholar 

  27. M. J. Capiński, Parameterization methods for computing quasi-periodic normally hyperbolic invariant tori: algorithms and numerical explorations, In progress, 2015.

    Google Scholar 

  28. B. V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep. 52 (1979), no. 5, 264–379.

    Article  MathSciNet  Google Scholar 

  29. E. Castellà and À. Jorba, On the vertical families of two-dimensional tori near the triangular points of the bicircular problem, Celestial Mech. Dynam. Astronom. 76 (2000), no. 1, 35–54.

    Article  MathSciNet  MATH  Google Scholar 

  30. M.-C. Ciocci, A. Litvak-Hinenzon, and H. Broer, Survey on dissipative KAM theory including quasi-periodic bifurcation theory, Geometric mechanics and symmetry, London Math. Soc. Lecture Note Ser., vol. 306, Cambridge Univ. Press, Cambridge, 2005, pp. 303–355.

    Google Scholar 

  31. C. Q. Cheng and Y. S. Sun, Existence of KAM tori in degenerate systems, J. Differential equations 114 (1994), no. 1, 288–335.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Dieci and G. Bader, Solution of the systems associated with invariant tori approximation. II. Multigrid methods, SIAM J. Sci. Comput. 15 (1994), no. 6, 1375–1400.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Delshams and R. de la Llave, KAM theory and a partial justification of Greene’s criterion for nontwist maps, SIAM J. Math. Anal. 31 (2000), no. 6, 1235–1269 (electronic).

    Google Scholar 

  34. C. Díez, À. Jorba, and C. Simó, A dynamical equivalent to the equilateral libration points of the real Earth-Moon system, Celestial Mech. 50 (1991), no. 1, 13–29.

    Article  MATH  Google Scholar 

  35. S. P. Diliberto, Computation of invariant tori by the method of characteristics, SIAM J. Numer. Anal. 32 (1995), no. 5, 1436–1474.

    Article  MathSciNet  Google Scholar 

  36. S. P. Diliberto, A tutorial on KAM theory, Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 175–292.

    Google Scholar 

  37. R. de la Llave, A. González, À. Jorba, and J. Villanueva, KAM theory without action-angle variables, Nonlinearity 18 (2005), no. 2, 855–895.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. de la Llave and A. Luque, Differentiability at the tip of Arnold tongues for Diophantine rotations: numerical studies and renormalization group explanations, J. Stat. Phys. 143 (2011), no. 6, 1154–1188.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. de la Llave and A. Olvera, The obstruction criterion for non-existence of invarian circles and renormalization, Nonlinearity 19 (2006), no. 8, 1907–1937.

    Article  MathSciNet  MATH  Google Scholar 

  40. R. de la Llave and D. Rana, Accurate strategies for small divisor problems, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 85–90.

    Google Scholar 

  41. S. P. Diliberto, Accurate strategies for K.A.M. bounds and their implementation, Computer aided proofs in analysis (Cincinnati, OH, 1989), IMA Vol. Math. Appl., vol. 28, Springer, New York, 1991, pp. 127–146.

    Google Scholar 

  42. R. de la Llave and C. E. Wayne, Whiskered and low dimensional tori in nearly integrable Hamiltonian systems, Math. Phys. Electron. J. 10 (2004), Paper 5, 45 pp. (electronic).

    Google Scholar 

  43. L. Dieci, J. Lorenz, and R. D. Russell, Numerical calculation of invariant tori, SIAM J. Sci. Statist. Comput. 12 (1991), no. 3, 607–647.

    Article  MathSciNet  MATH  Google Scholar 

  44. H. S. Dumas, The KAM story, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014, A friendly introduction to the content, history, and significance of classical Kolmogorov-Arnold-Moser theory.

    Google Scholar 

  45. L. H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 1, 115–147 (1989).

    Google Scholar 

  46. L. H. Eliasson, Biasymptotic solutions of perturbed integrable Hamiltonian systems, Bol. Soc. Brasil. Mat. (N.S.) 25 (1994), no. 1, 57–76.

    Google Scholar 

  47. L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 679–705.

    Google Scholar 

  48. E. Fontich, R. de la Llave, and Y. Sire, Construction of invariant whiskered tori by a parameterization method. I. Maps and flows in finite dimensions, J. Differential Equations 246 (2009), no. 8, 3136–3213.

    Article  MathSciNet  MATH  Google Scholar 

  49. J.-Ll. Figueras and, Different scenarios for hyperbolicity breakdown in quasiperiodic area preserving twist maps, Chaos 25 (2015), 123119.

    Google Scholar 

  50. J.-Ll. Figueras, A. Haro, and A. Luque, Rigorous computer assisted application of KAM theory: a modern approach. Preprint available at arXiv:1601.00084.

    Google Scholar 

  51. J.-Ll. Figueras, Fiberwise Hyperbolic Invariant Tori in quasiperiodically skew product systems, Ph.D. thesis, Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, 2011.

    Google Scholar 

  52. M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE 93 (2005), no. 2, 216–231, Special issue on “Program Generation, Optimization, and Platform Adaptation”.

    Google Scholar 

  53. A. M. Fox and J. D. Meiss, Critical invariant circles in asymmetric and multiharmonic generalized standard maps, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), no. 4, 1004–1026.

    Article  MathSciNet  Google Scholar 

  54. C. Froesché, Numerical study of a four-dimensional mapping, Astron. Astrophys. 16 (1972), 172–189.

    MathSciNet  Google Scholar 

  55. G. Gallavotti, Perturbation theory for classical Hamiltonian systems, Scaling and self-similarity in physics (Bures-sur-Yvette, 1981/1982), Progr. Phys., vol. 7, Birkhäuser Boston, Boston, MA, 1983, pp. 359–426.

    Google Scholar 

  56. G. Gallavotti and G. Gentile, Hyperbolic low-dimensional invariant tori and summations of divergent series, Comm. Math. Phys. 227 (2002), no. 3, 421–460.

    Article  MathSciNet  MATH  Google Scholar 

  57. C. L. Fefferman and L. A. Seco, Singularity theory for non-twist KAM tori, Mem. Amer. Math. Soc. 227 (2014), no. 1067, vi+115.

    Google Scholar 

  58. F. Gabern, À. Jorba, and U. Locatelli, On the construction of the Kolmogorov normal form for the Trojan asteroids, Nonlinearity 18 (2005), no. 4, 1705–1734.

    Article  MathSciNet  MATH  Google Scholar 

  59. C. L. Fefferman and L. A. Seco, Dynamics and mission design near libration point orbits - volume IV: Advanced methods for triangular points, World Scientific Monograph Series in Mathematics, vol. 5, World Scientific Publishing Co. Inc., River Edge, NJ, 2001. Reprint of ESA Report Study of Poincaré Maps for Orbits Near Lagrangian Points, 1993.

    Google Scholar 

  60. G. Gómez, J. M. Mondelo, and C. Simó, A collocation method for the numerical Fourier analysis of quasi-periodic functions. I. Numerical tests and examples, Discrete Contin. Dyn. Syst. Ser. B 14 (2010), no. 1, 41–74.

    Article  MathSciNet  MATH  Google Scholar 

  61. S. M. Graff, On the conservation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations 15 (1974), 1–69.

    Article  MathSciNet  MATH  Google Scholar 

  62. J. M. Greene, A method for determining a stochastic transition, J. Math. Phys 20 (1975), no. 6, 1183–1201.

    Article  Google Scholar 

  63. H. Hanssmann, Non-degeneracy conditions in KAM theory, Indagationes Mathematicae 22 (2011), no. 3–4, 241–256.

    Article  MathSciNet  MATH  Google Scholar 

  64. A. Haro, The primitive function of an exact symplectomorphism, Ph.D. thesis, Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, 1998.

    Google Scholar 

  65. J. K. Hale, The primitive function of an exact symplectomorphism, Nonlinearity 13 (2000), no. 5, 1483–1500.

    Article  MathSciNet  MATH  Google Scholar 

  66. J. K. Hale, An algorithm to generate canonical transformations: application to normal forms, Phys. D 167 (2002), no. 3–4, 197–217.

    MathSciNet  Google Scholar 

  67. J. K. Hale, Manifolds on the verge of a hyperbolicity breakdown, Chaos 16 (2006), 013120.

    Article  MathSciNet  MATH  Google Scholar 

  68. J. K. Hale, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 6, 1261–1300.

    Google Scholar 

  69. J. K. Hale, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity, SIAM J. Appl. Dyn. Syst. 6 (2007), no. 1, 142–207 (electronic).

    Google Scholar 

  70. G. Huguet and R. de la Llave, Computation of limit cycles and their isochrons: Fast algorithms and their convergence, SIAM J. Appl. Dyn. Syst. 12 (2013), no. 4, 1763–1802.

    Article  MathSciNet  MATH  Google Scholar 

  71. G. Huguet, R. de la Llave, and Y. Sire, Computation of whiskered invariant tori and their associated manifolds: new fast algorithms, Discrete Contin. Dyn. Syst. 32 (2012), no. 4, 1309–1353.

    MathSciNet  MATH  Google Scholar 

  72. M.-R. Herman, Sur les courbes invariantes par les difféomorphismes de l’anneau. Vol. 2, Astérisque (1986), no. 144, 248, With a correction to: On the curves invariant under diffeomorphisms of the annulus, Vol. 1 (French) [Astérisque No. 103–104, Soc. Math. France, Paris, 1983].

    Google Scholar 

  73. M.-R. Herman, Inégalités “a priori” pour des tores lagrangiens invariants par des difféomorphismes symplectiques, Inst. Hautes Études Sci. Publ. Math. (1989), no. 70, 47–101 (1990).

    Google Scholar 

  74. M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astronom. J. 69 (1964), 73–79.

    Article  MathSciNet  Google Scholar 

  75. Y. Han, Y. Li, and Y. Yi, Degenerate lower-dimensional tori in Hamiltonian systems, J. Differential Equations 227 (2006), no. 2, 670–691.

    Article  MathSciNet  MATH  Google Scholar 

  76. J. F. Heagy and S. M. Hammel, Invariant tori in Hamiltonian systems with high order proper degeneracy, Ann. Henri Poincaré 10 (2010), no. 8, 1419–1436.

    Article  MathSciNet  Google Scholar 

  77. G. Huguet, The role of hyperbolic invariant objects: from Arnold difussion to biological clocks, Ph.D. thesis, Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, 2008.

    Google Scholar 

  78. H.-L. Her and J. You, Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dynam. Differential Equations 20 (2008), no. 4, 831–866.

    Article  MathSciNet  MATH  Google Scholar 

  79. H. Hofer and E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2011, Reprint of the 1994 edition.

    Google Scholar 

  80. À. Jorba, R. de la Llave, and M. Zou, Lindstedt series for lower-dimensional tori, Hamiltonian systems with three or more degrees of freedom (S’Agaró, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 533, Kluwer Acad. Publ., Dordrecht, 1999, pp. 151–167.

    Google Scholar 

  81. À. Jorba and M. Ollé, Invariant curves near Hamiltonian-Hopf bifurcations of four-dimensional symplectic maps, Nonlinearity 17 (2004), no. 2, 691–710.

    Article  MathSciNet  MATH  Google Scholar 

  82. À. Jorba and E. Olmedo, On the computation of reducible invariant tori on a parallel computer, SIAM J. Appl. Dyn. Syst. 8 (2009), no. 4, 1382–1404.

    Article  MathSciNet  MATH  Google Scholar 

  83. À. Jorba, A methodology for the numerical computation of normal forms, centre manifolds and first integrals of Hamiltonian systems, Experiment. Math. 8 (1999), no. 2, 155–195.

    Article  MathSciNet  MATH  Google Scholar 

  84. À. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B 10 (2008), no. 2–3, 537–567.

    MathSciNet  MATH  Google Scholar 

  85. I. Jungreis, A method for proving that monotone twist maps have no invariant circles, Ergodic Theory Dynam. Systems 11 (1991), no. 1, 79–84.

    Article  MathSciNet  MATH  Google Scholar 

  86. À. Jorba and J. Villanueva, On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems, Nonlinearity 10 (1997), no. 4, 783–822.

    Article  MathSciNet  MATH  Google Scholar 

  87. R. A. Johnson and G. R. Sell, On the persistence of lower-dimensional invariant tori under quasi-periodic perturbations, J. Nonlinear Sci. 7 (1997), no. 5, 427–473.

    Article  MathSciNet  Google Scholar 

  88. R. A. Johnson and G. R. Sell, Numerical computation of normal forms around some periodic orbits of the restricted three-body problem, Phys. D 114 (1998), no. 3–4, 197–229.

    MathSciNet  Google Scholar 

  89. K. Kaneko and R. Bagley, Arnold diffusion, ergodicity and intermittency in a coupled standard mapping, Physics Letters A 110 (1985), no. 9, 435–440.

    Article  MathSciNet  Google Scholar 

  90. H. Koch, A renormalization group fixed point associated with the breakup of golden invariant tori, Discrete Contin. Dyn. Syst. 11 (2004), no. 4, 881–909.

    Article  MathSciNet  MATH  Google Scholar 

  91. A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), 527–530, Translated in p. 51–56 of Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Como 1977 (eds. G. Casati and J. Ford) Lect. Notes Phys. 93, Springer, Berlin, 1979.

    Google Scholar 

  92. S. B. Kuksin, Perturbation of conditionally periodic solutions of infinite-dimensional Hamiltonian systems, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 1, 41–63, 240, Translated in Math. USSR-Izv., 32(1): 39–62, 1989.

    Google Scholar 

  93. S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications, vol. 19, Oxford University Press, 2000.

    Google Scholar 

  94. J. Laskar, Manipulation des séries, Modern Methods in Celestial Mechanics, Comptes Rendus de la 13ieme Ecole Printemps d’Astrophysique de Goutelas (France), 24–29 Avril, 1989. Edited by Daniel Benest and Claude Froeschlé. Gif-sur-Yvette: Editions Frontieres, 1990., p.285 (1990), 89–108.

    Google Scholar 

  95. O. E. Lanford, Frequency map analysis and quasiperiodic decompositions, Hamiltonian systems and Fourier analysis, Adv. Astron. Astrophys., Camb. Sci. Publ., Cambridge, 2005, pp. 99–133.

    Google Scholar 

  96. V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Springer-Verlag, Berlin, 1993.

    Book  MATH  Google Scholar 

  97. U. Locatelli and A. Giorgilli, Invariant tori in the secular motions of the three-body planetary systems, Cel. Mech. 78 (2000), no. 1, 47–74.

    Article  MathSciNet  MATH  Google Scholar 

  98. V. F. Lazutkin, Construction of Kolmogorov’s normal form for a planetary system, Regul. Chaotic Dyn. 10 (2005), no. 2, 153–171.

    Article  MathSciNet  Google Scholar 

  99. U. Locatelli, Three-body planetary problem: study of KAM stability for the secular part of the Hamiltonian, Planetary and Space Science 46 (1998), no. 11, 1453–1464.

    Article  Google Scholar 

  100. A. Luque and J. Villanueva, Computation of derivatives of the rotation number for parametric families of circle diffeomorphisms, Phys. D 237 (2008), no. 20, 2599–2615.

    Article  MathSciNet  MATH  Google Scholar 

  101. Yu. D. Latushkin and A. M. Stëpin, Numerical computation of rotation numbers for quasi-periodic planar curves, Phys. D 238 (2009), no. 20, 2025–2044.

    Article  MathSciNet  Google Scholar 

  102. Yu. D. Latushkin and A. M. Stëpin, A KAM theorem without action-angle variables for elliptic lower dimensional tori, Nonlinearity 24 (2011), no. 4, 1033–1080.

    Article  MathSciNet  Google Scholar 

  103. Yu. D. Latushkin and A. M. Stëpin, Quasi-periodic frequency analysis using averaging-extrapolation methods, SIAM J. Appl. Dyn. Syst. 13 (2014), no. 1, 1–46.

    Article  MathSciNet  Google Scholar 

  104. R. S. MacKay, Renormalisation in area-preserving maps, Advanced Series in Nonlinear Dynamics, vol. 6, World Scientific Publishing Co. Inc., River Edge, NJ, 1993.

    MATH  Google Scholar 

  105. J. N. Mather, Non-existence of invariant circles, Ergodic Theory Dyn. Syst. 4 (1984), 301–309.

    Article  MathSciNet  MATH  Google Scholar 

  106. J. M. Mondelo, E. Barrabés, G. Gómez, and M. Ollé, Numerical parametrisations of libration point trajectories and their invariant manifolds, AAS/AIAA Astrodynamics Specialists Conference, AAS, 2007.

    Google Scholar 

  107. J. M. Mondelo, Fast numerical computation of Lissajous and quasi-halo libration point trajectories and their invariant manifolds, Paper IAC-12, C1, 6, 9, x14982. 63rd International Astronautical Congress, Naples, Italy, 2012.

    Google Scholar 

  108. V. K. Melnikov, On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function, Soviet Math. Dokl. 6 (1965), no. 6, 1592–1596.

    Google Scholar 

  109. V. K. Melnikov, A family of conditionally periodic solutions of a Hamiltonian systems, Soviet Math. Dokl. 9 (1968), 882–886.

    Google Scholar 

  110. R. S. MacKay, J. D. Meiss, and J. Stark, Converse KAM theory for symplectic twist maps, Nonlinearity 2 (1989), no. 4, 555–570.

    Article  MathSciNet  MATH  Google Scholar 

  111. R. E. Moore, Computation and parameterisation of invariant curves and tori, SIAM J. Numer. Anal. 33 (1996), no. 6, 2333–2358.

    Article  MathSciNet  MATH  Google Scholar 

  112. J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962 (1962), 1–20.

    MathSciNet  MATH  Google Scholar 

  113. R. E. Moore, On the theory of quasiperiodic motions, SIAM Rev. 8 (1966), no. 2, 145–172.

    Article  MathSciNet  Google Scholar 

  114. R. E. Moore, A rapidly convergent iteration method and non-linear differential equations. II, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 499–535.

    Google Scholar 

  115. R. E. Moore, A rapidly convergent iteration method and non-linear partial differential equations. I, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 265–315.

    Google Scholar 

  116. R. E. Moore, Convergent series expansions for quasi-periodic motions, Math. Ann. 169 (1967), 136–176.

    Article  MathSciNet  MATH  Google Scholar 

  117. R. S. MacKay and I. C. Percival, Converse KAM: theory and practice, Comm. Math. Phys. 98 (1985), no. 4, 469–512.

    Article  MathSciNet  MATH  Google Scholar 

  118. A. Olvera and N. P. Petrov, Regularity properties of critical invariant circles of twist maps, and their universality, SIAM J. Appl. Dyn. Syst. 7 (2008), no. 3, 962–987.

    Article  MathSciNet  MATH  Google Scholar 

  119. M. Ollé, J. R. Pacha, and J. Villanueva, Kolmogorov-Arnold-Moser aspects of the periodic Hamiltonian Hopf bifurcation, Nonlinearity 21 (2008), no. 8, 1759–1811.

    Article  MathSciNet  MATH  Google Scholar 

  120. V. A. Pliss, Les méthodes nouvelles de la mécanique céleste. Tome II, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Librairie Scientifique et Technique Albert Blanchard, Paris, 1987.

    Google Scholar 

  121. J. Pöschel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math. 35 (1982), no. 5, 653–696.

    Article  MathSciNet  MATH  Google Scholar 

  122. V. A. Pliss, On elliptic lower-dimensional tori in Hamiltonian systems, Math. Z. 202 (1989), no. 4, 559–608.

    Article  MathSciNet  Google Scholar 

  123. V. A. Pliss, A lecture on the classical KAM theorem, Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 707–732.

    Google Scholar 

  124. V. Reichelt, Computing invariant tori and circles in dynamical systems, Numerical methods for bifurcation problems and large-scale dynamical systems (Minneapolis, MN, 1997), IMA Vol. Math. Appl., vol. 119, Springer, New York, 2000, pp. 407–437.

    Google Scholar 

  125. H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Springer, Berlin, 1975, pp. 598–624. Lecture Notes in Phys., Vol. 38.

    Google Scholar 

  126. L. B. Rall, On a new proof of Moser’s twist mapping theorem, Proceedings of the Fifth Conference on Mathematical Methods in Celestial Mechanics (Oberwolfach, 1975), Part I. Celestial Mech., 14(1):19–31, 1976.

    Article  Google Scholar 

  127. L. B. Rall, On optimal estimates for the solutions of linear difference equations on the circle, Proceedings of the Fifth Conference on Mathematical Methods in Celestial Mechanics (Oberwolfach, 1975), Part I. Celestial Mech., vol. 14, 1976.

    Google Scholar 

  128. L. B. Rall, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn. 6 (2001), no. 2, 119–204.

    Article  MathSciNet  Google Scholar 

  129. M. B. Sevryuk, Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman’s method, Discrete Contin. Dyn. Syst. 18 (2007), no. 2–3, 569–595.

    Article  MathSciNet  MATH  Google Scholar 

  130. C. Simó, On the Analytical and Numerical Approximation of Invariant Manifolds, Modern Methods in Celestial Mechanics, Comptes Rendus de la 13ieme Ecole Printemps d’Astrophysique de Goutelas (France), 24–29 Avril, 1989. Edited by Daniel Benest and Claude Froeschlé. Gif-sur-Yvette: Editions Frontieres, 1990., p.285 (1990), 285–330.

    Google Scholar 

  131. M. B. Sevryuk, Effective computations in celestial mechanics and astrodynamics, Modern methods of analytical mechanics and their applications (Udine, 1997), CISM Courses and Lectures, vol. 387, Springer, Vienna, 1998, pp. 55–102.

    Google Scholar 

  132. C. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics, Springer-Verlag, New York, 1971, Translation by C. I. Kalme, Die Grundlehren der mathematischen Wissenschaften, Band 187.

    Google Scholar 

  133. F. Schilder, H. M. Osinga, and W. Vogt, Continuation of quasi-periodic invariant tori, SIAM J. Appl. Dyn. Syst. 4 (2005), no. 3, 459–488 (electronic).

    Google Scholar 

  134. T. M. Seara and J. Villanueva, On the numerical computation of Diophantine rotation numbers of analytic circle maps, Phys. D 217 (2006), no. 2, 107–120.

    Article  MathSciNet  MATH  Google Scholar 

  135. D. Salamon and E. Zehnder, KAM theory in configuration space, Comment. Math. Helv. 64 (1989), no. 1, 84–132.

    Article  MathSciNet  MATH  Google Scholar 

  136. S. Tompaidis, Approximation of invariant surfaces by periodic orbits in high-dimensional maps: some rigorous results, Experiment. Math. 5 (1996), no. 3, 197–209.

    Article  MathSciNet  MATH  Google Scholar 

  137. E. Valdinoci, Families of whiskered tori for a-priori stable/unstable Hamiltonian systems and construction of unstable orbits, Math. Phys. Electron. J. 6 (2000), Paper 2, 31 pp. (electronic).

    Google Scholar 

  138. R. Vitolo, H. Broer, and C. Simó, Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems, Regul. Chaotic Dyn. 16 (2011), no. 1–2, 154–184.

    Article  MathSciNet  MATH  Google Scholar 

  139. J. Villanueva, Kolmogorov theorem revisited, J. Differential Equations 244 (2008), no. 9, 2251–2276.

    Article  MathSciNet  MATH  Google Scholar 

  140. J. Xu and J. You, Persistence of lower-dimensional tori under the first Melnikov’s non-resonance condition, J. Math. Pures Appl. (9) 80 (2001), no. 10, 1045–1067.

    Google Scholar 

  141. J. Xu, J. You, and Q. Qiu, Invariant tori for nearly integrable Hamiltonian systems with degeneracy, Math. Z. 226 (1997), no. 3, 375–387.

    Article  MathSciNet  MATH  Google Scholar 

  142. E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. I, Comm. Pure Appl. Math. 28 (1975), 91–140.

    Article  MathSciNet  MATH  Google Scholar 

  143. J. B. van den Berg, J. D. Mireles James, J.-P. Lessard, and K., Generalized implicit function theorems with applications to some small divisor problems. II, Comm. Pure Appl. Math. 29 (1976), no. 1, 49–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haro, À., Luque, A. (2016). The Parameterization Method in KAM Theory. In: The Parameterization Method for Invariant Manifolds. Applied Mathematical Sciences, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-29662-3_4

Download citation

Publish with us

Policies and ethics