Skip to main content

Interaction Among Rhizospheric Microbes, Soil, and Plant Roots: Influence on Micronutrient Uptake and Bioavailability

  • Chapter
  • First Online:
Plant, Soil and Microbes

Abstract

Soils resulting in micronutrient deficiency in agricultural land and pastureland are increasing globally. Such micronutrient deficiency is due to lower nutrient availability, lower nutrient mobility, and lower capacity of plants to take up nutrients from the rhizosphere. The rhizosphere extends up to a few millimeters from the root surface into the surrounding soil and is rich in microbial activity and diversity. The activity and types of microbes and the soil characteristics influence the uptake and transport of micronutrients in the roots. From the root zone, mobilization of micronutrients in the edible part of plants and their bioavailability is another question. The availability and uptake of various micronutrients in the rhizosphere is again influenced by soil properties and plant root exudates, and depends on microbial interactions with plant roots. The micronutrient transfer dynamics from the microbial cell to the plant cell is also influenced by the physiology of plant–microbe interactions. For diffusion-supplied micronutrients, if a large diffusion gradient exists between the root surfaces and the soil, a large amount could be shipped toward the roots. Conversely, when the capacity of root cells to take up micronutrients exceeds the rate of nutrient replenishment in the root zone, the uptake rate is regulated by nutrient availability rather than the capacity of plant roots to absorb nutrients. Plants exude a wide range of organic compounds and inorganic ions into the rhizosphere, changing the micro-chemical and biological zone of the rhizosphere and enhancing acclimatization or modification toward a particular biotic and abiotic environment. Absolute understanding of the multifaceted and intricate interactions dominating the relationship among plants, microbes, and soil that influence the composition of root exudates is still far off. Understanding of the plant–microbe–soil interaction mechanism for the uptake and mobilization of micronutrients and their bioavailability in the edible part of plants will open an avenue in biological science which could help solve the problem of micronutrient deficiency in consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Hayashi H (2006) Strigolactones: chemicals signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardakani MR, Mazaheri D, Shirani Rad AH, Mafakheri S (2011) Uptake of micronutrients by wheat (Triticum aestivum L.) in a sustainable agroecosystem. Middle-East J Sci Res 7(4):444–451

    CAS  Google Scholar 

  • Argüello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 195:93–108

    Article  PubMed  Google Scholar 

  • Argüello JM, Eren E, González-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248

    Article  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in the rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan N, Subramanian KS (2012) Mycorrhizal symbiosis and bioavailability of micronutrients in maize grain. Maydica 57:129–138

    Google Scholar 

  • Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G (2011) Monoubiquitin dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci U S A 108(32):E450–E458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belnap J, Hawkes CV, Firestone MK (2003) Boundaries in miniature: two examples from soil. Bioscience 53:739–749

    Article  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Biari A, Gholami A, Rahmani HA (2008) Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of Iran. J Biol Sci 8(6):1015–1020

    Article  CAS  Google Scholar 

  • Black R (2003) Micronutrient deficiency: an underlying cause of morbidity and mortality. Bull World Health Organ 81(2):79–79

    PubMed  PubMed Central  Google Scholar 

  • Borrill P, Connorton JM, Balk J, Miller AJ, Sanders D, Uauy C (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci 5:1–8

    Article  Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  CAS  PubMed  Google Scholar 

  • Brimecombe MJ, de Leij FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinton E, Varanini Z, Nanniperi R (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Springer, Dordrecht, pp 95–140

    Google Scholar 

  • Cakmak I, Pfeiffer WH, Clafferty BM (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87(1):10e20

    Article  Google Scholar 

  • Calton JB (2010) Prevalence of micronutrient deficiency in popular diet plans. J Int Soc Sports Nutr 7:24–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM (2013) Activation of the jasmonic acid plant defense pathway alters the composition of rhizosphere bacterial communities. PLoS One 8(3), e56457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cellier MFM (2012) Nramp: from sequence to structure and mechanism of divalent metal import. Curr Top Membr 69:249–293

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Alonso JM, Jean ML, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desbrosses-Fonrouge AG, Voigt K, Schroder A, Arrivault S, Thomine S, Kramer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579:4165–4174

    Article  CAS  PubMed  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Eide DJ (2005) The Zip family of zinc transporters. In: Iuchi S, Kuldell N (eds) Zinc finger proteins: from atomic contact to cellular function.. Molecular biology intelligence unit. Springer, New York, pp 261–264

    Google Scholar 

  • Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303. doi:10.1007/s1104-008-9839-2

    Article  CAS  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59. doi:10.1007/s11104-0089833-8

    Article  CAS  Google Scholar 

  • Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127(4):1493–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garmory HS, Titball RW (2004) ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun 72(12):6757–6763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int J Microbiol. ID 869697, doi.org/10.1155/2013/869697

  • Govindaraj M, Kannan AP (2011) Implication of micronutrients in agriculture and health with special reference to iron and zinc. Int J Agric Manage Dev 1(4):207–220

    Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  PubMed  Google Scholar 

  • Gustin JL, Zanis MJ, Salt DE (2011) Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol Biol 11:76–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Hennessy A, Walton J, McNulty B, Nugent A, Gibney M, Flynn A (2014) Micronutrient intakes and adequacy of intake in older adults in Ireland. Proc Nutr Soc 73(OCE2):E9

    Google Scholar 

  • Hotz C, Gibson RS (2007) Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J Nutr 137(4):1097–1100

    CAS  PubMed  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2006) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16(5):1327–1339

    Article  Google Scholar 

  • Imran M, Arshad M, Khalid A, Kanwal S, Crowley DE (2014) Perspectives of rhizosphere microflora for improving Zn bioavailability and acquisition by higher plants. Int J Agric Biol 16:653–662

    CAS  Google Scholar 

  • Jaeger CH, Lindow SE, Miller S, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova A, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19(3):250–256

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arabidopsis Book 9, e0153

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45:1749–1758

    Article  CAS  PubMed  Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays) in a calcareous soil. New Phytol 116:637–645

    Article  CAS  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581(12):2263–2272

    Article  PubMed  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soil 28(3):301–305

    Article  CAS  Google Scholar 

  • Kumar V, Bisht S, Teotia P, Sharma S, Solanki AS (2013) Interaction between G. fasciculatum and A. chroococcum for yield, nutrients uptake and cost economy of Lepidium sativum in Indian arid region. Thai J Agric Sci 46(1):21–28

    Google Scholar 

  • Lewinson O, Lee AT, Rees DC (2009) A P-type ATPase importer that discriminates between essential and toxic transition metals. Proc Natl Acad Sci U S A 106(12):4677–4682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XL, Marschner H, Romheld V (1991) Acquisition of phosphorus and copper by VA mycorhizal hyphae and root to shoot transport in white clover. Plant Soil 136:49–57

    Article  CAS  Google Scholar 

  • Li WC, Ye ZH, Won MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Expt Bot 58(15-16):4173–4182

    Article  CAS  Google Scholar 

  • Lin Z, Fernández-Robledo JA, Cellier MFM, Vast GR (2009) Metals and membrane metal transporters in biological systems: the role(s) of Nramp in host-parasite interactions. J Argent Chem Soc 97:210–225

    CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Loh J, Pierson EA, Pierson LS, Stacey G, Chatterjee A (2002) Quorum sensing in plant associated bacteria. Curr Opin Plant Biol 5:285–290

    Article  CAS  PubMed  Google Scholar 

  • López MA, Bannenberg G, Castresana C (2008) Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Curr Opin Plant Biol 11(4):420–427

    Article  PubMed  Google Scholar 

  • Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. App Soil Ecol 13:127–136

    Article  Google Scholar 

  • Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8:107–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763(7):609–620

    Article  CAS  PubMed  Google Scholar 

  • Noori MSS, Saud HM (2012) Potential plant growth promoting activity of Pseudomonas sp isolated from paddy soil in Malaysia as biocontrol agent. Plant Pathol Microbiol 3(2):1–4

    Google Scholar 

  • Nyoki D, Ndakidemi PA (2014) Influence of Bradyrhizobium japonicum and phosphorus on micronutrient uptake in cowpea. A case study of zinc (Zn), iron (Fe), copper (Cu) and manganese (Mn). Am J Plant Sci 5:427–435

    Article  Google Scholar 

  • Okkeri J, Haltia T (2006) The metal-binding sites of the zinc-transporting P-type ATPase of Escherichia coli. Lys693 and Asp714 in the seventh and eighth transmembrane segments of ZntA contribute to the coupling of metal binding and ATPase activity. Biochim Biophys Acta 1757(7):1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370

    Article  PubMed  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316

    Article  CAS  PubMed  Google Scholar 

  • Podar D, Scherer J, Noordally Z, Herzyk P, Nies D, Sanders D (2012) Metal selectivity determinants in a family of transition metal transporters. J Biol Chem 287:3185–3196

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4:176–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purakayastha TJ, Chhonkar PK (2001) Influence of vesicular arbuscular mycorrhizal fungi (Glomus etunicatum L.) on mobilization of Zn in wetland rice (Oryza sativa L.). Biol Fertil Soil 33:323–327

    Article  CAS  Google Scholar 

  • Ryan MH, Angus JF (2003) Arbuscular mycorrhizal fungi increase zinc uptake but do not influence yield or P uptake of field crops in SE Australia. Plant Soil 250:225–239

    Google Scholar 

  • Ryan MH, McInerney JK, Record IR, Angus JF (2008) Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. J Sci Food Agric 88:1208–1216

    Article  CAS  Google Scholar 

  • Sabannavar SJ, Lakshman HC (2009) Effect of rock phosphate solubilization using mycorrhizal fungi and phosphobacteria on two high yielding varieties of Sesamum indicum L. World J Agric Sci 5(4):470–479

    CAS  Google Scholar 

  • Schulin R, Khoschgoftarmanesh A, Afyuni M, Nowack B, Frossard E (2009) Effects of soil management on zinc uptake and its bioavailability in plants. In: Banuelos GS, Lin ZQ (eds) Development and use of biofortified agricultural products. CRC , Boca Raton, pp 95–114

    Google Scholar 

  • Senthilkumar M, Ganesh S, Srinivas K, Panneerselvam P (2014) Enhancing uptake of secondary and micronutrients in banana Cv. Robusta (AAA) through intervention of fertigation and consortium of biofertilizers. Sch Acad J Biosci 2(8):472–478

    Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiate L. Wilzeck). Soil Biol Biochem 35:887–894

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Annu Rev Plant Biol 63:227–250

    Article  Google Scholar 

  • Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease- suppressive bacteria. Proc Natl Acad Sci U S A 96:4786–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Solanki AS, Kumar V, Sharma S (2011) AM fungi, A. chroococcum, yield, nutrient uptake and economics of Chlorophytum borivillianum in Indian arid region. J Agric Technol 7(4):983–991

    Google Scholar 

  • Song WY, Park J, Mendoza-Cozatl D, Suter-Grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea P, Rentsch D, Schroder J, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilization in rice. Pak J Bot 39:245–253

    Google Scholar 

  • Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC (2014) Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. J Soil Sci Plant Nutri 14(4):889–910

    Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot M, Briat J, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • Wu CC (2006) The cadmium transport sites of CadA, the Cd2+-ATPase from Listeria monocytogenes. J Biol Chem 281:29533–29541

    Article  CAS  PubMed  Google Scholar 

  • Yang C-H, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CH, Crowley DE, Menge JA (2001) 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiol Ecol 35:129–136

    Article  CAS  PubMed  Google Scholar 

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). Proc World Sci Eng Technol 37:90–92

    Google Scholar 

  • Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F (2011) Growth, nutrient uptake, and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. Hort Sci 46(6):932–936

    CAS  Google Scholar 

  • Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Renegal Z (1999) Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow leafed Lupins. Ann Bot 83:175–182

    Article  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, V., Kumar, M., Shrivastava, N., Bisht, S., Sharma, S., Varma, A. (2016). Interaction Among Rhizospheric Microbes, Soil, and Plant Roots: Influence on Micronutrient Uptake and Bioavailability. In: Hakeem, K., Akhtar, M. (eds) Plant, Soil and Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-29573-2_8

Download citation

Publish with us

Policies and ethics