Skip to main content

Toxoplasmosis in the Fetus and Newborn

  • Reference work entry
  • First Online:
Neonatology
  • 101 Accesses

Abstract

Globally, primary toxoplasmosis on gestation generates annually 190,100 new cases of congenital toxoplasmosis with a global burden of 1.20 million DALYs. Although Toxoplasma gondii infection is easily diagnosable and effectively treatable on the mother, out of prenatal screening setting, newborn diagnosis and early treatment might be problematic. In fact, the large majority of infected newborn display normal on clinical examination, with positive IgG of maternal origin and possibly negative IgA and IgM, with the consequence of late treatment on subclinical cases who are the ideal target of long-term pharmacological treatment. Moreover, toxoplasmosis is on the list of neglected disease of poverty. As consequence, the interest of manufacturers shows low, and standard of treatment continues to rely on a not curative and toxic medicine combination. Fortunately, research in progress on Toxoplasma gondii and host genetics and epigenetic machinery, including unusual histone variants and plantlike transcriptional and posttranscriptional motifs, could pave the way to potential new drugs and/or to channel the choice to treat or not to treat (and how long) subclinical onset forms. On the chapter, practical sustain on management at birth and on the long term of infant exposed to maternal Toxoplasma gondii infection or definitely congenitally infected (text, tables, and figure) is updated on the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 479.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bahia-Oliveira LM, Jones JL, Azevedo-Silva J et al (2003) Highly endemic, waterborne toxoplasmosis in north Rio de Janeiro state, Brazil. Emerg Infect Dis 9(1):55–62

    Article  Google Scholar 

  • Belaz S, Gangneux JP, Dupretz P et al (2015) A 10-year retrospective comparison of two target sequences, REP-529 and B1, for Toxoplasma gondii detection by quantitative PCR. J Clin Microbiol 53:1294–1300

    Article  CAS  Google Scholar 

  • Blankenberg FG, Loh NN, Bracci P et al (2000) Sonography, CT, and MR imaging: a prospective comparison of neonates with suspected intracranial ischemia and hemorrhage. AJNR Am J Neuroradiol 21:213–218

    CAS  PubMed  Google Scholar 

  • Bodaghi B, Touitou V, Fardeau C et al (2012) Toxoplasmosis: new challenges for an old disease. Eye (Lond) 26(2):241–244

    Article  CAS  Google Scholar 

  • Boughattas S, Abdallah RB, Siala E et al (2011) An atypical strain associated with congenital toxoplasmosis in Tunisia. New Microbiol 34:413–416

    CAS  PubMed  Google Scholar 

  • Bowie WR, King AS, Werker DH et al (1997) Outbreak of toxoplasmosis associated with municipal drinking water: the BC Toxoplasma Investigation Team. Lancet 350:173–177

    Article  CAS  Google Scholar 

  • Boyer KM, Holfels E, Roizen N et al (2005) Risk factors for Toxoplasma gondii infection in mothers of infants with congenital toxoplasmosis: implications for prenatal management and screening. Am J Obstet Gynaecol 192:564–571

    Article  Google Scholar 

  • Capobiango JD, Mitsuka-Breganò R, Cabral-Monica T et al (2015) Acute toxoplasmosis in a breastfed infant with possible transmission by water. Rev Inst Med Trop Sao Paulo 57(6):523–526

    Article  Google Scholar 

  • Carme B, Demar M, Ajzenberg D, Dardé ML (2009) Severe acquired toxoplasmosis caused by wild cycle of Toxoplasma gondii, French Guiana. Emerg Infect Dis 15:656–658

    Article  Google Scholar 

  • Chapey E, Wallon M, L'Ollivier C et al (2015) Place of interferon-γ assay for diagnosis of congenital toxoplasmosis. Pediatr Infect Dis J 34(12):1407–1409

    Article  Google Scholar 

  • de Souza NE, Land Curi AL, Cavalcanti de Albuquerque M et al (2012) Genetic polymorphism for IFNγ +874 T/A in patients with acute toxoplasmosis. Rev Soc Bras Med Trop 45:757–760

    Article  Google Scholar 

  • Delhaes L, Ajzenberg D, Sicot B et al (2010) Severe congenital toxoplasmosis due to a Toxoplasma gondii strain with an atypical genotype: case report and review. Prenat Diagn 30:902–905

    Article  Google Scholar 

  • Dubey JP, Velmurugan GV, Rajendran C et al (2011) Genetic characterisation of Toxoplasma gondii in wildlife from North America revealed widespread and high prevalence of the fourth clonal type. Int J Parasitol 41:1139–1147

    Article  CAS  Google Scholar 

  • Dunn D, Wallon M, Peyron F et al (1999) Mother to child transmission of toxoplasmosis: risk estimates for clinical counselling. Lancet 353:1829–1833

    Article  CAS  Google Scholar 

  • Dutra MS, Béla ST, Peixoto-Rangel AL et al (2013) Association of a NOD2 gene polymorphism and T-helper 17 cells with presumed ocular toxoplasmosis. JID 207:152–163

    Article  CAS  Google Scholar 

  • Elbez-Rubinstein A, Ajzenberg D, Dardé ML et al (2009) Congenital toxoplasmosis and reinfection during pregnancy: case report, strain characterization, experimental model of reinfection, and review. J Infect Dis 199(2):280–285

    Article  Google Scholar 

  • EMSCOT- European Multicentre Study on Congenital Toxoplasmosis (2007) Screening for congenital toxoplasmosis: accuracy of immunoglobulin M and immunoglobulin A tests after birth. J Med Screen 14:8–13

    Article  Google Scholar 

  • European Multicentre Study on Congenital Toxoplasmosis- EMSCOT (2008) Predictors of retinochoroiditis in children with congenital toxoplasmosis: European, prospective cohort study. Pediatrics 121(5):e1215–e1222

    Article  Google Scholar 

  • Filisetti D, Odile Villard HI, Escande B et al (2015) Contribution of neonatal amniotic fluid testing to diagnosis of congenital toxoplasmosis. J Clin Microbiol 53:1719–1721

    Article  Google Scholar 

  • Fox BA, Rommereim LM, Guevara RB et al (2016) The Toxoplasma gondii rhoptry kinome is essential for chronic infection. MBio 78(3):e00193–e00116. https://doi.org/10.1128/mBio.00193-16

    Article  Google Scholar 

  • Freeman K, Salt A, Prusa A et al (2005) Association between congenital toxoplasmosis and parent-reported developmental outcomes, concerns, and impairments, in 3 year old children. BMC Pediatr 5:23

    Article  Google Scholar 

  • Gangneux F, Dardè ML (2012) Epidemiology and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25:264–296

    Article  Google Scholar 

  • Gilbert RE, Freeman K, Lago EG et al (2008) Ocular sequelae of congenital toxoplasmosis in Brazil compared with Europe. PLoS Negl Trop Dis 2(8):e277

    Article  Google Scholar 

  • Hintz SR, Slovis T, Bulas D et al (2007) Interobserver reliability and accuracy of cranial ultrasound scanning interpretation in premature infants. J Pediatr 150:592–596

    Article  Google Scholar 

  • Hutson SL, Wheeler KM, McLone D et al (2015) Patterns of hydrocephalus caused by congenital Toxoplasma gondii infection associate with parasite genetics. Clin Infect Dis 61(12):1831–1834

    Article  CAS  Google Scholar 

  • Jamieson SE, de Roubaix LA, Kuan Tan H et al (2008) COL2A1 and ABCA4 have epigenetically modified and associated with congenital toxoplasmosis. PLoS One 3(6):e2285. https://doi.org/10.1371/journal.pone.0002285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamieson SE, Peixoto-Rangel AL, Aubrey AC et al (2010) Evidence for associations between the purinergic receptor P2X7 (P2RX7) and toxoplasmosis. Genes Immun 11(5):374–383

    Article  CAS  Google Scholar 

  • Jones JL, Parise ME, Fiore AE (2014) Neglected parasitic infections in the United States: toxoplasmosis. Am J Trop Med Hyg 90(5):794–799

    Article  Google Scholar 

  • Knoblauch H, Tennstedt C, Brueck W et al (2003) Two brothers with findings resembling congenital intrauterine infection-like syndrome (pseudo-TORCH syndrome). Am J Med Genet 120A:261–265

    Article  Google Scholar 

  • L’Ollivier C, Wallon M, Faucher B et al (2012) Comparison of mother and child antibodies that target high-molecular-mass Toxoplasma gondii antigens by immunoblotting improves neonatal diagnosis of congenital toxoplasmosis. Clin Vaccine Immunol 19:1326–1328

    Article  Google Scholar 

  • Li XL, Wei HX, Zhang H et al (2014) A meta analysis on risks of adverse pregnancy outcomes in Toxoplasma gondii infection. PLOS One 9:e97775. https://doi.org/10.1371/journal.pone.0097775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Pomares C, Gonfrier G et al (2016) Multiplexed anti-toxoplasma IgG, IgM, and IgA assay on plasmonic gold chips: towards making mass screening possible with dye test precision. J Clin Microbiol 54:1726–1733

    Article  CAS  Google Scholar 

  • Liu L, Liu T, Yu L et al (2012) Rrop2(186-533): a novel peptide antigen for detection of IgM antibodies against Toxoplasma gondii. Foodborne Pathog Dis 9(1):7–12

    Article  CAS  Google Scholar 

  • Marangoni A, Capretti MG, De Angelis M et al (2014) Evaluation of a new protocol for retrospective diagnosis of congenital toxoplasmosis by use of Guthrie cards. J Clin Microbiol 52:2963–2970

    Article  Google Scholar 

  • McLeod R, Boyer K, Karrison T et al (2006) Outcome of treatment for congenital toxoplasmosis, 1981-2004: the National Collaborative Chicago-Based, Congenital Toxoplasmosis Study. Clin Infect Dis 42:1383–1394

    Article  Google Scholar 

  • McLeod R, Lykins J, Noble AG et al (2014) Management of congenital toxoplasmosis. Curr Pediatr Rep 2:166–194

    Article  Google Scholar 

  • Murat JB, Souvignet A, Fricker-Hidalgo H et al (2015) Assessment of the IgA immunosorbent agglutination assay for the diagnosis of congenital toxoplasmosis on a series of 145 toxoplasmic seroconversions. Clin Vaccine Immunol 22:456–458

    Article  CAS  Google Scholar 

  • Nguyen E, MacDonald WR, Trivedi T et al (2016) Neurons are the primary target cell for the brain- tropic intracellular parasite Toxoplasma gondii. PLoS Pathog 12(2):e1005447. https://doi.org/10.1371/journal. ppat.1005447

    Article  PubMed  PubMed Central  Google Scholar 

  • Noble AG, Latkany P, Kusmierczyk J et al (2010) Chorioretinal lesions in mothers of children with congenital toxoplasmosis in the National Collaborative Chicago- based Congenital Toxoplasmosis Study. Sci Med (Porto Alegre) 20:20–26

    Google Scholar 

  • Peyron F, Garweg JG, Wallon M et al (2011) Long-term impact of treated congenital toxoplasmosis on quality of life and visual performance. Pediatr Infect Dis J 30:597–600

    Article  Google Scholar 

  • Phan L, Kasza K, Jalbrzikowski J et al (2008a) Longitudinal study of new eye lesions in children with toxoplasmosis who were not treated during the first year of life. Am J Ophthalmol 146(3):375–384

    Article  Google Scholar 

  • Phan L, Kasza K, Jalbrzikowski J et al (2008b) Longitudinal study of new eye lesions in treated congenital toxoplasmosis. Ophthalmology 115(3):553–559

    Article  Google Scholar 

  • Pinon JM, Dumon H, Chemla C et al (2001) Strategy for diagnosis of congenital toxoplasmosis: evaluation of methods comparing mothers and newborns and standard methods for postnatal detection of immunoglobulin G, M, and A antibodies. J Clin Microbiol 39:2267–2271

    Article  CAS  Google Scholar 

  • Rajapakse S, Shivanthan MC, Samaranayake N et al (2013) Antibiotics for human toxoplasmosis: a systematic review of randomized trials. Pathog Glob Health 107:162–169

    Article  CAS  Google Scholar 

  • Rico-Torres CP, Vargas-Villavicencio JA, Correa D (2016) Is Toxoplasma gondii type related to clinical outcome in human congenital infection? Systematic and critical review. Eur J Clin Microbiol Infect Dis 35:1079–1088

    Article  CAS  Google Scholar 

  • Rilling V, Dietz K, Krczal D et al (2003) Evaluation of a commercial IgG/IgM Western blot assay for early postnatal diagnosis of congenital toxoplasmosis. Eur J Clin Microbiol Infect Dis 22(3):174–180

    CAS  PubMed  Google Scholar 

  • Romand S, Chosson M, Franck J et al (2004) Usefulness of quantitative polymerase chain reaction in amniotic fluid as early prognostic marker of fetal infection with Toxoplasma gondii. Am J Obstet Gynecol 190(3):797–802

    Article  CAS  Google Scholar 

  • Saadatnia G, Golkar M (2012) Review on human toxoplasmosis. Scand J Infect Dis 44:805–814

    Article  Google Scholar 

  • Silveira C, Belfort R Jr, Muccioli C et al (2002) The effect of long-term intermittent trimethoprim/sulfamethoxazole treatment on recurrences of toxoplasmic retinochoroiditis. Am J Ophthalmol 134:41–46

    Article  CAS  Google Scholar 

  • Silveira C, Ferreira R, Muccioli C et al (2003) Toxoplasmosis transmitted to a newborn from the mother infected 20 years earlier. Am J Ophthalmol 136(2):370–371

    Article  Google Scholar 

  • Stagni L, Romano MA, Romano A et al (2009) Prenatal screening for congenital toxoplasmosis in Campania: preliminary report on activities and results. Mem Inst Oswaldo Cruz 104(2):374–377

    Article  CAS  Google Scholar 

  • Stramba-Badiale M, Nador F, Porta N et al (1997) QT interval prolongation and risk of life-threatening arrhythmias during toxoplasmosis prophylaxis with spiramycin in neonates. Am Heart J 133(1):108–111

    Article  CAS  Google Scholar 

  • Systematic Review on Congenital Toxoplasmosis Study Group (SYROCOT) (2007) Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients' data. Lancet 369:115–122

    Article  Google Scholar 

  • Torgerson PR, Mastroiacovo P (2013) The global burden of congenital toxoplasmosis: a systematic review. Bull World Health Organ 91(7):501–508

    Article  Google Scholar 

  • Torgerson PR, Devleesschauwer B, Praet N et al (2015) World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med 12(12):e1001940. https://doi.org/10.1371/journal.pmed.1001940

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres-Morales E, Taborda L, Cardona N et al (2014) Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis. Med Microbiol Immunol 203:315–322

    Article  CAS  Google Scholar 

  • Valentini P, Buonsenso D, Barone G et al (2015) Spiramycin/cotrimoxazole versus pyrimethamine/sulfonamide and spiramycin alone for the treatment of toxoplasmosis in pregnancy. J Perinatol 35(2):90–94

    Article  CAS  Google Scholar 

  • Villard O, Cimon B, L’Ollivier C et al (2016) Serological diagnosis of Toxoplasma gondii infection: Recommendations from the French National Reference Center for Toxoplasmosis. Diagn Microbiol Infect Dis 84:22–33

    Article  CAS  Google Scholar 

  • Wallon M, Peyron F, Cornu C et al (2013) Congenital toxoplasma infection: monthly prenatal screening decreases transmission rate and improves clinical outcome at age 3 years. Clin Infect Dis 56(9):1223–1231

    Article  CAS  Google Scholar 

  • Wallon M, Garweg JG, Abrahamowicz M et al (2014) Ophthalmic outcomes of congenital toxoplasmosis followed until adolescence. Pediatrics 133:e601

    Article  Google Scholar 

  • Wallon M, Kieffer F, Huissoudd C, Peyron F (2015) Cesarean delivery or induction of labor does not prevent vertical transmission of toxoplasmosis in late pregnancy. Int J Gynecol Obstet 129:169–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilma Buffolano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Buffolano, W. (2018). Toxoplasmosis in the Fetus and Newborn. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29489-6_253

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29489-6_253

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29487-2

  • Online ISBN: 978-3-319-29489-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics