Skip to main content
Log in

Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

We determined the specific lymphocyte proliferative response and cytokine profile production regarding Toxoplasma P30 (2017 from virulent and non-virulent strain) and ROP18 protein-derived peptides (from clonal lineages I, II and III) in 19 patients having ocular toxoplasmosis, five suffering chronic asymptomatic infection, nine with congenital toxoplasmosis and eight Toxoplasma negative people. A Beckman Coulter FC500 flow cytometer was used for determining antigen-specific T cells (CD3+ CD4+ or CD3+ CD8+ cells) in peripheral blood culture. IFN γ and IL10 levels were determined in culture supernatants. Specific CD4+ and CD8+ T cell response to total antigen and P30- and ROP18-derived peptides was observed in infected people. Ocular toxoplasmosis patients had a preferential Th2 response after antigenic stimulation. Non-virulent peptide 2017 was able to shift response toward Th1 in congenitally infected children and virulent peptide 2017 induced a Th2 response in chronically infected, asymptomatic people. An immune response in human toxoplasmosis after ex vivo antigenic stimulation was Th1- or Th2-skewed, depending on a patient’s clinical condition. Colombian ocular toxoplasmosis patients’ immune response was Th2-skewed, regardless of the nature of antigen stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gómez-Marin JE (2010) Toxoplasmosis. In: Gomez-Marin JE. Protozoologia médica: Protozoos parásitos en el contexto latinoamericano, 1st ed. Editorial Manual Moderno, Bogotá, p 65

  2. Robertson LJ, van der Giessen JW, Batz MB, Kojima M, Cahill S (2013) Have foodborne parasites finally become a global concern? Trends Parasitol 29:101–103

    Article  PubMed  Google Scholar 

  3. Gómez-Marin J, de-la-Torre A, Angel-Muller E, Rubio J et al (2011) First Colombian multicentric newborn screening for congenital toxoplasmosis. PLoS Negl Trop Dis 5(5):e1195

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fatoohi AF, Cozon GJ, Greenland T, Ferrandiz J, Bienvenu J, Picot S, Peyron F (2002) Cellular immune responses to recombinant antigens in pregnant women chronically infected with Toxoplasma gondii. Clin Diagn Lab Immunol 9:704–707

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Mendes ÉA, Fonseca FG, Casério BM, Colina JP, Gazzinelli RT, Caetano BC (2013) Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1. PLoS One 8(5):e63201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Siachoque H, Guzman F, Burgos J, Patarroyo ME, Gomez-Marin JE (2006) Toxoplasma gondii: immunogenicity and protection by P30 peptides in a murine model. Exp Parasitol 114:62–65

    Article  PubMed  CAS  Google Scholar 

  7. Tao Q, Fang R, Zhang W, Wang Y, Cheng J, Li Y, Fang K, Khan MK, Hu M, Zhou Y, Zhao J (2013) Protective immunity induced by a DNA vaccine-encoding Toxoplasma gondii microneme protein 11 against acute toxoplasmosis in BALB/c mice. Parasitol Res 112:2871–2877

    Article  PubMed  Google Scholar 

  8. Qu D, Han J, Du A (2013) Evaluation of protective effect of multiantigenic DNA vaccine encoding MIC3 and ROP18 antigen segments of Toxoplasma gondii in mice. Parasitol Res 112:2593–2599

    Article  PubMed  Google Scholar 

  9. Sepulveda-Arias JC, Kempf MC, Wiehr S, Wedekind D, Hedrich HJ, Gross U, Herrmann T (2008) Control of Toxoplasma gondii infection by athymic LEW-Whn rnu rats. Parasite Immunol 30:323–333

    Article  PubMed  CAS  Google Scholar 

  10. Feliu V, Vasseur V, Grover HS, Chu HH, Brown MJ, Wang J, Boyle JP, Robey EA, Shastri N, Blanchard N (2013) Location of the CD8 T cell epitope within the antigenic precursor determines immunogenicity and protection against the Toxoplasma gondii parasite. PLoS Pathog 9(6):e1003449

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Tan TG, Mui E, Cong H et al (2010) Identification of T. gondii epitopes, adjuvants, and host genetic factors that influence protection of mice and humans. Vaccine 28:3977–3989

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Cong H, Mui EJ, Witola WH et al (2012) Toxoplasma gondii HLA-B*0702-restricted GRA7(20-28) peptide with adjuvants and a universal helper T cell epitope elicits CD8(+) T cells producing interferon-gamma and reduces parasite burden in HLA-B*0702 mice. Human Immunol 73:1–10

    Article  CAS  Google Scholar 

  13. de-la-Torre A, Lopez-Castillo C, Gomez-Marin JE (2009) Incidence and clinical characteristics in a Colombian cohort of ocular toxoplasmosis. Eye 23:1090–1093

    Article  PubMed  CAS  Google Scholar 

  14. Cardona N, de-la-Torre A, Siachoque H, Patarroyo MA, Gomez-Marin JE (2009) Toxoplasma gondii: P30 peptides recognition pattern in human toxoplasmosis. Exp Parasitol 123:199–202

    Article  PubMed  CAS  Google Scholar 

  15. Taylor S, Barragan A, Su C et al (2006) A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314:1776–1780

    Article  PubMed  CAS  Google Scholar 

  16. Kahi S, Cozon GJN, Greenland T, Wallon M, Gay-Andrieu F, Peyron F (1998) Rapid flow cytometric method to explore cellular immunity against Toxoplasma gondii in humans. Clin Diag Lab Immunol 5:745–748

    CAS  Google Scholar 

  17. Fatoohi F, Cozon GJ, Wallon M, Kodjikian L, Peyron F (2006) Systemic T cell response to Toxoplasma gondii antigen in patients with ocular toxoplasmosis. Jpn J Ophthalmol 50:103–110

    Article  PubMed  CAS  Google Scholar 

  18. de-la-Torre A, Sauer A, Bourcier T, Speeg-Schatz C, Ballonzoli L, Ajzenberg D, Sundar N, Grigg ME, Villard O, Brunet J, Pfaff A, Gomez-Marin J, Candolfi E (2013) Severe Southamerican ocular toxoplasmosis is associated with decreased IFN-gamma/IL-17A and increased IL-6/IL-13 intraocular levels. PLoS Neglected Trop Dis 7(11):e2541. doi:10.1371/journal.pntd.0002541

    Article  Google Scholar 

  19. Gallego C, Saavedra-Matiz C, Gómez-Marín JE (2006) Direct genotyping of animal and human isolates of Toxoplasma gondii from Colombia (South America). Acta Trop 97:161–167

    Article  PubMed  CAS  Google Scholar 

  20. Sánchez V, de-la-Torre A, Gómez Marín JE (2014) Characterization of ROP18 alleles in human toxoplasmosis. Parasitol Int 63:463–469

    Article  PubMed  Google Scholar 

  21. Morisset S, Peyron F, Lobry JR et al (2008) Serotyping of Toxoplasma gondii: striking homogeneous pattern between symptomatic and asymptomatic infections within Europe and South America. Microbes Infect 10:742–747

    Article  PubMed  CAS  Google Scholar 

  22. Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC (2007) Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 445:324–327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Kahi S, Cozon GJ, Pinon JM et al (1999) A switch towards Th2 during serological rebound in children with congenital toxoplasmosis. Clin Exp Immunol 117:524–528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. McLeod R, Mack DG, Boyer K et al (1990) Phenotypes and functions of lymphocytes in congenital toxoplasmosis. J Lab Clin Med 116:623–635

    PubMed  CAS  Google Scholar 

  25. D’Andrea A, Aste-Amezaga M, Valiante NM, Ma X, Kubin M, Trinchieri G (1993) Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med 178:1041–1048

    Article  PubMed  Google Scholar 

  26. Kato M, Claveria FG, Maki Y et al (2007) Reactivity of synthetic SAG1 (p30) peptide sequences with RH, S273 and Beverley strain-induced anti-Toxoplasma gondii antibodies. Pathobiology 74:50–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financed by grants 111351929258 from Colciencias (Colombian Scientific Government Agency) and 5-09-3 from the Universidad Tecnológica de Pereira.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Enrique Gomez-Marin.

Additional information

Elizabeth Torres-Morales and Laura Taborda have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Morales, E., Taborda, L., Cardona, N. et al. Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis. Med Microbiol Immunol 203, 315–322 (2014). https://doi.org/10.1007/s00430-014-0339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-014-0339-0

Keywords

Navigation