Skip to main content

Vascular Cognitive Impairment and Alzheimer Disease: Are These Disorders Linked to Hypertension and Other Cardiovascular Risk Factors?

  • Chapter
  • First Online:
Hypertension and Stroke

Abstract

Alzheimer disease (AD) and vascular forms of cognitive impairment (VCI) traditionally have been considered separate or divergent disorders (Clin Geriatr Med. 1991;7(3):599–615). AD, for example, has been defined as a “degenerative” disease characterized by neuritic plaque and neurofibrillary tangle pathology, neuronal loss, and deposition of amyloid in the brain parenchyma and brain blood vessels. On the other hand, VCI has been defined as disorders caused by cerebrovascular brain injury which may vary from mild to severe cognitive dysfunction (Stroke. 2004;35(11 Suppl 1):2620–2). Practically, mixed neuropathology including both AD and VCI is common in the elderly, and vascular risk factors and atherosclerosis may be important in the genesis of both VCI and AD (Stroke. 2005;36(4):875–9; Neurology. 1999;52(6):1114–5; Alzheimer Dis Assoc Disord. 1999;13 Suppl 3:S131–9; Neurology. 1994;44(8):1391–6). Furthermore, AD and stroke pathogenic mechanisms may be synergistic (Stroke. 2003;34(2):335–7). In this chapter, we review the evidence linking vascular risk factors to the development of AD and VCI. In addition, we discuss the potential effect of vascular risk factor modification on the prevention of cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorelick PB, Mangone CA. Vascular dementias in the elderly. Clin Geriatr Med. 1991;7(3):599–615.

    CAS  PubMed  Google Scholar 

  2. Gorelick PB. Risk factors for vascular dementia and Alzheimer disease. Stroke. 2004;35(11 Suppl 1):2620–2.

    Article  PubMed  Google Scholar 

  3. Gorelick PB, William M. Feinberg Lecture: cognitive vitality and the role of stroke and cardiovascular disease risk factors. Stroke. 2005;36(4):875–9.

    Article  PubMed  Google Scholar 

  4. Gorelick PB. Can we save the brain from the ravages of midlife cardiovascular risk factors? Neurology. 1999;52(6):1114–5.

    Article  CAS  PubMed  Google Scholar 

  5. Gorelick PB, Erkinjuntti T, Hofman A, Rocca WA, Skoog I, Winblad B. Prevention of vascular dementia. Alzheimer Dis Assoc Disord. 1999;13 Suppl 3:S131–9.

    PubMed  Google Scholar 

  6. Gorelick PB, Freels S, Harris Y, Dollear T, Billingsley M, Brown N. Epidemiology of vascular and Alzheimer’s dementia among African Americans in Chicago, IL: baseline frequency and comparison of risk factors. Neurology. 1994;44(8):1391–6.

    Article  CAS  PubMed  Google Scholar 

  7. Iadecola C, Gorelick PB. Converging pathogenic mechanisms in vascular and neurodegenerative dementia. Stroke. 2003;34(2):335–7.

    Article  PubMed  Google Scholar 

  8. Wadley VG, McClure LA, Howard VJ, Unverzagt FW, Go RC, Moy CS, et al. Cognitive status, stroke symptom reports, and modifiable risk factors among individuals with no diagnosis of stroke or transient ischemic attack in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Stroke. 2007;38(4):1143–7.

    Article  PubMed  Google Scholar 

  9. Gorelick PB, Bowler JV. Advances in vascular cognitive impairment 2007. Stroke. 2008;39(2):279–82.

    Article  PubMed  Google Scholar 

  10. Hachinski V. World Stroke Day 2008: “little strokes, big trouble”. Stroke. 2008;​39(9):2407–20.

    Article  PubMed  Google Scholar 

  11. Troncoso JC, Zonderman AB, Resnick SM, Crain B, Pletnikova O, O’Brien RJ. Effect of infarcts on dementia in the Baltimore longitudinal study of aging. Ann Neurol. 2008;64(2):168–76.

    Article  PubMed  PubMed Central  Google Scholar 

  12. van Dijk EJ, Prins ND, Vrooman HA, Hofman A, Koudstaal PJ, Breteler MM. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study. Stroke. 2008;39(10):2712–9.

    Article  PubMed  Google Scholar 

  13. Gorelick PB. Primary prevention of stroke: impact of healthy lifestyle. Circulation. 2008;118(9):904–6.

    Article  PubMed  Google Scholar 

  14. Launer LJ, Ross GW, Petrovitch H, Masaki K, Foley D, White LR, et al. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging. 2000;21(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  15. Knopman D, Boland LL, Mosley T, Howard G, Liao D, Szklo M, et al. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology. 2001;56(1):42–8.

    Article  CAS  PubMed  Google Scholar 

  16. Gottesman RF, Schneider AL, Albert M, Alonso A, Bandeen-Roche K, Coker L, et al. Midlife hypertension and 20-year cognitive change: the atherosclerosis risk in communities neurocognitive study. JAMA Neurol. 2014;71(10):1218–27.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Breteler MM, van Swieten JC, Bots ML, Grobbee DE, Claus JJ, van den Hout JH, et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology. 1994;44(7):1246–52.

    Article  CAS  PubMed  Google Scholar 

  18. Skoog I, Lernfelt B, Landahl S, Palmertz B, Andreasson LA, Nilsson L, et al. 15-year longitudinal study of blood pressure and dementia. Lancet. 1996;347(9009):1141–5.

    Article  CAS  PubMed  Google Scholar 

  19. Kilander L, Nyman H, Boberg M, Hansson L, Lithell H. Hypertension is related to cognitive impairment: a 20-year follow-up of 999 men. Hypertension. 1998;31(3):780–6.

    Article  CAS  PubMed  Google Scholar 

  20. Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB. Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes Relat Metab Disord. 2003;27(2):260–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kivipelto M, Helkala EL, Hanninen T, Laakso MP, Hallikainen M, Alhainen K, et al. Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology. 2001;56(12):1683–9.

    Article  CAS  PubMed  Google Scholar 

  22. Waldstein SR, Giggey PP, Thayer JF, Zonderman AB. Nonlinear relations of blood pressure to cognitive function: the Baltimore Longitudinal Study of Aging. Hypertension. 2005;45(3):374–9.

    Article  CAS  PubMed  Google Scholar 

  23. Glynn RJ, Beckett LA, Hebert LE, Morris MC, Scherr PA, Evans DA. Current and remote blood pressure and cognitive decline. JAMA. 1999;281(5):438–45.

    Article  CAS  PubMed  Google Scholar 

  24. Okumiya K, Matsubayashi K, Wada T, Osaki Y, Doi Y, Ozawa T. J-curve relation between blood pressure and decline in cognitive function in older people living in community. Japan J Am Geriatr Soc. 1997;45(8):1032–3.

    Article  CAS  PubMed  Google Scholar 

  25. Yano Y, Bakris GL, Inokuchi T, Ohba Y, Tamaki N, Nagata M, et al. Association of cognitive dysfunction with cardiovascular disease events in elderly hypertensive patients. J Hypertens. 2014;32(2):423–31.

    Article  CAS  PubMed  Google Scholar 

  26. Yano Y, Ning H, Allen N, Reis JP, Launer LJ, Liu K, et al. Long-term blood pressure variability throughout young adulthood and cognitive function in midlife: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Hypertension. 2014;64(5):983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yano Y, Ning H, Muntner P, Reis JP, Calhoun DA, Viera AJ, et al. Nocturnal blood pressure in young adults and cognitive function in midlife: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Hypertens. 2015;28(10):1240–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003;​348(13):1215–22.

    Article  PubMed  Google Scholar 

  29. Charletta D, Gorelick PB, Dollear TJ, Freels S, Harris Y. CT and MRI findings among African-Americans with Alzheimer’s disease, vascular dementia, and stroke without dementia. Neurology. 1995;45(8):1456–61.

    Article  CAS  PubMed  Google Scholar 

  30. Sparks DL, Scheff SW, Liu H, Landers TM, Coyne CM. Hunsaker JC,3rd. Increased incidence of neurofibrillary tangles (NFT) in non-demented individuals with hypertension. J Neurol Sci. 1995;131(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  31. Petrovitch H, White LR, Izmirilian G, Ross GW, Havlik RJ, Markesbery W, et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Honolulu-Asia aging Study. Neurobiol Aging. 2000;21(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  32. Nation DA, Edland SD, Bondi MW, Salmon DP, Delano-Wood L, Peskind ER, et al. Pulse pressure is associated with Alzheimer biomarkers in cognitively normal older adults. Neurology. 2013;81(23):2024–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nation DA, Edmonds EC, Bangen KJ, Delano-Wood L, Scanlon BK, Han SD, et al. Pulse pressure in relation to Tau-mediated neurodegeneration, cerebral amyloidosis, and progression to dementia in very old adults. JAMA Neurol. 2015;72(5):546–53.

    Article  PubMed  PubMed Central  Google Scholar 

  34. den Heijer T, Launer LJ, Prins ND, van Dijk EJ, Vermeer SE, Hofman A, et al. Association between blood pressure, white matter lesions, and atrophy of the medial temporal lobe. Neurology. 2005;64(2):263–7.

    Article  Google Scholar 

  35. Rodrigue KM, Rieck JR, Kennedy KM, Devous MDS, Diaz-Arrastia R, Park DC. Risk factors for beta-amyloid deposition in healthy aging: vascular and genetic effects. JAMA Neurol. 2013;70(5):600–6.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Catani M, Mecocci P, Tarducci R, Howard R, Pelliccioli GP, Mariani E, et al. Proton magnetic resonance spectroscopy reveals similar white matter biochemical changes in patients with chronic hypertension and early Alzheimer’s disease. J Am Geriatr Soc. 2002;50(10):1707–10.

    Article  PubMed  Google Scholar 

  37. Akinyemi RO, Mukaetova-Ladinska EB, Attems J, Ihara M, Kalaria RN. Vascular risk factors and neurodegeneration in ageing related dementias: Alzheimer’s disease and vascular dementia. Curr Alzheimer Res. 2013;10(6):642–53.

    Article  CAS  PubMed  Google Scholar 

  38. Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013;23(3):303–10.

    Article  PubMed  Google Scholar 

  39. Wang X, Xing A, Xu C, Cai Q, Liu H, Li L. Cerebrovascular hypoperfusion induces spatial memory impairment, synaptic changes, and amyloid-beta oligomerization in rats. J Alzheimers Dis. 2010;21(3):813–22.

    CAS  PubMed  Google Scholar 

  40. Koike MA, Green KN, Blurton-Jones M, Laferla FM. Oligemic hypoperfusion differentially affects tau and amyloid-{beta}. Am J Pathol. 2010;177(1):300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hiltunen M, Makinen P, Peraniemi S, Sivenius J, van Groen T, Soininen H, et al. Focal cerebral ischemia in rats alters APP processing and expression of Abeta peptide degrading enzymes in the thalamus. Neurobiol Dis. 2009;35(1):103–13.

    Article  CAS  PubMed  Google Scholar 

  42. Fisk L, Nalivaeva NN, Boyle JP, Peers CS, Turner AJ. Effects of hypoxia and oxidative stress on expression of neprilysin in human neuroblastoma cells and rat cortical neurones and astrocytes. Neurochem Res. 2007;32(10):1741–8.

    Article  CAS  PubMed  Google Scholar 

  43. Li L, Zhang X, Yang D, Luo G, Chen S, Le W. Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol Aging. 2009;30(7):1091–8.

    Article  CAS  PubMed  Google Scholar 

  44. Richards SS, Emsley CL, Roberts J, Murray MD, Hall K, Gao S, et al. The association between vascular risk factor-mediating medications and cognition and dementia diagnosis in a community-based sample of African-Americans. J Am Geriatr Soc. 2000;48(9):1035–41.

    Article  CAS  PubMed  Google Scholar 

  45. Forette F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S, et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med. 2002;162(18):2046–52.

    Article  PubMed  Google Scholar 

  46. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA. 1991;265(24):3255–64.

    Article  Google Scholar 

  47. Di Bari M, Pahor M, Franse LV, Shorr RI, Wan JY, Ferrucci L, et al. Dementia and disability outcomes in large hypertension trials: lessons learned from the systolic hypertension in the elderly program (SHEP) trial. Am J Epidemiol. 2001;153(1):72–8.

    Article  PubMed  Google Scholar 

  48. Lithell H, Hansson L, Skoog I, Elmfeldt D, Hofman A, Olofsson B, et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens. 2003;21(5):875–86.

    Article  CAS  PubMed  Google Scholar 

  49. McGuinness B, Todd S, Passmore P, Bullock R. Blood pressure lowering in patients without prior cerebrovascular disease for prevention of cognitive impairment and dementia. Cochrane Database Syst Rev. 2009;4, CD004034.

    PubMed  Google Scholar 

  50. Peters R, Beckett N, Forette F, Tuomilehto J, Clarke R, Ritchie C, et al. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol. 2008;7(8):683–9.

    Article  CAS  PubMed  Google Scholar 

  51. Skoog I. Antihypertensive treatment and dementia prevention. Lancet Neurol. 2008;7(8):664–5.

    Article  PubMed  Google Scholar 

  52. Gelber RP, Ross GW, Petrovitch H, Masaki KH, Launer LJ, White LR. Antihypertensive medication use and risk of cognitive impairment: the Honolulu-Asia Aging Study. Neurology. 2013;81(10):888–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group, Jacobson AM, Musen G, Ryan CM, Silvers N, Cleary P, et al. Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med. 2007;356(18):1842–52.

    Article  Google Scholar 

  54. Abbatecola AM, Rizzo MR, Barbieri M, Grella R, Arciello A, Laieta MT, et al. Postprandial plasma glucose excursions and cognitive functioning in aged type 2 diabetics. Neurology. 2006;67(2):235–40.

    Article  CAS  PubMed  Google Scholar 

  55. Beeri MS, Schmeidler J, Silverman JM, Gandy S, Wysocki M, Hannigan CM, et al. Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology. Neurology. 2008;71(10):750–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yaffe K, Blackwell T, Kanaya AM, Davidowitz N, Barrett-Connor E, Krueger K. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology. 2004;63(4):658–63.

    Article  CAS  PubMed  Google Scholar 

  57. Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L. Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology. 2004;63(7):1181–6.

    Article  CAS  PubMed  Google Scholar 

  58. Kumari M, Marmot M. Diabetes and cognitive function in a middle-aged cohort: findings from the Whitehall II study. Neurology. 2005;65(10):1597–603.

    Article  PubMed  Google Scholar 

  59. Xiong GL, Plassman BL, Helms MJ, Steffens DC. Vascular risk factors and cognitive decline among elderly male twins. Neurology. 2006;67(9):1586–91.

    Article  PubMed  Google Scholar 

  60. Yaffe K, Falvey C, Hamilton N, Schwartz AV, Simonsick EM, Satterfield S, et al. Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Arch Neurol. 2012;69(9):1170–5.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Akomolafe A, Beiser A, Meigs JB, Au R, Green RC, Farrer LA, et al. Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham Study. Arch Neurol. 2006;63(11):1551–5.

    Article  PubMed  Google Scholar 

  62. Arvanitakis Z, Schneider JA, Wilson RS, Li Y, Arnold SE, Wang Z, et al. Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology. 2006;67(11):1960–5.

    Article  CAS  PubMed  Google Scholar 

  63. Willette AA, Johnson SC, Birdsill AC, Sager MA, Christian B, Baker LD, et al. Insulin resistance predicts brain amyloid deposition in late middle-aged adults. Alzheimers Dement. 2015;11(5):504–10.

    Article  PubMed  Google Scholar 

  64. Chen C, Li XH, Tu Y, Sun HT, Liang HQ, Cheng SX, et al. Abeta-AGE aggravates cognitive deficit in rats via RAGE pathway. Neuroscience. 2014;257:1–10.

    Article  PubMed  CAS  Google Scholar 

  65. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003;9(7):907–13.

    Article  CAS  PubMed  Google Scholar 

  66. Yamagishi S, Nakamura K, Inoue H, Kikuchi S, Takeuchi M. Serum or cerebrospinal fluid levels of glyceraldehyde-derived advanced glycation end products (AGEs) may be a promising biomarker for early detection of Alzheimer’s disease. Med Hypotheses. 2005;64(6):1205–7.

    Article  CAS  PubMed  Google Scholar 

  67. Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience. 2002;113(3):607–15.

    Article  CAS  PubMed  Google Scholar 

  68. Perez-Gonzalez R, Alvira-Botero MX, Robayo O, Antequera D, Garzon M, Martin-Moreno AM, et al. Leptin gene therapy attenuates neuronal damages evoked by amyloid-beta and rescues memory deficits in APP/PS1 mice. Gene Ther. 2014;21(3):298–308.

    Article  CAS  PubMed  Google Scholar 

  69. Lieb W, Beiser AS, Vasan RS, Tan ZS, Au R, Harris TB, et al. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA. 2009;302(23):2565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Strachan MW. Insulin and cognitive function. Lancet. 2003;362(9392):1253.

    Article  PubMed  Google Scholar 

  71. Watson GS, Peskind ER, Asthana S, Purganan K, Wait C, Chapman D, et al. Insulin increases CSF Abeta42 levels in normal older adults. Neurology. 2003;60(12):1899–903.

    Article  CAS  PubMed  Google Scholar 

  72. Peila R, Rodriguez BL, White LR, Launer LJ. Fasting insulin and incident dementia in an elderly population of Japanese-American men. Neurology. 2004;63(2):228–33.

    Article  CAS  PubMed  Google Scholar 

  73. Luchsinger JA, Tang MX, Shea S, Mayeux R. Hyperinsulinemia and risk of Alzheimer disease. Neurology. 2004;63(7):1187–92.

    Article  PubMed  Google Scholar 

  74. Ronnemaa E, Zethelius B, Sundelof J, Sundstrom J, Degerman-Gunnarsson M, Berne C, et al. Impaired insulin secretion increases the risk of Alzheimer disease. Neurology. 2008;71(14):1065–71.

    Article  CAS  PubMed  Google Scholar 

  75. van Oijen M, Okereke OI, Kang JH, Pollak MN, Hu FB, Hankinson SE, et al. Fasting insulin levels and cognitive decline in older women without diabetes. Neuroepidemiology. 2008;30(3):174–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bian L, Yang JD, Guo TW, Sun Y, Duan SW, Chen WY, et al. Insulin-degrading enzyme and Alzheimer disease: a genetic association study in the Han Chinese. Neurology. 2004;63(2):241–5.

    Article  CAS  PubMed  Google Scholar 

  77. Burns JM, Donnelly JE, Anderson HS, Mayo MS, Spencer-Gardner L, Thomas G, et al. Peripheral insulin and brain structure in early Alzheimer disease. Neurology. 2007;69(11):1094–104.

    Article  CAS  PubMed  Google Scholar 

  78. Schnaider Beeri M, Goldbourt U, Silverman JM, Noy S, Schmeidler J, Ravona-Springer R, et al. Diabetes mellitus in midlife and the risk of dementia three decades later. Neurology. 2004;63(10):1902–7.

    Article  CAS  PubMed  Google Scholar 

  79. Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis. 2015;44(3):897–906.

    CAS  PubMed  Google Scholar 

  80. d’Abramo C, Massone S, Zingg JM, Pizzuti A, Marambaud P, Dalla Piccola B, et al. Role of peroxisome proliferator-activated receptor gamma in amyloid precursor protein processing and amyloid beta-mediated cell death. Biochem J. 2005;391(Pt 3):693–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Jiang Q, Heneka M, Landreth GE. The role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in Alzheimer’s disease: therapeutic implications. CNS Drugs. 2008;22(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  82. Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry. 2005;13(11):950–8.

    PubMed  Google Scholar 

  83. Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J. 2006;6(4):246–54.

    CAS  PubMed  Google Scholar 

  84. Launer LJ, Miller ME, Williamson JD, Lazar RM, Gerstein HC, Murray AM, et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol. 2011;10(11):969–77.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Williamson JD, Launer LJ, Bryan RN, Coker LH, Lazar RM, Gerstein HC, et al. Cognitive function and brain structure in persons with type 2 diabetes mellitus after intensive lowering of blood pressure and lipid levels: a randomized clinical trial. JAMA Intern Med. 2014;174(3):324–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. ACCORD Study Group, Gerstein HC, Miller ME, Genuth S, Ismail-Beigi F, Buse JB, et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364(9):818–28.

    Article  Google Scholar 

  87. Luchsinger JA, Lehtisalo J, Lindstrom J, Ngandu T, Kivipelto M, Ahtiluoto S, et al. Cognition in the Finnish diabetes prevention study. Diabetes Res Clin Pract. 2015;108(3):63–6.

    Article  Google Scholar 

  88. Aisen PS, Schneider LS, Sano M, Diaz-Arrastia R, van Dyck CH, Weiner MF, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008;300(15):1774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346(7):476–83.

    Article  CAS  PubMed  Google Scholar 

  90. Nurk E, Refsum H, Tell GS, Engedal K, Vollset SE, Ueland PM, et al. Plasma total homocysteine and memory in the elderly: the Hordaland Homocysteine Study. Ann Neurol. 2005;58(6):847–57.

    Article  CAS  PubMed  Google Scholar 

  91. Wright CB, Paik MC, Brown TR, Stabler SP, Allen RH, Sacco RL, et al. Total homocysteine is associated with white matter hyperintensity volume: the Northern Manhattan Study. Stroke. 2005;36(6):1207–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schafer JH, Glass TA, Bolla KI, Mintz M, Jedlicka AE, Schwartz BS. Homocysteine and cognitive function in a population-based study of older adults. J Am Geriatr Soc. 2005;53(3):381–8.

    Article  PubMed  Google Scholar 

  93. Wright CB, Lee HS, Paik MC, Stabler SP, Allen RH, Sacco RL. Total homocysteine and cognition in a tri-ethnic cohort: the Northern Manhattan Study. Neurology. 2004;63(2):254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Luchsinger JA, Tang MX, Shea S, Miller J, Green R, Mayeux R. Plasma homocysteine levels and risk of Alzheimer disease. Neurology. 2004;62(11):1972–6.

    Article  CAS  PubMed  Google Scholar 

  95. Kalmijn S, Launer LJ, Lindemans J, Bots ML, Hofman A, Breteler MM. Total homocysteine and cognitive decline in a community-based sample of elderly subjects: the Rotterdam Study. Am J Epidemiol. 1999;150(3):283–9.

    Article  CAS  PubMed  Google Scholar 

  96. Vidal JS, Dufouil C, Ducros V, Tzourio C. Homocysteine, folate and cognition in a large community-based sample of elderly people--the 3C Dijon Study. Neuroepidemiology. 2008;30(4):207–14.

    Article  PubMed  Google Scholar 

  97. Seshadri S, Wolf PA, Beiser AS, Selhub J, Au R, Jacques PF, et al. Association of plasma total homocysteine levels with subclinical brain injury: cerebral volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic resonance imaging in the Framingham Offspring Study. Arch Neurol. 2008;65(5):642–9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vogiatzoglou A, Refsum H, Johnston C, Smith SM, Bradley KM, de Jager C, et al. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology. 2008;71(11):826–32.

    Article  CAS  PubMed  Google Scholar 

  99. McMahon JA, Green TJ, Skeaff CM, Knight RG, Mann JI, Williams SM. A controlled trial of homocysteine lowering and cognitive performance. N Engl J Med. 2006;354(26):2764–72.

    Article  CAS  PubMed  Google Scholar 

  100. Park K, Yasuda N, Toyonaga S, Yamada SM, Nakabayashi H, Nakasato M, et al. Significant association between leukoaraiosis and metabolic syndrome in healthy subjects. Neurology. 2007;69(10):974–8.

    Article  CAS  PubMed  Google Scholar 

  101. Razay G, Vreugdenhil A, Wilcock G. The metabolic syndrome and Alzheimer disease. Arch Neurol. 2007;64(1):93–6.

    Article  PubMed  Google Scholar 

  102. Vanhanen M, Koivisto K, Moilanen L, Helkala EL, Hanninen T, Soininen H, et al. Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology. 2006;67(5):843–7.

    Article  CAS  PubMed  Google Scholar 

  103. van den Berg E, Biessels GJ, de Craen AJ, Gussekloo J, Westendorp RG. The metabolic syndrome is associated with decelerated cognitive decline in the oldest old. Neurology. 2007;69(10):979–85.

    Article  PubMed  CAS  Google Scholar 

  104. Buchman AS, Schneider JA, Wilson RS, Bienias JL, Bennett DA. Body mass index in older persons is associated with Alzheimer disease pathology. Neurology. 2006;​67(11):1949–54.

    Article  CAS  PubMed  Google Scholar 

  105. Cournot M, Marquie JC, Ansiau D, Martinaud C, Fonds H, Ferrieres J, et al. Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology. 2006;67(7):1208–14.

    Article  CAS  PubMed  Google Scholar 

  106. Buchman AS, Wilson RS, Bienias JL, Shah RC, Evans DA, Bennett DA. Change in body mass index and risk of incident Alzheimer disease. Neurology. 2005;65(6):892–7.

    Article  CAS  PubMed  Google Scholar 

  107. Jagust W, Harvey D, Mungas D, Haan M. Central obesity and the aging brain. Arch Neurol. 2005;62(10):1545–8.

    Article  PubMed  Google Scholar 

  108. Luchsinger JA, Reitz C, Honig LS, Tang MX, Shea S, Mayeux R. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology. 2005;65(4):545–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kareholt I, Winblad B, et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol. 2005;62(10):1556–60.

    Article  PubMed  Google Scholar 

  110. Tiehuis AM, van der Graaf Y, Visseren FL, Vincken KL, Biessels GJ, Appelman AP, et al. Diabetes increases atrophy and vascular lesions on brain MRI in patients with symptomatic arterial disease. Stroke. 2008;39(5):1600–3.

    Article  PubMed  Google Scholar 

  111. Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71(14):1057–64.

    Article  CAS  PubMed  Google Scholar 

  112. Gazdzinski S, Kornak J, Weiner MW, Meyerhoff DJ. Body mass index and magnetic resonance markers of brain integrity in adults. Ann Neurol. 2008;63(5):652–7.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Benarroch EE. Brain cholesterol metabolism and neurologic disease. Neurology. 2008;71(17):1368–73.

    Article  PubMed  Google Scholar 

  114. Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol. 2000;57(10):1439–43.

    Article  CAS  PubMed  Google Scholar 

  115. Li G, Shofer JB, Kukull WA, Peskind ER, Tsuang DW, Breitner JC, et al. Serum cholesterol and risk of Alzheimer disease: a community-based cohort study. Neurology. 2005;65(7):1045–50.

    Article  CAS  PubMed  Google Scholar 

  116. Dufouil C, Richard F, Fievet N, Dartigues JF, Ritchie K, Tzourio C, et al. APOE genotype, cholesterol level, lipid-lowering treatment, and dementia: the Three-City Study. Neurology. 2005;64(9):1531–8.

    Article  CAS  PubMed  Google Scholar 

  117. Reitz C, Luchsinger J, Tang MX, Manly J, Mayeux R. Impact of plasma lipids and time on memory performance in healthy elderly without dementia. Neurology. 2005;64(8):1378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Evans RM, Hui S, Perkins A, Lahiri DK, Poirier J, Farlow MR. Cholesterol and APOE genotype interact to influence Alzheimer disease progression. Neurology. 2004;62(10):1869–71.

    Article  CAS  PubMed  Google Scholar 

  119. Rea TD, Breitner JC, Psaty BM, Fitzpatrick AL, Lopez OL, Newman AB, et al. Statin use and the risk of incident dementia: the Cardiovascular Health Study. Arch Neurol. 2005;62(7):1047–51.

    Article  PubMed  Google Scholar 

  120. Bernick C, Katz R, Smith NL, Rapp S, Bhadelia R, Carlson M, et al. Statins and cognitive function in the elderly: the Cardiovascular Health Study. Neurology. 2005;65(9):1388–94.

    Article  CAS  PubMed  Google Scholar 

  121. Hall K, Murrell J, Ogunniyi A, Deeg M, Baiyewu O, Gao S, et al. Cholesterol, APOE genotype, and Alzheimer disease: an epidemiologic study of Nigerian Yoruba. Neurology. 2006;66(2):223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stewart R, White LR, Xue QL, Launer LJ. Twenty-six-year change in total cholesterol levels and incident dementia: the Honolulu-Asia Aging Study. Arch Neurol. 2007;64(1):103–7.

    Article  PubMed  Google Scholar 

  123. Solomon A, Kareholt I, Ngandu T, Winblad B, Nissinen A, Tuomilehto J, et al. Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study. Neurology. 2007;68(10):751–6.

    Article  CAS  PubMed  Google Scholar 

  124. Sparks DL, Sabbagh MN, Connor DJ, Lopez J, Launer LJ, Browne P, et al. Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch Neurol. 2005;62(5):753–7.

    Article  PubMed  Google Scholar 

  125. Jones RW, Kivipelto M, Feldman H, Sparks L, Doody R, Waters DD, et al. The Atorvastatin/Donepezil in Alzheimer’s Disease Study (LEADe): design and baseline characteristics. Alzheimers Dement. 2008;4(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  126. Markesbery WR. The role of oxidative stress in Alzheimer disease. Arch Neurol. 1999;56(12):1449–52.

    Article  CAS  PubMed  Google Scholar 

  127. Luchsinger JA, Tang MX, Shea S, Mayeux R. Caloric intake and the risk of Alzheimer disease. Arch Neurol. 2002;59(8):1258–63.

    Article  PubMed  Google Scholar 

  128. Kalmijn S, van Boxtel MP, Ocke M, Verschuren WM, Kromhout D, Launer LJ. Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology. 2004;62(2):275–80.

    Article  CAS  PubMed  Google Scholar 

  129. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, et al. Dietary fats and the risk of incident Alzheimer disease. Arch Neurol. 2003;60(2):194–200.

    Article  PubMed  Google Scholar 

  130. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol. 2003;60(7):940–6.

    Article  PubMed  Google Scholar 

  131. Huang TL, Zandi PP, Tucker KL, Fitzpatrick AL, Kuller LH, Fried LP, et al. Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4. Neurology. 2005;65(9):1409–14.

    Article  CAS  PubMed  Google Scholar 

  132. Scarmeas N, Luchsinger JA, Mayeux R, Stern Y. Mediterranean diet and Alzheimer disease mortality. Neurology. 2007;69(11):1084–93.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol. 2006;63(11):1545–50.

    Article  PubMed  Google Scholar 

  134. Luchsinger JA, Tang MX, Miller J, Green R, Mayeux R. Relation of higher folate intake to lower risk of Alzheimer disease in the elderly. Arch Neurol. 2007;64(1):86–92.

    Article  PubMed  Google Scholar 

  135. Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Dietary fat intake and 6-year cognitive change in an older biracial community population. Neurology. 2004;62(9):1573–9.

    Article  CAS  PubMed  Google Scholar 

  136. Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Vitamin E and cognitive decline in older persons. Arch Neurol. 2002;59(7):1125–32.

    Article  PubMed  Google Scholar 

  137. Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS. Fish consumption and cognitive decline with age in a large community study. Arch Neurol. 2005;62(12):1849–53.

    Article  PubMed  Google Scholar 

  138. Kang JH, Ascherio A, Grodstein F. Fruit and vegetable consumption and cognitive decline in aging women. Ann Neurol. 2005;57(5):713–20.

    Article  PubMed  Google Scholar 

  139. Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS. Associations of vegetable and fruit consumption with age-related cognitive change. Neurology. 2006;67(8):1370–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Morris MC, Evans DA, Bienias JL, Tangney CC, Hebert LE, Scherr PA, et al. Dietary folate and vitamin B12 intake and cognitive decline among community-dwelling older persons. Arch Neurol. 2005;62(4):641–5.

    Article  PubMed  Google Scholar 

  141. Morris MC, Evans DA, Tangney CC, Bienias JL, Schneider JA, Wilson RS, et al. Dietary copper and high saturated and trans fat intakes associated with cognitive decline. Arch Neurol. 2006;63(8):1085–8.

    Article  PubMed  Google Scholar 

  142. Engelhart MJ, Geerlings MI, Ruitenberg A, Van Swieten JC, Hofman A, Witteman JC, et al. Diet and risk of dementia: Does fat matter?: The Rotterdam Study. Neurology. 2002;59(12):1915–21.

    Article  CAS  PubMed  Google Scholar 

  143. Luchsinger JA, Tang MX, Shea S, Mayeux R. Antioxidant vitamin intake and risk of Alzheimer disease. Arch Neurol. 2003;60(2):203–8.

    Article  PubMed  Google Scholar 

  144. Yaffe K, Clemons TE, McBee WL, Lindblad AS. Age-Related Eye Disease Study Research Group. Impact of antioxidants, zinc, and copper on cognition in the elderly: a randomized, controlled trial. Neurology. 2004;63(9):1705–7.

    Article  CAS  PubMed  Google Scholar 

  145. Dunn JE, Weintraub S, Stoddard AM, Banks S. Serum alpha-tocopherol, concurrent and past vitamin E intake, and mild cognitive impairment. Neurology. 2007;68(9):670–6.

    Article  CAS  PubMed  Google Scholar 

  146. Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T, Basun H, Faxen-Irving G, Garlind A, et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol. 2006;63(10):1402–8.

    Article  PubMed  Google Scholar 

  147. Tangney CC, Li H, Wang Y, Barnes L, Schneider JA, Bennett DA, et al. Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology. 2014;83(16):1410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Feart C, Samieri C, Rondeau V, Amieva H, Portet F, Dartigues JF, et al. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA. 2009;302(6):638–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, et al. Physical activity, diet, and risk of Alzheimer disease. JAMA. 2009;302(6):627–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. van de Rest O, Geleijnse JM, Kok FJ, van Staveren WA, Dullemeijer C, Olderikkert MG, et al. Effect of fish oil on cognitive performance in older subjects: a randomized, controlled trial. Neurology. 2008;71(6):430–8.

    Article  PubMed  CAS  Google Scholar 

  151. Zandi PP, Carlson MC, Plassman BL, Welsh-Bohmer KA, Mayer LS, Steffens DC, et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA. 2002;288(17):2123–9.

    Article  CAS  PubMed  Google Scholar 

  152. Col NF, Pauker SG. The discrepancy between observational studies and randomized trials of menopausal hormone therapy: did expectations shape experience? Ann Intern Med. 2003;139(11):923–9.

    Article  PubMed  Google Scholar 

  153. Shumaker SA, Legault C, Kuller L, Rapp SR, Thal L, Lane DS, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA. 2004;291(24):2947–58.

    Article  CAS  PubMed  Google Scholar 

  154. Espeland MA, Rapp SR, Shumaker SA, Brunner R, Manson JE, Sherwin BB, et al. Conjugated equine estrogens and global cognitive function in postmenopausal women: Women’s Health Initiative Memory Study. JAMA. 2004;291(24):2959–68.

    Article  CAS  PubMed  Google Scholar 

  155. Espeland MA, Shumaker SA, Leng I, Manson JE, Brown CM, LeBlanc ES, et al. Long-term effects on cognitive function of postmenopausal hormone therapy prescribed to women aged 50 to 55 years. JAMA Intern Med. 2013;173(15):1429–36.

    Article  PubMed  Google Scholar 

  156. Mulnard RA, Cotman CW, Kawas C, van Dyck CH, Sano M, Doody R, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer’s Disease Cooperative Study. JAMA. 2000;283(8):1007–15.

    Article  CAS  PubMed  Google Scholar 

  157. North American Menopause Society. The 2012 hormone therapy position statement of: The North American Menopause Society. Menopause. 2012;19(3):257–71.

    Article  Google Scholar 

  158. Cherrier MM, Matsumoto AM, Amory JK, Asthana S, Bremner W, Peskind ER, et al. Testosterone improves spatial memory in men with Alzheimer disease and mild cognitive impairment. Neurology. 2005;64(12):2063–8.

    Article  CAS  PubMed  Google Scholar 

  159. Emmelot-Vonk MH, Verhaar HJ, Nakhai Pour HR, Aleman A, Lock TM, Bosch JL, et al. Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: a randomized controlled trial. JAMA. 2008;299(1):39–52.

    Article  CAS  PubMed  Google Scholar 

  160. Floel A, Witte AV, Lohmann H, Wersching H, Ringelstein EB, Berger K, et al. Lifestyle and memory in the elderly. Neuroepidemiology. 2008;31(1):39–47.

    Article  PubMed  Google Scholar 

  161. Burns JM, Cronk BB, Anderson HS, Donnelly JE, Thomas GP, Harsha A, et al. Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology. 2008;71(3):210–6.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004;85(10):1694–704.

    Article  PubMed  Google Scholar 

  163. Weuve J, Kang JH, Manson JE, Breteler MM, Ware JH, Grodstein F. Physical activity, including walking, and cognitive function in older women. JAMA. 2004;292(12):1454–61.

    Article  CAS  PubMed  Google Scholar 

  164. Abbott RD, White LR, Ross GW, Masaki KH, Curb JD, Petrovitch H. Walking and dementia in physically capable elderly men. JAMA. 2004;292(12):1447–53.

    Article  CAS  PubMed  Google Scholar 

  165. Larson EB, Wang L, Bowen JD, McCormick WC, Teri L, Crane P, et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med. 2006;144(2):73–81.

    Article  PubMed  Google Scholar 

  166. Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300(9):1027–37.

    Article  CAS  PubMed  Google Scholar 

  167. Liang KY, Mintun MA, Fagan AM, Goate AM, Bugg JM, Holtzman DM, et al. Exercise and Alzheimer’s disease biomarkers in cognitively normal older adults. Ann Neurol. 2010;68(3):311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Larson EB. Physical activity for older adults at risk for Alzheimer disease. JAMA. 2008;300(9):1077–9.

    Article  CAS  PubMed  Google Scholar 

  169. Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2008; 3:CD005381.

    Google Scholar 

  170. Paul CA, Au R, Fredman L, Massaro JM, Seshadri S, Decarli C, et al. Association of alcohol consumption with brain volume in the Framingham study. Arch Neurol. 2008;65(10):1363–7.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Almeida OP, Hulse GK, Lawrence D, Flicker L. Smoking as a risk factor for Alzheimer’s disease: contrasting evidence from a systematic review of case-control and cohort studies. Addiction. 2002;97(1):15–28.

    Article  PubMed  Google Scholar 

  172. Hernan MA, Alonso A, Logroscino G. Cigarette smoking and dementia: potential selection bias in the elderly. Epidemiology. 2008;19(3):448–50.

    Article  PubMed  Google Scholar 

  173. Anstey KJ, von Sanden C, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166(4):367–78.

    Article  PubMed  Google Scholar 

  174. Alonso A, Jacobs Jr DR, Menotti A, Nissinen A, Dontas A, Kafatos A, et al. Cardiovascular risk factors and dementia mortality: 40 years of follow-up in the Seven Countries Study. J Neurol Sci. 2009;280(1-2):79–83.

    Article  PubMed  Google Scholar 

  175. ADAPT Research Group, Martin BK, Szekely C, Brandt J, Piantadosi S, Breitner JC, et al. Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol. 2008;65(7):896–905.

    Article  PubMed Central  Google Scholar 

  176. Etminan M, Gill S, Samii A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ. 2003;327(7407):128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Szekely CA, Thorne JE, Zandi PP, Ek M, Messias E, Breitner JC, et al. Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology. 2004;23(4):159–69.

    Article  PubMed  Google Scholar 

  178. Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA. 2003;289(21):2819–26.

    Article  CAS  PubMed  Google Scholar 

  179. Jaturapatporn D, Isaac MG, McCleery J, Tabet N. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database Syst Rev. 2012;2, CD006378.

    PubMed  Google Scholar 

  180. Yaffe K, Lindquist K, Shlipak MG, Simonsick E, Fried L, Rosano C, et al. Cystatin C as a marker of cognitive function in elders: findings from the health ABC study. Ann Neurol. 2008;63(6):798–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Vannorsdall TD, Jinnah HA, Gordon B, Kraut M, Schretlen DJ. Cerebral ischemia mediates the effect of serum uric acid on cognitive function. Stroke. 2008;39(12):3418–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gorelick PB. Cerebral microbleeds: evidence of heightened risk associated with aspirin use. Arch Neurol. 2009;66(6):691–3.

    Article  PubMed  Google Scholar 

  183. Kester MI, Goos JD, Teunissen CE, Benedictus MR, Bouwman FH, Wattjes MP, et al. Associations between cerebral small-vessel disease and Alzheimer disease pathology as measured by cerebrospinal fluid biomarkers. JAMA Neurol. 2014;71(7):855–62.

    Article  PubMed  Google Scholar 

  184. Poels MM, Ikram MA, van der Lugt A, Hofman A, Niessen WJ, Krestin GP, et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology. 2012;78(5):326–33.

    Article  CAS  PubMed  Google Scholar 

  185. Hilal S, Saini M, Tan CS, Catindig JA, Koay WI, Niessen WJ, et al. Cerebral microbleeds and cognition: the epidemiology of dementia in Singapore study. Alzheimer Dis Assoc Disord. 2014;28(2):106–12.

    Article  PubMed  Google Scholar 

  186. Muqtadar H, Testai FD, Gorelick PB. The dementia of cardiac disease. Curr Cardiol Rep. 2012;14(6):732–40.

    Article  PubMed  Google Scholar 

  187. Casserly IP, Topol EJ. Convergence of atherosclerosis and Alzheimer’s disease: Cholesterol, inflammation, and misfolded proteins. Discov Med. 2004;4(22):149–56.

    PubMed  Google Scholar 

  188. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42(9):2672–713.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Vagnucci Jr AH, Li WW. Alzheimer’s disease and angiogenesis. Lancet. 2003;​361(9357):605–8.

    Article  CAS  PubMed  Google Scholar 

  190. Birns J, Kalra L. Cognitive function and hypertension. J Hum Hypertens. 2009;23(2):86–96.

    Article  CAS  PubMed  Google Scholar 

  191. Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015;11(9):1007–14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando D. Testai M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Testai, F.D., Gorelick, P.B. (2016). Vascular Cognitive Impairment and Alzheimer Disease: Are These Disorders Linked to Hypertension and Other Cardiovascular Risk Factors?. In: Aiyagari, V., Gorelick, P. (eds) Hypertension and Stroke. Clinical Hypertension and Vascular Diseases. Humana Press, Cham. https://doi.org/10.1007/978-3-319-29152-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29152-9_15

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-29150-5

  • Online ISBN: 978-3-319-29152-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics