Skip to main content

Evolution of Acoustic Communication in Insects

  • Chapter
  • First Online:
Insect Hearing

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 55))

Abstract

Tympanal organs for hearing in the far field have evolved on multiple occasions among insects and are currently found in seven orders. Many, if not most, cases of insect hearing probably originated as a means for detecting and avoiding predators. In particular, sensitivity to ultrasound appears to have coevolved with echolocation signaling by insectivorous bats. However, on an overall scale, hearing is relatively rare among insects in comparison with other modalities of perception, including detection of substrate vibration. Sound signaling in insects, which typically occurs in the context of mating communication, is rarer still and is known in only five orders. Phylogenetic analyses suggest that acoustic communication in the Lepidoptera and in the suborder Caelifera (grasshoppers) of the Orthoptera originated via a “sensory bias” mechanism. Hearing was ancestral and sound signaling by males subsequently arose on multiple, independent occasions. On the other hand, acoustic communication in the Cicadidae and in the suborder Ensifera (crickets, katydids) of the Orthoptera may have originated via coevolution between female perception and male signaling. The diversity of songs among acoustic insects may reflect genetic drift and reproductive character displacement. There is little evidence, however, that insect songs are adapted to specific physical environments. In one clade of acoustic insects, the diversification of song is associated with an unusually high rate of population differentiation and speciation, which may be facilitated by a genomic co-localization of loci influencing female response/preference and male signaling. The extent to which co-localization is a general factor in speciation remains to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aicher, B., & Tautz, J. (1990). Vibrational communication in the fiddler crab, Uca pugilator. 1. Signal transmission through the substratum. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 166, 345–353.

    Article  Google Scholar 

  • Alem, S., Streiff, R., Courtois, B., Zenboudji, S., Limousin, D., & Greenfield, M. D. (2013). Genetic architecture of sensory exploitation: QTL mapping of female and male receiver traits in an acoustic moth. Journal of Evolutionary Biology, 26, 2581–2596.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, R. D. (1962). Evolutionary change in cricket acoustical communication. Evolution, 16, 443–467.

    Article  Google Scholar 

  • Arnqvist, G. (2006). Sensory exploitation and sexual conflict. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 375–386.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey, W. J. (1991). Acoustic behaviour of arthropods. London: Chapman & Hall.

    Google Scholar 

  • Bailey, W. J. (2003). Insect duets: Underlying mechanisms and their evolution. Physiological Entomology, 28, 157–174.

    Article  Google Scholar 

  • Bauer, M., & von Helversen, O. (1987). Separate localization of sound recognizing and sound producing neural mechanisms in a grasshopper. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 161, 95–101.

    Article  Google Scholar 

  • Bennet-Clark, H. C. (1971). Acoustics of insect song. Nature, 234, 255–259.

    Article  Google Scholar 

  • Bennet-Clark, H. C. (1998). Size and scale effects as constraints in insect sound communication. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353, 407–419.

    Article  PubMed Central  Google Scholar 

  • Bennet-Clark, H. C., Leroy, Y., & Tsacas, L. (1980). Species and sex-specific songs and courtship behavior in the genus Zaprionus (Diptera: Drosophilidae). Animal Behaviour, 28, 230–255.

    Article  Google Scholar 

  • Boake, C. R. B. (1991). Coevolution of senders and receivers of sexual signals: Genetic coupling and genetic correlations. Trends in Ecology and Evolution, 6, 225–227.

    Article  CAS  PubMed  Google Scholar 

  • Boekhoff-Falk, G. (2005). Hearing in Drosophila: Development of Johnston’s organ and emerging parallels to vertebrate ear development. Developmental Dynamics, 232, 550–558.

    Article  CAS  PubMed  Google Scholar 

  • Bradbury, J. W., & Vehrencamp, S. L. (2011). Principles of animal communication (2nd ed.). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Britch, S. C., Cain, M. L., & Howard, D. J. (2001). Spatio-temporal dynamics of the Allonemobius fasciatus-A. socius mosaic hybrid zone: A 14-year perspective. Molecular Ecology, 10, 627–638.

    Article  CAS  PubMed  Google Scholar 

  • Butlin, R. K. (1987). Speciation by reinforcement. Trends in Ecology and Evolution, 2, 8–13.

    Article  CAS  PubMed  Google Scholar 

  • Butlin, R. K., & Ritchie, M. G. (1989). Genetic coupling in mate recognition systems: What is the evidence? Biological Journal of the Linnean Society, 37, 237–246.

    Article  Google Scholar 

  • Carroll, S. B. (2001). Chance and necessity: The evolution of morphological complexity and diversity. Nature, 409, 1102–1109.

    Article  CAS  PubMed  Google Scholar 

  • Cator, L. J., Arthur, B. J., Harrington, L. C., & Hoy, R. R. (2009). Harmonic convergence in the love songs of the dengue vector mosquito. Science, 323, 1077–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocroft, R. B., & Rodriguez, R. L. (2005). The behavioral ecology of insect vibrational communication. Bioscience, 55, 323–334.

    Article  Google Scholar 

  • Cokl, A., Zorovic, M., Zunic, A., & Virant-Doberlet, M. (2005). Tuning of host plants with vibratory songs of Nezara viridula L (Heteroptera : Pentatomidae). Journal of Experimental Biology, 208, 1481–1488.

    Article  PubMed  Google Scholar 

  • Conner, W. E. (2014). Adaptive sounds and silences: Acoustic anti-predatory strategies in insects. In B. Hedwig (Ed.), Insect hearing and acoustic communication (pp. 65–79). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Davis, D. R. (1998). A world classification of the Harmacloninae, a new subfamily of Tineidae (Lepidoptera: Tineoidea). Smithsonian Contributions in Zoology, 597, 1–57.

    Article  Google Scholar 

  • Desutter-Grandcolas, L. (2003). Phylogeny and the evolution of acoustic communication in extant Ensifera (Insecta, Orthoptera). Zoologica Scripta, 32(6), 525–561.

    Article  Google Scholar 

  • Desutter-Grandcolas, L., & Robillard, T. (2003). Phylogeny and the evolution of calling songs in Gryllus (Insecta, Orthoptera, Gryllidae). Zoologica Scripta, 32, 173–183.

    Article  Google Scholar 

  • Dreller, C., & Kirchner, W. H. (1993). How honeybees perceive the information of the dance language. Naturwissenschaften, 80, 319–321.

    Article  Google Scholar 

  • Drosopoulos, S., & Claridge, M. F. (2006). Insect sounds and communication: Physiology, behavior, ecology and evolution. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Elias, D. O., & Mason, A. C. (2014). The role of wave and substrate heterogeneity in vibratory communication: Practical issues in studying the effect of vibratory environments in communication. In R. B. Cocroft, M. Gogala, P. Hill, & A. Wessel (Eds.), Studying vibrational communication (pp. 215–247). Berlin: Springer-Verlag.

    Google Scholar 

  • Endler, J. A., & Basolo, A. L. (1998). Sensory ecology, receiver biases and sexual selection. Trends in Ecology and Evolution, 13, 415–420.

    Article  CAS  PubMed  Google Scholar 

  • Ewing, A. W. (1989). Arthropod bioacoustics: Neurobiology and behavior. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Faure, P. A., & Hoy, R. R. (2000). The sounds of silence: Cessation of singing and song pausing are ultrasound-induced acoustic startle behaviors in the katydid Neoconocephalus ensiger (Orthoptera: Tettigoniidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 186, 129–142.

    Article  CAS  Google Scholar 

  • Fletcher, N. H. (1992). Acoustic systems in biology. New York: Oxford University Press.

    Google Scholar 

  • Flook, P. K., Klee, S., & Rowell, C. H. F. (2000). Molecular phylogenetic analysis of the Pneumoroidea (Orthoptera, Caelifera): Molecular data resolve morphological character conflicts in the basal Acridomorpha. Molecular Phylogenetics and Evolution, 15, 345–354.

    Article  CAS  PubMed  Google Scholar 

  • Fonseca, P. J., Serrão, E. A., Pina-Martins, F., Silva, P., Mira, S., Quartau, J.A., et al. (2008). The evolution of cicada songs constrasted with the relationships inferred from mitochondrial DNA (Insecta, Hemiptera). Bioacoustics, 18, 17–34.

    Google Scholar 

  • Forrest, T. G. (1982). Acoustic communication and baffling behaviors of crickets. Florida Entomologist, 65, 33–44.

    Article  Google Scholar 

  • Forrest, T. G., Read, M. P., Farris, H. E., & Hoy, R. R. (1997). A tympanal hearing organ in scarab beetles. Journal of Experimental Biology, 200, 601–606.

    CAS  PubMed  Google Scholar 

  • Fullard, J. H. (1994). Auditory changes in noctuid moths endemic to a bat-free habitat. Journal of Evolutionary Biology, 7, 435–445.

    Article  Google Scholar 

  • Fullard, J. H., Dawson, J. W., Otero, L. D., & Surlykke, A. (1997). Bat-deafness in day-flying moths (Lepidoptera: Notodontidae: Dioptinae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 181, 477–483.

    Article  CAS  Google Scholar 

  • Gagliano, M. (2013). Green symphonies: A call for studies on acoustic communication in plants. Behavioral Ecology, 24, 789–796.

    Article  PubMed  Google Scholar 

  • Gerhardt, H. C., & Huber, F. (2002). Acoustic communication in insects and anurans: Common problems and diverse solutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Gleason, J. M., & Ritchie, M. G. (2004). Do quantitative trait loci (QTL) for a courtship song difference between Drosophila simulans and D. sechellia coincide with candidate genes and intraspecific QTL? Genetics, 166, 1303–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason, J. M., Nuzhdin, S. V., & Ritchie, M. G. (2002). Quantitative trait loci affecting a courtship signal in Drosophila melanogaster. Heredity, 89, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, K. R., Kelley, J. P., Welter, S. C., Roderick, G. K., & Elias, D. O. (2015). Rapid diversification of sexual signals in Hawaiian Nesodyne planthoppers (Hemiptera: Delphacidae): The relative role of neutral and selective forces. Journal of Evolutionary Biology, 28, 415–427.

    Article  CAS  PubMed  Google Scholar 

  • Göpfert, M. C., & Robert, D. (2000). Nanometre-range acoustic sensitivity in male and female mosquitoes. Proceedings of the Royal Society of London B: Biological Sciences, 267, 453–457.

    Article  Google Scholar 

  • Göpfert, M. C., & Robert, D. (2001). Turning the key on Drosophila audition. Nature, 411, 908.

    Article  PubMed  Google Scholar 

  • Göpfert, M. C., Surlykke, A., & Wasserthal, L. T. (2002). Tympanal and atympanal “mouth-ears” in hawkmoths (Sphingidae). Proceedings of the Royal Society of London B: Biological Sciences, 269, 89–95.

    Article  Google Scholar 

  • Gordon, S. D., & Uetz, G. W. (2012). Environmental interference: Impact of acoustic noise on seismic communication and mating success. Behavioral Ecology, 23, 707–714.

    Article  Google Scholar 

  • Greenfield, M. D. (1988). Interspecific acoustic interactions among katydids, Neoconocephalus: Inhibition-induced shifts in diel periodicity. Animal Behaviour, 36, 684–695.

    Article  Google Scholar 

  • Greenfield, M. D. (2002). Signalers and receivers: Mechanisms and evolution of arthropod communication. New York: Oxford University Press.

    Google Scholar 

  • Greenfield, M. D. (2014a). Acoustic communication in the nocturnal Lepidoptera. In B. Hedwig (Ed.), Insect hearing and acoustic communication (pp. 81–100). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Greenfield, M. D. (2014b). Evolution of communication. In J. Losos (Ed.), Princeton guide to evolution (pp. 655–662). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Greig, E. I., & Greenfield, M. D. (2004). Sexual selection and predator avoidance in an acoustic moth: Discriminating females take fewer risks. Behaviour, 141, 799–815.

    Article  Google Scholar 

  • Gu, J.-J., Montealegre-Z, F., Robert, D., Engel, M. S., Ge-Xia, Q., & Ren, D. (2012). Wing stridulation in a Jurassic katydid (Insecta, Orthoptera) produced low-pitched musical calls to attract females. Proceedings of the National Academy of Sciences of the USA, 109, 3868–3873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser, M. D. (1996). The evolution of communication. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Hedwig, B. (2014). Insect hearing and acoustic communication. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Henry, C. S., & Wells, M. L. M. (2004). Adaptation or random change? The evolutionary response of songs to substrate properties in lacewings (Neuroptera : Chrysopidae : Chrysoperla). Animal Behaviour, 68, 879–895.

    Article  Google Scholar 

  • Höbel, G., & Gerhardt, H. C. (2003). Reproductive character displacement in the acoustic communication system of green tree frogs (Hyla cinerea). Evolution, 57, 894–904.

    Article  PubMed  Google Scholar 

  • Hoch, H., Deckert, J., & Wessel, A. (2006). Vibrational signaling in a Gondwanan relict insect (Hemiptera: Coleorrhyncha: Peloridiidae). Biology Letters, 2, 222–224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoikkala, A., & Mazzi, D. (2009). Evolution of complex acoustic signals in Drosophila species. In Y.-K. Kim (Ed.), Handbook of behavior genetics (pp. 187–196). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Hoy, R. R. (1992). The evolution of hearing in insects as an adaptation to predation from bats. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 115–129). New York: Springer Verlag.

    Google Scholar 

  • Hoy, R. R., & Robert, D. (1996). Tympanal hearing in insects. Annual Review of Entomology, 41, 433–450.

    Article  CAS  PubMed  Google Scholar 

  • Hoy, R. R., Hahn, J., & Paul, R. C. (1977). Hybrid cricket auditory behavior: Evidence for genetic coupling in animal communication. Science, 195, 82–84.

    Article  CAS  PubMed  Google Scholar 

  • Hoy, R. R., Hoikkala, A., & Kaneshiro, K. (1988). Hawaiian courtship songs: Evolutionary innovation in communication signals of Drosophila. Science, 240, 217–219.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, A. R., Mann, D. A., & Kimbro, D. L. (2014). Predatory fish sounds can alter crab foraging behaviour and influence bivalve abundance. Proceedings of the Royal Society of London B: Biological Sciences. doi:10.1098/rspb.2014.0715.

    Google Scholar 

  • Hunt, J. H., & Richard, F.-J. (2013). Intracolony vibroacoustic communication in social insects. Insectes Sociaux, 60, 403–417.

    Article  Google Scholar 

  • Jackson, J. C., Windmill, J. F. C., Pook, V. G., & Robert, D. (2009). Synchrony through twice-frequency forcing for sensitive and selective auditory processing. Proceedings of the National Academy of Sciences of the USA, 106, 10177–10182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain, M., & Balakrishnan, R. (2012). Does acoustic adaptation drive vertical stratification? A test in a tropical cricket assemblage. Behavioral Ecology, 23, 343–354.

    Article  Google Scholar 

  • Jang, Y., & Gerhardt, H. C. (2006). Divergence in the calling songs between sympatric and allopatric populations of the southern wood cricket Gryllus fultoni (Orthoptera: Gryllidae). Journal of Evolutionary Biology, 19, 459–472.

    Article  CAS  PubMed  Google Scholar 

  • Jang, Y., & Greenfield, M. D. (1996). Ultrasonic communication and sexual selection in wax moths: Female choice based on energy and asynchrony of male signals. Animal Behaviour, 51, 1095–1106.

    Article  Google Scholar 

  • Jang, Y., & Greenfield, M. D. (1998). Absolute versus relative measurements of sexual selection: Assessing the contributions of ultrasonic signal characters to mate attraction in lesser wax moths, Achroia grisella (Lepidoptera: Pyralidae). Evolution, 52, 1383–1393.

    Article  Google Scholar 

  • Jia, F.-Y., & Greenfield, M. D. (1997). When are good genes good? Variable outcomes of female choice in wax moths. Proceedings of the Royal Society of London B: Biological Sciences, 264, 1057–1063.

    Article  Google Scholar 

  • Kelly, J. K., & Noor, M. A. F. (1996). Speciation by reinforcement: A model derived from studies of Drosophila. Genetics, 143, 1485–1497.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchner, W. H. (1997). Acoustical communication in social insects. In M. Lehrer (Ed.), Orientation and communication in arthropods (pp. 273–300). Basel: Birkhäuser Verlag.

    Chapter  Google Scholar 

  • Kirkpatrick, M. (1982). Sexual selection and the evolution of female choice. Evolution, 36, 1–12.

    Article  Google Scholar 

  • Kristensen, N. P. (2012). Molecular phylogenies, morphological homologies and the evolution of moth “ears.”. Systematic Entomology, 37, 237–239.

    Article  Google Scholar 

  • Lakes-Harlan, R., & Heller, K.-G. (1992). Ultrasound-sensitive ears in a parasitoid fly. Naturwissenschaften, 79, 224–226.

    Article  Google Scholar 

  • Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences of the USA, 78, 3721–3725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre, F., Robillard, T., Song, H., Whiting, M. F., & Desutter-Grandcolas, L. (2010). One hundred years of instability in ensiferan relationships. Systematic Entomology, 35, 475–488.

    Article  Google Scholar 

  • Limousin, D., Streiff, R., Courtois, B., Dupuy, V., Alem, S., & Greenfield, M. D. (2012). Genetic architecture of sexual selection: QTL mapping of male song and female receiver traits in an acoustic moth. PLoS ONE. doi:10.1371/journal.pone.0044554.

    Google Scholar 

  • Liou, L. W., & Price, T. D. (1994). Speciation by reinforcement of premating isolation. Evolution, 48, 1451–1459.

    Article  Google Scholar 

  • Löfstedt, C., Hansson, B. S., Roelofs, W., & Bengtsson, B. O. (1989). No linkage between genes controlling female pheromone production and male pheromone response in the European corn borer, Ostrinia nubilalis Hubner (Lepidoptera: Pyralidae). Genetics, 123, 553–556.

    PubMed  PubMed Central  Google Scholar 

  • Löfstedt, C., & Kozlov, M. (1997). A phylogenetic analysis of pheromone communication in primitive moths. In R. T. Cardé & A. K. Minks (Eds.), Insect pheromone research: New directions (pp. 473–489). New York: Chapman & Hall.

    Chapter  Google Scholar 

  • Lucas, K. M., Mongrain, J. K., Windmill, J. F. C., Robert, D., & Yack, J. E. (2014). Hearing in the crepuscular owl butterfly (Caligo eurilochus, Nymphalidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 200, 891–898.

    Article  PubMed  Google Scholar 

  • McNett, G., & Cocroft, R. B. (2008). Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behavioral Ecology, 19, 650–656.

    Article  Google Scholar 

  • Mendelson, T. C., & Shaw, K. L. (2005). Rapid speciation in an arthropod. Nature, 433, 375–376.

    Article  CAS  PubMed  Google Scholar 

  • Michelsen, A., Kirchner, W. H., & Lindauer, M. (1986). Sound and vibrational signals in the dance language of the honeybee, Apis mellifera. Behavioral Ecology and Sociobiology, 18, 207–212.

    Article  Google Scholar 

  • Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science, 346, 763–767.

    Google Scholar 

  • Montealegre-Z, F., Jonsson, T., Robson-Brown, K. A., Postles, M., & Robert, D. (2012). Convergent evolution between insect and mammalian audition. Science, 338, 968–971.

    Article  CAS  PubMed  Google Scholar 

  • Mooney, T. A., Hanlon, R. T., Christensen-Dalsgaard, J., Madsen, P. T., Ketten, D. R., & Nachtigall, P.E. (2010). Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: Sensitivity to low-frequency particle motion and not pressure. Journal of Experimental Biology, 213, 3748–3759.

    Google Scholar 

  • Morton, E. S. (1975). Ecological sources of selection on avian sounds. The American Naturalist, 109, 17–34.

    Article  Google Scholar 

  • Moulds, M. S. (2005). An appraisal of the higher classification of cicadas (Hemiptera: Cicadoidea) with special reference to the Australian fauna. Records of the Australian Museum, 57, 375–446.

    Article  Google Scholar 

  • Nakano, R., Skals, N., Takanashi, T., Surlykke, A., Koike, T., Yoshida, K., et al. (2008). Moths produce extremely quiet ultrasonic courtship songs by rubbing specialized scales. Proceedings of the National Academy of Sciences of the USA, 105, 11812–11817.

    Google Scholar 

  • Nakano, R., Takanashi, T., Fujii, T., Skals, N., Surlykke, A., & Ishikawa, Y. (2009). Moths are not silent, but whisper ultrasonic courtship songs. Journal of Experimental Biology, 212, 4072–4078.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, R., Takanashi, T., Skals, N., Surlykke, A., & Ishikawa, Y. (2010). To females of a noctuid moth, male courtship songs are nothing more than bat echolocation calls. Biology Letters, 6, 582–584.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nattier, R., Robillard, T., Amedegnato, C., Couloux, A., Cruaud, C., & Desutter-Grandcolas, L. (2011). Evolution of acoustic communication in the Gomphocerinae (Orthoptera: Caelifera: Acrididae). Zoologica Scripta, 40, 479–497.

    Article  Google Scholar 

  • Nelson, M. C., & Fraser, J. (1980). Sound production in the cockroach, Gromphadorina portentosa: Evidence for communication by hissing. Behavioral Ecology and Sociobiology, 6, 305–314.

    Article  Google Scholar 

  • Neuweiler, G. (2000). The biology of bats. New York: Oxford University Press.

    Google Scholar 

  • Nickle, D. A., & Carlysle, T. C. (1975). Morphology and function of female sound-producing structures in ensiferan Orthoptera with special emphasis on the Phaneropterinae. International Journal of Insect Morphology and Embryology, 4, 159–168.

    Article  Google Scholar 

  • Nieh, J. C., & Tautz, J. (2000). Behaviour-locked signal analysis reveals weak 200–300 Hz comb vibrations during the honeybee waggle dance. Journal of Experimental Biology, 203, 1573–1579.

    CAS  PubMed  Google Scholar 

  • Noor, M. A. F. (1999). Reinforcement and other consequences of sympatry. Heredity, 83, 503–508.

    Article  PubMed  Google Scholar 

  • Nosil, P. (2012). Ecological speciation. New York: Oxford University Press.

    Book  Google Scholar 

  • Nosil, P., Crespi, B. J., & Sandoval, C. P. (2002). Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature, 417, 440–443.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Barrientos, D., Counterman, B. A., & Noor, M. A. F. (2004). The genetics of speciation by reinforcement. PLoS Biology, 2, 2256–2263.

    Article  CAS  Google Scholar 

  • Otte, D. (1970). A comparative study of communicative behavior in grasshoppers (Vol. 141, pp. 1–168). Ann Arbor: Miscellaneous Publications of the Museum of Zoology, University of Michigan.

    Google Scholar 

  • Otte, D. (1992). Evolution of cricket songs. Journal of Orthoptera Research, 1, 25–49.

    Article  Google Scholar 

  • Polajnar, J., Svensek, D., & Cokl, A. (2012). Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomid bugs (Heteroptera: Pentatomidae). Journal of the Royal Society Interface, 9, 1898–1907.

    Article  PubMed Central  Google Scholar 

  • Popper, A. N., Platt, C., & Edds, P. L. (1992). Evolution of the vertebrate inner ear: An overview of ideas. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 49–57). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Rebar, D., & Rodriguez, R. L. (2015). Insect mating signal and mate preference phenotypes covary among host plant genotypes. Evolution, 69, 602–610.

    Article  PubMed  Google Scholar 

  • Regier, J. C., Mitter, C., Zwick, A., Bazinet, A. L., Cummings, M. P., Kawahara, A.Y., et al. (2013). A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS ONE. doi:10.1371/journal.pone.0058568.

    Google Scholar 

  • Reinhold, K., Greenfield, M. D., Jang, Y. W., & Broce, A. (1998). Energetic cost of sexual attractiveness: Ultrasonic advertisement in wax moths. Animal Behaviour, 55, 905–913.

    Article  PubMed  Google Scholar 

  • Riede, K. (1987). A comparative study of mating behavior in some neotropical grasshoppers (Acridoidea). Ethology, 76, 265–296.

    Article  Google Scholar 

  • Robert, D., Read, M. P., & Hoy, R. R. (1994). The tympanal hearing organ of the parasitoid fly Ormia ochracea (Diptera, Tachinidae, Ormiini). Cell and Tissue Research, 275, 63–78.

    Article  CAS  PubMed  Google Scholar 

  • Robillard, T., & Desutter-Grandcolas, L. (2004). High-frequency calling in Eneopterinae crickets (Orthoptera, Grylloidea, Eneopteridae): Adaptive radiation revealed by phylogenetic analysis. Biological Journal of the Linnean Society, 83, 577–584.

    Article  Google Scholar 

  • Robillard, T., & Desutter-Grandcolas, L. (2011). Evolution of calling songs as multicomponent signals in crickets (Orthoptera: Grylloidea: Eneopterinae). Behaviour, 148, 627–672.

    Article  Google Scholar 

  • Roces, F., & Tautz, J. (2001). Ants are deaf. Journal of the Acoustical Society of America, 109, 3080–3082.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, R. L., Schul, J., Cocroft, R. B., & Greenfield, M. D. (2005). The contribution of tympanic transmission to fine temporal signal evaluation in an ultrasonic moth. Journal of Experimental Biology, 208, 4159–4165.

    Article  PubMed  Google Scholar 

  • Rohrseitz, K., & Tautz, J. (1999). Honey bee dance communication: Waggle run direction coded in antennal contacts? Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 184, 463–470.

    Article  Google Scholar 

  • Römer, H. (1993). Environmental and biological constraints for the evolution of long-range signaling and hearing in acoustic insects. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 340, 179–185.

    Article  Google Scholar 

  • Römer, H., & Lewald, J. (1992). High frequency sound transmission in natural habitats: Implications for the evolution of insect acoustic communication. Behavioral Ecology and Sociobiology, 29, 437–444.

    Article  Google Scholar 

  • Rust, J., Stumpner, A., & Gottwald, J. (1999). Singing and hearing in a Tertiary bushcricket. Nature, 399, 650.

    Article  CAS  Google Scholar 

  • Ryan, M. J., & Brenowitz, E. A. (1985). The role of body size, phylogeny, and ambient noise in the evolution of bird song. The American Naturalist, 126, 87–100.

    Article  Google Scholar 

  • Schmidt, A. K. D., Römer, H., & Riede, K. (2013). Spectral niche segregation and community organization in a tropical cricket assemblage. Behavioral Ecology, 24, 470–480.

    Article  Google Scholar 

  • Schulze, W., & Schul, J. (2001). Ultrasound avoidance behavior in the bushcricket Tettigonia viridissima (Orthoptera: Tettigoniidae). Journal of Experimental Biology, 204, 733–740.

    CAS  PubMed  Google Scholar 

  • Senter, P. (2008). Voices of the past: A review of Paleozoic and Mesozoic animal sounds. Historical Biology, 20, 255–287.

    Article  Google Scholar 

  • Servedio, M. R., & Noor, M. A. F. (2003). The role of reinforcement in speciation: Theory and data. Annual Review of Ecology, Evolution, and Systematics, 34, 339–364.

    Article  Google Scholar 

  • Servedio, M. R., Van Doorn, G. S., Kopp, M., Frame, A. M., & Nosil, P. (2011). Magic traits in speciation: “Magic” but not rare? Trends in Ecology and Evolution, 26, 389–397.

    Article  PubMed  Google Scholar 

  • Servedio, M. R., Hermisson, J., & Van Doorn, G. S. (2013). Hybridization may rarely promote speciation. Journal of Evolutionary Biology, 26, 282–285.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, L. H. (1998). Hybridization and geographic variation in two meadow katydid contact zones. Evolution, 52, 784–796.

    Article  Google Scholar 

  • Shaw, S. R. (1994). Detection of airborne sound by a cockroach vibration detector: A possible missing link in insect auditory evolution. Journal of Experimental Biology, 193, 13–47.

    PubMed  Google Scholar 

  • Shaw, K. L., Ellison, C. K., Oh, K. P., & Wiley, C. (2011). Pleiotropy, “sexy” traits, and speciation. Behavioral Ecology, 22, 1154–1155.

    Article  Google Scholar 

  • Shaw, K. L., & Lesnick, S. C. (2009). Genomic linkage of male song and female acoustic preference QTL underlying a rapid species radiation. Proceedings of the National Academy of Sciences of the USA, 106, 9737–9742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons, R. B., & Conner, W. E. (1996). Ultrasonic signals in the defense and courtship of Euchaetes egle Drury and E. bolteri Stretch (Lepidoptera: Arctiidae). Journal of Insect Behavior, 9, 909–919.

    Article  Google Scholar 

  • Sivinski, J., Burk, T., & Webb, J. C. (1984). Acoustic courtship signals in the Caribbean fruit fly, Anastrepha suspensa (Loew). Animal Behaviour, 32, 1011–1016.

    Article  Google Scholar 

  • Snyder, R. L., Frederick-Hudson, K. H., & Schul, J. (2009). Molecular phylogenetics of the genus Neoconocephalus (Orthoptera, Tettigoniidae) and the evolution of temperate life histories. PLoS ONE. doi:10.1371/journal.pone.0007203.

    Google Scholar 

  • Song, H., Amédégnato, C., Cigliano, M. M., Desutter-Grandcolas, L., Heads, S. W., Huang, Y., et al. (2015). 300 million years of diversification: Elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics. doi:10.1111/cla.12116.

    Google Scholar 

  • Spangler, H. G. (1988). Hearing in tiger beetles (Cicindelidae). Physiological Entomology, 13, 447–452.

    Article  Google Scholar 

  • Spangler, H. G., Greenfield, M. D., & Takessian, A. (1984). Ultrasonic mate calling in the lesser wax moth. Physiological Entomology, 9, 87–95.

    Article  Google Scholar 

  • Strauss, J., & Lakes-Harlan, R. (2014). Evolutionary and phylogenetic origins of tympanal hearing organs in insects. In B. Hedwig (Ed.), Insect hearing and acoustic communication (pp. 5–26). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Sueur, J., Mackie, D., & Windmill, J. F. C. (2011). So small, so loud: Extremely high sound pressure level from a pygmy aquatic insect (Corixidae, Micronectinae). PLoS ONE. doi:10.1371/journal.pone.0021089.

    Google Scholar 

  • Surlykke, A., Yack, J. E., Spence, A. J., & Hasenfuss, I. (2003). Hearing in hooktip moths (Drepanidae : Lepidoptera). Journal of Experimental Biology, 206, 2653–2663.

    Article  PubMed  Google Scholar 

  • Tautz, J., & Markl, H. (1978). Caterpillars detect flying wasps by hairs sensitive to airborne vibration. Behavioral Ecology and Sociobiology, 4, 101–110.

    Article  Google Scholar 

  • Tinghitella, R. M., Wang, J. M., & Zuk, M. (2009). Preexisting behavior renders a mutation adaptive: Flexibility in male phonotaxis behavior and the loss of singing ability in the field cricket Teleogryllus oceanicus. Behavioral Ecology, 20, 722–728.

    Article  Google Scholar 

  • Towne, W. F., & Kirchner, W. H. (1989). Hearing in honey bees: Detection of air particle oscillations. Science, 244, 686–688.

    Article  CAS  PubMed  Google Scholar 

  • Tuck, E. J., Windmill, J. F. C., & Robert, D. (2009). Hearing in tsetse flies? Morphology and mechanics of a putative auditory organ. Bulletin of Entomological Research, 99, 107–119.

    Article  CAS  PubMed  Google Scholar 

  • van Staaden, M. J., & Römer, H. (1997). Sexual signalling in bladder grasshoppers: Tactical design for maximizing calling range. Journal of Experimental Biology, 200, 2597–2608.

    PubMed  Google Scholar 

  • van Staaden, M. J., & Römer, H. (1998). Evolutionary transition from stretch to hearing organs in ancient grasshoppers. Nature, 394, 773–776.

    Article  CAS  Google Scholar 

  • Walker, T. J. (1974). Character displacement and acoustic insects. American Zoologist, 14, 1137–1150.

    Article  Google Scholar 

  • Walker, T. J. (1975). Stridulatory movements in 8 species of Neoconocephalus (Tettigoniidae). Journal of Insect Physiology, 21, 595–603.

    Article  CAS  PubMed  Google Scholar 

  • Walker, T. J., Whitesell, J. J., & Alexander, R. D. (1973). The robust conehead: 2 widespread sibling species (Orthoptera: Tettigoniidae: Neoconocephalus robustus). Ohio Journal of Science, 73, 321–330.

    Google Scholar 

  • Wiley, R. H. (1991). Associations of song properties with habitats for territorial oscine birds of eastern North America. The American Naturalist, 138, 973–993.

    Article  Google Scholar 

  • Wiley, C., Ellison, C. K., & Shaw, K. L. (2012). Widespread genetic linkage of mating signals and preferences in the Hawaiian cricket Laupala. Proceedings of the Royal Society of London B: Biological Sciences, 279, 1203–1209.

    Article  Google Scholar 

  • Wilkins, M. R., Seddon, N., & Safran, R. J. (2013). Evolutionary divergence in acoustic signals: Causes and consequences. Trends in Ecology and Evolution, 28, 156–166.

    Article  PubMed  Google Scholar 

  • Yack, J. E., & Fullard, J. H. (2000). Ultrasonic hearing in nocturnal butterflies. Nature, 403, 265–266.

    Article  CAS  PubMed  Google Scholar 

  • Yager, D. D. (1999). Structure, development, and evolution of insect auditory systems. Microscopy Research and Technique, 47, 380–400.

    Article  CAS  PubMed  Google Scholar 

  • Yager, D. D., & Svenson, G. J. (2008). Patterns of praying mantis auditory system evolution based on morphological, molecular, neurophysiological, and behavioural data. Biological Journal of the Linnean Society, 94, 541–568.

    Article  Google Scholar 

  • Zuk, M., Garcia-Gonzalez, F., Herberstein, M. E., & Simmons, L. W. (2014). Model systems, taxonomic bias, and sexual selection: Beyond Drosophila. Annual Review of Entomology, 59, 321–338.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Sylvain Alem, Marlène Goubault, and Darren Rebar for valuable suggestions on earlier versions of this chapter and Andrew Mason, Gerald Pollack, and Arthur Popper for their valuable editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Greenfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Greenfield, M.D. (2016). Evolution of Acoustic Communication in Insects. In: Pollack, G., Mason, A., Popper, A., Fay, R. (eds) Insect Hearing. Springer Handbook of Auditory Research, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-28890-1_2

Download citation

Publish with us

Policies and ethics