Skip to main content

Adaptive Sounds and Silences: Acoustic Anti-Predator Strategies in Insects

  • Chapter
  • First Online:
Insect Hearing and Acoustic Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 1))

Abstract

There has been a recent resurgence of interest in the evolution of adaptive coloration and a new appreciation of the mechanisms, functions, and evolution of crypsis, aposematic coloration, and mimicry. I here apply these principles to the acoustic modality using insect examples and discuss adaptive silence, acoustic crypsis, stealth, acoustic aposematism, acoustic mimicry, and sonar jamming. My goal is to inspire students of bioacoustics to explore the full richness of the acoustic interactions between predator and prey in behavioral, physiological, and evolutionary contexts similar to those used by visual ecologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya L, Fenton MB (1992) Echolocation behavior of verspertilionid bats (Lasiurus cinereus and Lasiurus borealis) attaching airborne targets including arctiid moths. Can J Zool 70:1292–1298

    Article  Google Scholar 

  • Bailey WF, Haythornthwaite S (1998) Risks of calling by the field cricket Teleogryllus oceanicus: potential predation by Australian long-eared bats. J Zool 244:505–513

    Article  Google Scholar 

  • Barber JR, Conner WE (2006) Tiger moth responses to a simulated bat attack: timing and duty cycle. J Exp Biol 209:2637–2650

    Article  PubMed  CAS  Google Scholar 

  • Barber JR, Conner WE (2007) Acoustic mimicry in a predator-prey interaction. Proc Nat Acad Sc 104:9331–9334

    Article  CAS  Google Scholar 

  • Barber JR, Chadwell BA, Garrett N, Schmidt-French B, Conner WE (2009) Naïve bats discriminate arctiid moth warning sounds but generalize their aposematic meaning. J Exp Biol 212:2141–2148

    Article  PubMed  Google Scholar 

  • Bates HW (1862) Contributions to an insect fauna of the Amazon valley. Lepidoptera: Heliconidae. Trans J Linn Soc 23:495–566

    Article  Google Scholar 

  • Bates DL, Fenton MB (1990) Aposematism or startle? Predators learn their responses to the defenses of prey. Can J Zool 68:49–52

    Article  Google Scholar 

  • Behrens RR (2009) Revisiting Abbott Thayer: non-scientific reflections about camouflage in art, war and zoology. Phil Trans Roy Soc B 364:497–501

    Article  Google Scholar 

  • Belwood JJ (1990) Anti-predator defences and ecology of neotropical forest katydids, especially the Pseudophyllinae. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: biology, systematics, and evolution. Springer, New York

    Google Scholar 

  • Belwood JJ, Morris GK (1987) Bat predation and its influence on calling behavior in neotropical katydids. Science 238:64–67

    Article  PubMed  CAS  Google Scholar 

  • Blest AD (1957) The function of eyespot patterns in Lepidoptera. Behaviour 11:209–255

    Article  Google Scholar 

  • Blest AD (1964) Protective display and sound production in some New World arctiid and ctenuchid moths. Zoologica 49:161–181

    Google Scholar 

  • Cade WH (1980) Alternative male reproductive behaviors. Fla Entomol 63:30–45

    Article  Google Scholar 

  • Conner WE (1999) “Un chant d’appel amoureux”: acoustic communication in moths. J Exp Biol 202:1711–1723

    PubMed  Google Scholar 

  • Corcoran AJ, Barber JR, Conner WE (2009) Tiger moth jams bat sonar. Science 325:325–327

    Article  PubMed  CAS  Google Scholar 

  • Corcoran AJ, Conner WE, Barber JR (2010) Anti-bat tiger moth sounds: form and function. Curr Zool 56:358–369

    Google Scholar 

  • Corcoran AJ, Barber JR, Hristov NI, Conner WE (2011) How do tiger moths jam bat sonar? J Exp Biol 214:2416–2425

    Article  PubMed  Google Scholar 

  • Corcoran AJ, Conner WE (2012) Sonar jamming in the field: effectiveness and behavior of a unique prey defense. J Exp Biol (in review)

    Google Scholar 

  • Cott HB (1940) Adaptive coloration in animals. Methuen, London

    Google Scholar 

  • Curio E (1976) The ethology of predation. Springer, Berlin

    Book  Google Scholar 

  • Darwin E (1794) Zoonomia. Johnson, London

    Google Scholar 

  • Denny MW (2007) Bip, ping, and buzz: making sense of radar and sonar. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Dunning DC, Roeder KD (1965) Moth sounds and insect-catching behavior in bats. Science 147:171–174

    Article  Google Scholar 

  • Dunning DC, Acharya L, Merriman CB, Ferro LD (1992) Interactions between bats and arctiid moths. Can J Biol 70:2218–2223

    Google Scholar 

  • Dunning DC, Krüger M (1995) Aposematic sound in African moths. Biotropica 27:227–231

    Article  Google Scholar 

  • Edmunds M (1974) Defense in animals: a survey of anti-predator defenses. Longman, Harlow

    Google Scholar 

  • Faure PA, Hoy RR (2000) The sounds of silence: cessation of singing and song pausing are ultrasound-induced acoustic startle behaviors in the katydid Neoconocephalus ensiger (Orthoptera: Tettigoniidae). J Comp Physiol A 186:129–142

    Article  PubMed  CAS  Google Scholar 

  • Fullard JH (1998) The sensory coevolution of moths and bats. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, New York

    Google Scholar 

  • Fullard JH, Fenton B (1977) Acoustic and behavioural analyses of the sounds produced by some species of Nearctic Arctiidae (Lepidoptera). Can J Zool 55:1213–1224

    Article  Google Scholar 

  • Fullard JH, Heller B (1990) Functional organization of the arctiid moth tymbal (Insecta, Lepidoptera). J Morph 204:57–65

    Article  Google Scholar 

  • Fullard JH, Fenton MB, Simmons JA (1979) Jamming bat echolocation: the clicks of arctiid moths. Can J Zool 57:647–649

    Article  Google Scholar 

  • Fullard JH, Simmons JA, Saillant PA (1994) Jamming bat echolocation: the dogbane tiger moth Cycnia tenera times its clicks to the terminal attack calls of the big brown bat Eptesicus fuscus. J Exp Biol 194:285–298

    PubMed  CAS  Google Scholar 

  • Ghose K, Horiuchi TK, Krishnaprasad PS, Moss CF (2006) Echolocating bats use a nearly time-optimal strategy to intercept prey. PLOS Biol 4(5) e108 doi:10.1371/journal.pbio.0040108

  • Greenfield MD, Baker M (2003) Bat avoidance in non-aerial insects: the silence response of signaling males in an acoustic moth. Ethology 109:427–442

    Article  Google Scholar 

  • Hoy RR (1994) Ultrasonic startle in flying insects: some neuroethological and comparative aspects. Fortsch Zool 39:227–241

    Google Scholar 

  • Hristov NI, Conner WE (2005a) Sound strategy: acoustic aposematism in the bat-tiger moth arms race. Naturwissenschaften 92:164–169

    Article  CAS  Google Scholar 

  • Hristov NI, Conner WE (2005b) Effectiveness of tiger moth (Lepidoptera, Arctiidae) chemical defenses against an insectivorous bat (Eptesicus fuscus). Chemoecology 15:105–113

    Article  Google Scholar 

  • Masters WM, Raver KA (1996) The degradation of distance discrimination in big brown bats (Eptesicus fuscus) caused by different interference signals. J Comp Physiol A 179:703–713

    Article  PubMed  CAS  Google Scholar 

  • Miller LA (1991) Arctiid moth clicks can degrade the accuracy of range difference discrimination in echolocating big brown bats, Eptesicus fuscus. J Comp Physiol A 168:571–579

    Article  PubMed  CAS  Google Scholar 

  • Møhl B, Surlykke A (1989) Detection of sonar signals in the presence of pulses of masking noise by the echolocating bat, Eptesicus fuscus. J Comp Physiol A 165:119–124

    Article  Google Scholar 

  • Morris GK, Mason AC, Wall P, Belwood JJ (1994) High ultrasonic and tremulation signals in neotropical katydids (Orthoptera: Tettigoniidae). J Zool 233:129–163

    Article  Google Scholar 

  • Moss CF, Zagaeski M (1994) Acoustic information available to bats using frequency-modulated sounds for the perception of insect prey. J Acoust Soc Amer 95:2745–2756

    Article  CAS  Google Scholar 

  • Müller F (1878) Über die Vortheile der Mimicry bei Schmetterlingen. Zool Anz 1:54–55

    Google Scholar 

  • Nakano R, Skals N, Takanashi T, Surlykke A, Koike T, Yoshida K, Maruyama H, Tatsuki S, Ishikawa Y (2008) Moths produce extremely quite ultrasonic courtship songs by rubbing specialize scales. PNAS 105:11812–11817

    Article  PubMed  CAS  Google Scholar 

  • Nakano R, Ishikawa Y, Taksuki S, Skals N, Surlykke A, Takanashi T (2009) Private ultrasonic whispering in moths. Commun Integrat Biol 2:123–126

    Google Scholar 

  • Poulton EB (1890) The colours of animals: their meaning and use: especially considering in the case of insects, 2nd edn. Degan Paul, Trench Trübner & Co., London

    Google Scholar 

  • Przeczek K, Mueller C, Vamosi SM (2008) The evolution of aposematism is accompanied by increased diversification. Integr Zool 3:149–156

    Article  PubMed  Google Scholar 

  • Ratcliffe JM, Fullard JH (2005) The adaptive function of tiger moth clicks against echolocation bats: an experimental and synthetic approach. J Exp Biol 208:4689–4698

    Article  PubMed  Google Scholar 

  • Roeder KD (1967) Nerve cells and insect behavior. Harvard University Press, Cambridge

    Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ruxton GD (2011) Evidence for camouflage involving senses other than vision. In: Stevens M, Merilaita S (eds) Animal camouflage: mechanisms and function. Cambridge University Press, Cambridge, pp 330–350

    Google Scholar 

  • Rydell J (1998) Bat defense in lekking ghost swifts (Hepialus humuli), a moth without ultrasonic hearing. Proc R Soc Lond B 265:1373–1376

    Article  CAS  Google Scholar 

  • Sanderford MV, Conner WE (1990) Courtship sounds of the Polka-dot Wasp Moth: Syntomeida epilais. Naturwiss 77:345–347

    Article  Google Scholar 

  • Simmons JA, Freedman EG, Stevenson SB, Chen L, Wohlgenant TJ (1989) Clutter interference and the integration time of echoes in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 86:1318–1332

    Article  PubMed  CAS  Google Scholar 

  • Spangler H (1984) Silence as a defense against predatory bats in two species of calling insects. Southwest Nat 29:481–488

    Article  Google Scholar 

  • Speed MP, Brockhurst MA, Ruxton GD (2009) The dual benefits of aposematism: predator avoidance and enhanced resource collection. Evolution 64(6):1622–1633

    Article  Google Scholar 

  • Speed MP, Ruxton GD, Blount JD, Stephens PA (2010) Diversification of honest signals in a predator-prey system. Ecol Lett 13:744–753

    Article  PubMed  Google Scholar 

  • Stevens M, Merilaita S (2009) Animal camouflage: current issues and new perspectives. Phil Trans R Soc B 364:423–427

    Article  PubMed  Google Scholar 

  • Stevens M, Merilaita S (2011) Animal camouflage: mechanisms and function. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stevens M, Yule DH, Ruxton GD (2008) Dazzle coloration and prey movement. Proc R Soc B 275:2639–2643

    Article  PubMed  Google Scholar 

  • Steven M, Hardman CJ, Stubbins CL (2008) Conspicuousness, not eye mimicry makes ‘eyespots’ effective anti-predator signals. Behav Ecol 19:525–531

    Article  Google Scholar 

  • Surlykke A, Miller LA (1985) The influence of arctiid moth clicks on bat echolocation; jamming or warning? J Comp Physiol A 156:831–843

    Article  Google Scholar 

  • ter Hofstede HM, Kalko EKV, Fullard JH (2010) Auditory-based defence against gleaning bats in neotropical katydids (Orthoptera: Tettigoniidae). J Comp Physiol A 196:349–358

    Article  Google Scholar 

  • Thayer AH (1896) The law which underlies protective coloration. Auk 13:477–482

    Google Scholar 

  • Thayer GH (1909) Concealing coloration in the animal kingdom: an exposition of the laws of disguise through color and pattern: Being a summary of Abbott H. Thayer’s discoveries. Macmillan, New York

    Book  Google Scholar 

  • Tougaard J, Cassedy JH, Covey E (1998) Arctiid moths and bat echolocation: broad-band clicks interfere with neural responses to auditory stimuli in the nuclei of the lateral lemniscus of the big brown bat. J Comp Physiol A 182:203–215

    Article  PubMed  CAS  Google Scholar 

  • Tougaard J, Miller LA, Simmons JA (2004) The role of arctiid moth clicks in defense against echolocating bats: interference with temporal processing. In: Thomas JA, Moss CF, Vater M (eds) Advances in the study of echolocation in bats and dolphins. University of Chicago Press, Chicago

    Google Scholar 

  • Troest N, Møhl B (1986) The detection of phantom targets in noise by serotine bats; negative evidence for the coherent receiver. J Comp Physiol A 159:559–567

    Article  PubMed  CAS  Google Scholar 

  • Weik MH (1996) Communications standard dictionary. 3rd edn. Chapman & hall, New york

    Google Scholar 

  • Yack JE, Scudder GGE, Fullard JH (1999) Evolution of the metathoracic tympanal ear and its mesothoracic homologue in the Macrolepidoptera (Insecta). Zoomorphology 119:93–103

    Article  Google Scholar 

  • Yager DD, Cook AP, Pearson DL, Spangler HG (2000) A comparative study of ultrasound-triggered behavior in tiger beetles (Cicindelidae). J Zool Lond 251:355–368

    Article  Google Scholar 

  • Zeng J, Xiang N, Jiang L, Jones G, Zheng Y, Liu B, Zhang S (2011) Moth wing scales slightly increase absorbance of bat echolocation calls. PlosOne 6(11):e27190. doi:10.1371/journal.pone.0027190

    Article  CAS  Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438

    Article  Google Scholar 

  • Zuk M, Rotenberry JT, Tinghitella RM (2006) Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol Lett 2:521–525

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank my graduate students, particularly Nickolay Hristov, Jesse Barber, Aaron Corcoran, and Nick Dowdy, for providing much of the bat/moth data that inspired this analysis. I would like to thank Wake Forest University for providing a Z. Smith Reynolds academic leave during which this chapter was written, and the Archbold Biological Station for providing an atmosphere conducive for carrying out the research and writing the manuscript. This material is based upon work supported by the National Science Foundation under Grant No. 0951160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Conner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Conner, W.E. (2014). Adaptive Sounds and Silences: Acoustic Anti-Predator Strategies in Insects. In: Hedwig, B. (eds) Insect Hearing and Acoustic Communication. Animal Signals and Communication, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40462-7_5

Download citation

Publish with us

Policies and ethics