Skip to main content

A Nasty, Brutish, and Short History of Amphibian Bioacoustics

  • Chapter
  • First Online:
A History of Discoveries on Hearing

Abstract

From prehistoric times, humans have certainly been aware of the existence of sounds of frogs and toads. The significance of sounds for mating was noted by Aristotle (Historia Animalium, translated as History of Animals by D’Arcy Wenthworth Thompson Clarendon Press, Oxford, 400 BCE). However, the understanding of the nature of sound and of its transduction through any amphibian auditory system was unknown until the nineteenth century, largely because the small and inconspicuous ears of amphibians were not easily studied before the advent of suitable microscopes and histological procedures. The middle ear of frogs was first described in 1676, but the first detailed anatomical studies of their inner ear appeared only in the second half of the nineteenth century. The development of modern amphibian bioacoustics was facilitated by the development of electronics, recording devices, and computers. For example, the first sound spectrogram of a frog’s call was published in 1946. W. Frank Blair used this equipment and instrumentation to show how differences in the physical properties of calls could promote speciation. Murray Littlejohn conducted experiments proving that call differences alone allowed female frogs to choose conspecific mates. Robert Capranica was the first to electronically synthesize frog calls and to electronically modify (filter) them for use as stimuli in acoustic playback experiments. Capranica also employed behavioral studies to inform the analysis of neural processing and was one of the founders of the field of neuroethology as a powerful research strategy. We review how the pioneering work of these three individuals inspired a legion of modern bioacoustics researchers who have made major contributions to the field.

With apologies to Thomas Hobbes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, the translation of Akkadian cuneiform is not an exact science. In other translations of this passage the fate of Ishtar’s unfortunate gardener is to be transformed into a caterpillar or a dwarf.

References

  • Adler K, Narins PM, Ryan MJ (2013) Obituary Robert R Capranica (1931-2012) and the Science of Anuran Communication. Herpetol Rev 44(4):554–556

    Google Scholar 

  • Adrian ED, Craik KJW, Sturdy RS (1938) The electrical response of the auditory mechanism in cold-blooded vertebrates. Proc R Soc London B 841:435–455

    Google Scholar 

  • Aertsen AMHJ, Vlaming MSMG, Eggermont JJ, Johannesma PIM (1986) Directional hearing in the grassfrog (Rana temporaria L) II Acoustics and modeling of the auditory periphery. Hear Res 21:17–40

    Article  CAS  PubMed  Google Scholar 

  • Albertus Magnus (c 1250) De animalibus, ch 26. Translated by KF Kitchell and IM Resnick (2018) On Animals, Ohio State University Press, Vol 2, p 1745

    Google Scholar 

  • Aldrovandi U (1663) De quadrapedibus digitatis oviparis, book 2. Giambattista Ferroni, Bologna

    Google Scholar 

  • Allen AA, Kellogg PP (1948) Voices of the Night (phonograph record). Cornell Laboratory of Ornithology, Ithaca

    Google Scholar 

  • Arch VS, Grafe TU, Narins PM (2008) Ultrasonic signaling by a Bornean frog. Biol Lett 4:19–22

    Article  PubMed  Google Scholar 

  • Arch VS, Grafe TU, Gridi-Papp M, Narins PM (2009) Pure ultrasonic communication in an endemic Bornean frog. PloS One 4(4):e5413. https://doi.org/10.1371/journal.pone.0005413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aristophanes (405 BCE) Frogs, Translated by R Lattimore (1962) University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  • Aristotle (c 400 BCE) Historia Animalium, translated as History of Animals by D’Arcy Wenthworth Thompson Clarendon Press, Oxford

    Google Scholar 

  • Ashcroft DW, Hallpike CS (1934) On the function of the saccule. J Laryngol 49:450–460

    Article  Google Scholar 

  • Axelrod FS (1960) Prolechthesomena to frog hearing. B.Sc. thesis, Dept. Biol., MIT

    Google Scholar 

  • Bachtin GA, Bibikov NG (1974) Variation of sensitivity to interruption of a sound signal in adaptation of frog auditory-system. Soviet Phys Acoust USSR 19:387–388

    Google Scholar 

  • Bee MA, Gerhardt HC (2001a) Neighbor-stranger discrimination by territorial male bullfrogs (Rana catesbeiana): I. Acoustic basis. Animal Behaviour 62:1129–1140

    Article  Google Scholar 

  • Bee MA, Gerhardt HC (2001b) Habituation as a mechanism of reduced aggression between neighboring territorial male bullfrogs. J Comp Psychol 115:68–82

    Article  CAS  PubMed  Google Scholar 

  • Bibikov NG (1990) Response of frog midbrain neurons to tones amplitude-modulated by pseudorandom noise. Neurophysiology 22:180–186

    Article  Google Scholar 

  • Bibikov NG (2002) Addition of noise enhanced neural synchrony to amplitude-modulated sounds in the frog's midbrain. Hear Res 173:21–28

    Article  CAS  PubMed  Google Scholar 

  • Bibikov NG, Nizamov SV (1996) Temporal coding of low-frequency amplitude modulation in the torus semicircularis of the grass frog. Hear Res 101:23–44

    Google Scholar 

  • Blair WF (1955) Mating call and stage of speciation in the Microhyla olivacea- M. carolinensis complex. Evolution 9:469–480

    Google Scholar 

  • Blair WF (1956) The mating call of hybrid toads (genus Bufo). Texas J Sci 8:350–355

    Google Scholar 

  • Blair WF (1958a) Mating call in the speciation of anuran amphibians. Am Nat 92:27–51

    Article  Google Scholar 

  • Blair WF (1958b) Call structure and species groups in US treefrogs (Hyla). Southwestern Nat 5:129–135

    Article  Google Scholar 

  • Blair WF (1974) Character displacement in frogs. Am Zool 14:1119–1125

    Article  Google Scholar 

  • Blair WF, Littlejohn MJ (1960) Stage of speciation of two allopatric populations of chorus frogs (Pseudacris). Evolution 14:82–87

    Google Scholar 

  • Bogart, JP, Wasserman AO (1972) Diploid-polyploid cryptic species pairs: a possible clue to evolution by polyploidization in anuran amphibians. Cytogenetics 11:7–24

    Google Scholar 

  • Bogert CM (1960) The influence of sound on the behavior of amphibians and reptiles. In: Lanyon WE, Tavolga WN (eds) Animal sounds and communication. AIBS, Washington, DC, pp 137–320

    Google Scholar 

  • Boulenger GA (1897–98) The tailless batrachians of Europe, vol 1-2. The Ray Society, London

    Book  Google Scholar 

  • Brenowitz EA, Rose GJ, Capranica RR (1985) Neural correlates of temperature coupling in the vocal communication system of the gray treefrog (Hyla versicolor). Brain Res 359:364–367

    Article  CAS  PubMed  Google Scholar 

  • Canatella DC, Hillis DM, Chippindale PT, Weigt L, Rand AS, Ryan MJ (1998) Phylogeny of frogs of the Physalaemus pustulosus species group, with an examination of data incongruence. Syst Biol 47:311–335

    Article  Google Scholar 

  • Capranica RR (1965) The evoked vocal response of the bullfrog: a study of communication by sound. MIT Press, Cambridge, MA

    Google Scholar 

  • Capranica RR (1966) Vocal response of the bullfrog to natural and synthetic mating calls. J Acoust Soc Am 40:1131–1139

    Article  Google Scholar 

  • Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, London/New York, pp 701–730

    Chapter  Google Scholar 

  • Christensen-Dalsgaard J (2005) Directional hearing in non-mammalian tetrapods. In: Popper AN, Fay RR (eds) Sound source localization. Springer, New York, pp 67–123

    Chapter  Google Scholar 

  • Christensen-Dalsgaard J (2011) Vertebrate pressure-gradient receivers. Hear Res 273:37–45

    Article  PubMed  Google Scholar 

  • Clack JA (1997) The evolution of tetrapod ears and the fossil record. Brain Behav Evol 50:198–212

    Article  CAS  PubMed  Google Scholar 

  • Cobo-Cuan A, Quiñones PM, Macias-Escriva F, Oghalai JS, Narins PM (2021) Vibrometry of the frog inner ear: a comparative approach using optical coherence tomography. Abstr. 44th ARO Res Mtg.

    Google Scholar 

  • Cocroft RB, Ryan MJ (1995) Patterns of mating call evolution in toads and chorus frogs. Anim Behav 49:283–303

    Article  Google Scholar 

  • Comparetti A (1789) In gymnasio patavino observationes anatomicæ de aure interna comparata. Patavii

    Book  Google Scholar 

  • Cutfield S (2016) Common lexical semantics in Dalabon ethnobiological classification. In: Austin PK, Koch H, Simpson J (eds) Language, land & song: studies in honour of Luise Hercus. EL Publishing, London, pp 209–227

    Google Scholar 

  • Darwin C (1871) The descent of man and selection in relation to sex. John Murray, London

    Book  Google Scholar 

  • Davis MS (1987) Acoustically mediated neighbor recognition in the North American bullfrog, Rana catesbeiana. Behav Ecol Sociobiol 21:185–190

    Article  Google Scholar 

  • Deiters O (1862) Über das innere Gehörorgan der Amphibien. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin 1862, pp 1–310

    Google Scholar 

  • Du Verney JD (1683) Traité de l'organe de l'ouie: Contenant la structure, les usages, et les maladies de toutes les parties de l'oreille. E Michallet, Paris, France, 1683

    Google Scholar 

  • Ehret G, Tautz J, Schmitz B, Narins PM (1990) Hearing through the lungs: lung-eardrum transmission of sound in the frog Eleutherodactylus coqui. Naturwissenschaften 77:192–194

    Article  CAS  PubMed  Google Scholar 

  • Ehret G, Keilwerth E, Kamada T (1994) The lung-eardrum pathway in three treefrog and four dendrobatid frog species: some properties of sound transmission. J Exp Biol 195:329–343

    Article  CAS  PubMed  Google Scholar 

  • Feng AS (1981) Directional response characteristics of single neurons in the torus semicircularis of the leopard frog (Rana pipiens). J Comp Physiol 144:419–428

    Article  Google Scholar 

  • Feng AS, Capranica RR (1976) Sound localization in anurans I. Evidence of binaural interaction in dorsal medullary nucleus of bullfrog (Rana catesbeiana). J Neurophysiol 39:871–881

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Capranica RR (1978) Sound localization in anurans II. Binaural interaction in superior olivary nucleus of the green tree frog (Hyla cinerea). J Neurophysiol 41:43–54

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Narins PM, Capranica RR (1975) Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): their peripheral origins and frequency sensitivities. J Comp Physiol 100:221–229

    Article  Google Scholar 

  • Feng AS, Gerhardt HC, Capranica RR (1976) Sound localization behavior in the green treefrog (Hyla cinerea) and the barking treefrog (Hyla gratiosa). J Comp Physiol 107:241–252

    Article  Google Scholar 

  • Feng AS, Narins PM, Xu C-H (2002) Vocal acrobatics in a Chinese frog Amolops tormotus. Naturwissenschaften 89:352–356

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Narins PM, Xu C-H, Lin W-Y, Yu Z-L, Qiu Q, Xu Z-M, Shen J-X (2006) Ultrasonic communication in frogs. Nature 440:333–336

    Article  CAS  PubMed  Google Scholar 

  • Fouquette MJ (1975) Speciation in chorus frogs I. Reproductive character displacement in the Pseudacris nigrita complex. Syst Zool 24:16–22

    Article  Google Scholar 

  • Frishkopf LS, Goldstein M (1963) Responses to acoustic stimuli from single units in the eighth nerve of the bullfrog. J Acoust Soc Am 35:1219–1228

    Article  Google Scholar 

  • Frishkopf LS, Capranica RR, Goldstein M (1968) Neural coding in the bullfrog’s auditory system A teleological approach. Proc IEEE 56:969–980

    Article  Google Scholar 

  • Gans C (1973) Sound production in the Salientia: mechanisms and evolution of the emitter. Am Zool 15:179–194

    Google Scholar 

  • Gaupp E (1904) A Ecker’s und R Wiedersheim’s Anatomie des Frosches, part 3 F. Vieweg, Braunschweig

    Google Scholar 

  • Gaupp E (1913) Die Reichertsche Theorie. Archiv für Anatomie und Entwicklungsgeschichte (Suppl) 1912:1–416

    Google Scholar 

  • Geoffroy E-L (1755) Premiér Mémoire sur l’ Organe de l’Ouie des Reptiles. Mémoires de Mathématique et de Physique. Présentés a l’Académie Royale de Sciences, par divers Savans, et lûs dans ses Assemblées. Tome 2. Paris

    Google Scholar 

  • Gerhardt HC (1978) Temperature coupling in the vocal communication system of the gray treefrog Hyla versicolor. Science 199:992–994

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt HC (1994) Reproductive character displacement of female mate choice in the grey treefrog Hyla chrysoscelis. Anim Behav 47:959–969

    Article  Google Scholar 

  • Gerhardt HC (2015) Auditory selectivity for acoustic properties of conspecific mate-attracting signals in lower vertebrates and songbirds. Open Access Anim Physiol 2015:1–13

    Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, Chicago

    Google Scholar 

  • Gerhardt HC, Mudry KM (1980) Temperature effects on frequency preferences and mating call frequencies in the green treefrog, Hyla cinerea (Anura: Hylidae). J Comp Physiol A 137:1–6

    Article  Google Scholar 

  • Gerhardt HC, Rheinlaender J (1982) Localization of an elevated sound source by the green tree frog. Science 217:663–664

    Article  Google Scholar 

  • Gerhardt HC, Schwartz JJ (2001) Auditory tuning and frequency preferences in anurans. In: Ryan MJ (ed) Anuran communication. Smithsonian Inst Press, Washington, pp 73–85

    Google Scholar 

  • Gesner C (1586) Historia Animalium, libri 2: De quadripedibus oviparis Johann Wechel, Frankfurt [History of animals, book 2: Four-legged, egg-laying animals]

    Google Scholar 

  • Gilgamesh (Anon, ca. 2100 BCE) Translation: Ferry, D. (1992). Gilgamesh: a new rendering in English verse. (p. 31) New York: Farrar, Straus and Giroux.

    Google Scholar 

  • Girgenrath M, Marsh RL (1997) In vivo performance of trunk muscles in tree frog during calling. J Exp Biol 200:3101–3108

    Article  CAS  PubMed  Google Scholar 

  • Gouk P (2004) English theories of hearing in the seventeenth century. In: Smith MM (ed) Hearing history: a reader. The University of Georgia Press, Athens/London

    Google Scholar 

  • Grinnell AD, Gould E, Fenton MB (2016) A history of the study of echolocation. In: Fenton MB, Grinnell AD, Popper AN, Fay RR (eds) Bat bioacoustics. Springer, New York, pp 1–24

    Google Scholar 

  • Hasse C (1868) Das Gehörorgan der Frösche. W Engelmann, Leipzig

    Book  Google Scholar 

  • Helmholtz H (1850) Vorläufiger Bericht über die Fortpflanzungs-Geschwindigkeit der Nervenreizung Archiv für Anatomie. Physiologie und wissenschaftliche Medicin 1850:71–73

    Google Scholar 

  • Hetherington TE (1992) The effects of body size on the evolution of the amphibian middle ear. In: Webster DB, Popper AN, Fay RR (eds) The evolutionary biology of hearing. Springer, New York, pp 421–438

    Chapter  Google Scholar 

  • Höbel G, Gerhardt HC (2003) Reproductive character displacement in the acoustic communication system of green tree frogs (Hyla cinerea). Evolution 57(4):894–904

    PubMed  Google Scholar 

  • Holmes FL (1993) The Old Martyr of science: the frog in experimental physiology. J Hist Biol 26:311–328

    Article  CAS  PubMed  Google Scholar 

  • Jacobæus O (1676) De Ranis Paris, France (in Latin)

    Google Scholar 

  • Jørgensen MB, Gerhardt HC (1991) Directional hearing in the gray tree frog Hyla versicolor: eardrum vibrations and phonotaxis. J Comp Physiol A 169:341–347

    Article  Google Scholar 

  • Keller MJ, Gerhardt HC (2001) Polyploidy alters advertisement call structure in gray treefrogs. Proc R Soc London 268:341–345

    Article  CAS  Google Scholar 

  • Kingsbury BF, Reed HD (1909) The columella auris in amphibians. J Morphol 20:549–628

    Article  Google Scholar 

  • Koenig W, Dunn HK, Lacy LY (1946) The sound spectrograph. J Acoust Soc Am 18:19–49

    Article  Google Scholar 

  • Köhler J, Jansen M, Rodríguez A, Kok PJR, Toledo LF, Emmrich M, Glaw F, Haddad CFB, Rödel MO, Vences M (2017) The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice. Zootaxa 4251(1):001–124. https://doi.org/10.11646/zootaxa.4251.1.1

    Article  Google Scholar 

  • Koyama H, Lewis ER, Leverenz EL, Baird RA (1982) Acute seismic sensitivity in the bullfrog ear. Brain Res 250:168–172

    Article  CAS  PubMed  Google Scholar 

  • Krogh A (1929) Progress of physiology. Am J Physiol 90:243–251

    Article  Google Scholar 

  • Lee N, Christensen-Dalsgaard J, White LA, Schrode KM, Bee MA (2021) Lung mediated auditory contrast enhancement improves the signal-to-noise ratio for communication in frogs. Curr Biol 31:1–11

    Article  Google Scholar 

  • Lemmon EM (2009) Diversification of conspecific signals in sympatry: geographic overlap drives multidimensional reproductive character displacement in frogs. Evolution 63:1155–1170

    Article  PubMed  Google Scholar 

  • Lettvin JY, Maturana HR (1960) Hearing senses in the frog. Mass Inst TechnolResLab ElectronQuartProgrRept 57:167–168

    Google Scholar 

  • Lettvin JY, Maturana HR, McCullouch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Eng (now IEEE) 47:1940–1951

    Google Scholar 

  • Lewis ER, Baird RA, Leverenz EL, Koyama H (1982a) Inner ear: dye injection reveals peripheral origins of specific sensitivities. Science 215:1641–1643

    Article  CAS  PubMed  Google Scholar 

  • Lewis ER, Leverenz EL, Koyama H (1982b) The tonotopic organization of the bullfrog amphibian papilla, an auditory organ lacking a basilar membrane. J Comp Physiol A 145:437–445

    Article  Google Scholar 

  • Lewis ER, Narins PM, Cortopassi KA, Yamada WM, Poinar EH, Moore SW, Yu X-L (2001) Do male white-lipped frogs use seismic signals for intraspecific communication? Am Zool 41:1185–1199

    Google Scholar 

  • Littlejohn MJ (1965) Premating isolation in the Hyla ewingi complex (Anura: Hylidae). Evolution 19:234–243

    Article  Google Scholar 

  • Littlejohn MJ (1981) Reproductive isolation: a critical review. In: Atchley WR, Woodruff DS (eds) Evolution and speciation essays in honor of MJD White. Cambridge University Press, New York, pp 613–634

    Google Scholar 

  • Littlejohn MJ (1993) Homogamy and speciation: a reappraisal. Oxford Surv Evol Biol 9:135–165

    Google Scholar 

  • Littlejohn MJ (1999) Variation in advertisement calls of anurans across zonal interactions: the evolution and breakdown of homogamy. In: Foster SA, Endler JA (eds) Geographic Variation in Behavior. Oxford University Press, New York, pp 209–233

    Google Scholar 

  • Littlejohn MJ, Loftus-Hills JJ (1968) An experimental evaluation of premating isolation in the Hyla ewingi complex (Anura: Hylidae). Evolution 22:659–663

    CAS  PubMed  Google Scholar 

  • Littlejohn MJ, Main AR (1959) Call structure in two genera of Australian burrowing frogs. Copeia 1959:266–270

    Article  Google Scholar 

  • Littlejohn MJ, Michaud TC (1959) Mating call discrimination by females of Strecker’s chorus frog (Pseudacris streckeri). Texas J Sci 11:86–92

    Google Scholar 

  • Littlejohn MJ, Roberts JD (1975) Acoustic analysis of an intergrade zone between two call races of the Limnodynastes tasmaniensis complex (Anura: Leptodactylidae). Aust J Zool 23:113–122

    Article  Google Scholar 

  • Littlejohn MJ, Watson GF (1973) Mating-call variation across a narrow hybrid zone between Crinia laevis and C. victoriana (Anura: Leptodactylidae). Aust J Zool 21:277–284

    Article  Google Scholar 

  • Loftus-Hills JJ (1973) Comparative aspects of auditory function in Australian anurans. Aust J Zool 21:253–267

    Article  Google Scholar 

  • Loftus-Hills JJ (1974) Analysis of an acoustic pacemaker in Strecker’s chorus frog Pseudacris streckeri (Anura: Hylidae). J Comp Physiol 90:75–87

    Article  Google Scholar 

  • Loftus-Hills JJ, Johnstone BM (1970) Auditory function, communication, and the brain-evoked response in anuran amphibians. J Acoust Soc Am 42:1131–1138

    Article  Google Scholar 

  • Loftus-Hills JJ, Littlejohn MJ (1971a) Pulse-repetition rate as the basis for mating call discrimination by two sympatric species of Hyla. Copeia 1971:154–156

    Article  Google Scholar 

  • Loftus-Hills JJ, Littlejohn MJ (1971b) Mating call sound intensities of anuran amphibians. J Acoust Soc Am 39:1327–1329

    Article  Google Scholar 

  • Loftus-Hills JJ, Littlejohn MJ (1992) Reinforcement and reproductive character displacement in Gastrophryne carolinensis and G. olivacea (Anura: Microhylidae): a reexamination. Evolution 46:896–906

    Google Scholar 

  • Lombard RE, Bolt JR (1979) Evolution of the tetrapod ear: an analysis and reinterpretation. Biol J Linn Soc 11:19–76

    Article  Google Scholar 

  • Lopez PT, Narins PM (1991) Mate choice in the neotropical frog Eleutherodactylus coqui. Anim Behav 41:757–772

    Article  Google Scholar 

  • Maier W, Ruf I (2016) The anterior process of the malleus in Cetartiodactyla. J Anat 228:313–323

    Article  PubMed  Google Scholar 

  • Marsh RL (1999) Contractile properties of muscles used in sound production and locomotion in two species of gray treefrog. J Exp Biol 202:3215–3223

    Article  CAS  PubMed  Google Scholar 

  • Martin WF (1971) Mechanics of sound production in the genus Bufo: passive elements. J Exp Zool 176:273–294

    Article  CAS  PubMed  Google Scholar 

  • Martin WF (1972) Evolution of vocalizations in the genus Bufo. In: Blair WF (ed) Evolution in the Genus Bufo. University of Texas Press, Austin, pp 279–308

    Google Scholar 

  • Martin WF, Gans C (1972) Muscular control of the vocal tract during release signaling in the toad Bufo valliceps. J Morphol 137:1–18

    Article  CAS  PubMed  Google Scholar 

  • Martof BS, Thompson EF Jr (1958) Reproductive behavior of the chorus frog Pseudacris nigrita. Behaviour 13:243–257

    Article  Google Scholar 

  • Mason MJ, Narins PM (2002) Vibrometric studies of the middle ear of the bullfrog (Rana catesbeiana) II: the operculum. J Exp Biol 205:3167–3176

    Article  PubMed  Google Scholar 

  • Meenderink SWF, Kits M, Narins PM (2010) Frequency matching of vocalizations to inner-ear sensitivity along an altitudinal gradient in the coqui frog. Biol Lett 6:278–281

    Article  PubMed  Google Scholar 

  • Moreno-Gómez FN, Bartheld J, Silva-Escobar AA, Briones R, Márquez R, Penna M (2019) Evaluating acoustic indices in the Valdivian rainforest, a biodiversity hotspot in South America. Ecol Indic 103:1–8

    Article  Google Scholar 

  • Mudry KM, Capranica RR (1987) Correlation between auditory thalamic area evoked responses and species-specific call characteristics II. Hyla cinerea (Anura: Hylidae). J Comp Physiol A 161:407–416

    Article  CAS  PubMed  Google Scholar 

  • Müller J (1835) Handbuch der Physiologie des Menschen für Vorlesungen, Bd 1, 2nd edn. Hölscher, Bonn

    Book  Google Scholar 

  • Narins PM (2016) ICE on the road to auditory sensitivity reduction and sound localization in the frog. Biol Cybern 110:263–270

    Article  PubMed  Google Scholar 

  • Narins PM, Capranica RR (1976) Sexual differences in the auditory system of the treefrog, Eleutherodactylus coqui. Science 192:378–380

    Article  CAS  PubMed  Google Scholar 

  • Narins PM, Capranica RR (1978) Communicative significance of the two-note call of the treefrog Eleutherodactylus coqui. J Comp Physiol 127:1–9

    Article  Google Scholar 

  • Narins PM, Lewis ER (1984) The vertebrate ear as an exquisite seismic sensor. J Acoust Soc Am 76:1384–1387

    Article  CAS  PubMed  Google Scholar 

  • Narins PM, Smith SL (1986) Clinal variation in anuran advertisement calls: basis for acoustic isolation? Behav Ecol Sociobiol 19:135–141

    Article  Google Scholar 

  • Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci 85:1508–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narins PM, Feng AS, Schnitzler H-U, Denzinger A, Suthers RA, Lin W, Xu C-H (2004) Old World frog and bird vocalizations contain prominent ultrasonic harmonics. J Acoust Soc Am 115:910–913

    Article  PubMed  Google Scholar 

  • Narins PM, Feng AS, Fay RR, Popper AN (2007) Hearing and sound communication in amphibians. Springer, New York

    Google Scholar 

  • Passmore NI, Capranica RR, Telford SR, Bishop PJ (1984) Phonotaxis in the painted reed frog (Hyperolius marmoratus): the localization of elevated sound sources. J Comp Physiol A 154:189–197

    Article  Google Scholar 

  • Phelps SM, Ryan MJ (1998) Neural networks predict response biases in female túngara frogs. Proc R Soc London Ser B 265:279–285

    Article  CAS  Google Scholar 

  • Pliny the Elder [Gajus Plinius secundus] (1855) Natural history, translation J Bostock. Taylor and Francis, Red Lion Court, Fleet Street

    Google Scholar 

  • Rand AS (2001) A history of frog call studies 405 B C to 1980. In: Ryan MJ (ed) Anuran communication. Smithsonian Inst Press, Washington, pp 8–19

    Google Scholar 

  • Reichert C (1837) Über die Visceralbogen der Wirbelthiere im Allgemeinen und deren Metamorphosen bei den Vögeln und Säugethieren. Archiv Anat Physiol Wiss Med 1837:120–222

    Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Fische und Amphibien. In: Das Gehörorgan der Wirbelthiere, vol 1. Samson & Wallin, Stockholm

    Google Scholar 

  • Reyes Campos NB (1971) Observaciones sobre la conducta del coqui, Eleutherodactylus coqui. Caribbean J Sci 11:209

    Google Scholar 

  • Rheinlaender J, Gerhardt HC, Yager D, Capranica RR (1979) Accuracy of phonotaxis by the green treefrog (Hyla cinerea). J Comp Physiol 133:247–255

    Article  Google Scholar 

  • Rose GJ, Capranica RR (1984) Processing of amplitude modulated sounds by the auditory midbrain of two species of toads: matched temporal filters. J Comp Physiol A 154:211–219

    Article  Google Scholar 

  • Rose GJ, Brenowitz EA, Capranica RR (1985) Species specificity and temperature dependency of temporal processing by the auditory midbrain of two species of treefrog. J Comp Physiol A 157:763–769

    Article  CAS  PubMed  Google Scholar 

  • Ryan MJ (1985) The Túngara frog: a study in sexual selection and communication. University of Chicago Press, Chicago

    Google Scholar 

  • Ryan MJ (1990) Sensory systems, sexual selection, and sensory exploitation. Oxford Surv Evol Biol 7:157–195

    Google Scholar 

  • Ryan MJ, Rand AS (1990) The sensory basis of sexual selection for complex calls in the túngara frog, Physalaemus pustulosus (sexual selection for sensory exploitation). Evolution 44:370–383

    Google Scholar 

  • Ryan MJ, Perrill SA, Wilczynski W (1992) Auditory tuning and call frequency predict population based mating preferences in the cricket frog, Acris crepitans. Am Nat 139:1370–1383

    Article  Google Scholar 

  • Scarpa A (1789) Disquisitiones anatomicae de auditu et olfactu. Pietro Galeati, Ticino

    Google Scholar 

  • Schmidt RS (1973) Central mechanisms of frog calling. Am Zool 13:1169–1177

    Article  Google Scholar 

  • Schneider H (1988) Peripheral and central mechanisms of vocalization. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 537–558

    Google Scholar 

  • Shen J-X, Xu Z-M, Feng A, Narins PM (2011) Large odorous frogs (Odorrana graminea) produce ultrasonic calls. J Comp Physiol A 197:1027–1030

    Article  Google Scholar 

  • Simmons AM, Ketten DR (2020) How a frog hears. Acoustics Today 16 (issue 4):67–74

    Article  Google Scholar 

  • Suthers RA, Narins PM, Lin W, Schnitzler H-U, Denzinger A, Xu C-H, Feng AS (2006) Voices of the dead: complex nonlinear vocal signals from the larynx of an ultrasonic frog. J Exp Biol 209:4984–4993

    Article  PubMed  Google Scholar 

  • Taigen TL, Wells KD (1985) Energetics of vocalization by an anuran amphibian (Hyla versicolor). J Comp Physiol B 155:163–170

    Article  Google Scholar 

  • Tait J, McNally WJ (1934) Some features of the action of the utricular maculæ (and of the associated action of the semicircular canals) of the frog. Philos Trans R Soc London B 224:241–286

    Article  Google Scholar 

  • Tárano Z, Ryan MJ (2002) No pre-existing biases for heterospecific call traits in the frog Physalaemus enesefae. Anim Behav 64:599–607

    Article  Google Scholar 

  • van Hemmen JL, Christensen-Dalsgaard J, Carr CE, Narins PM (2016) Animals and ICE: meaning origin and diversity. Biol Cybern 110:237–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Welch AM, Semlitsch RD, Gerhardt HC (1998) Call duration as an indicator of genetic quality in male gray treefrogs. Science 280:1928–1930

    Article  CAS  PubMed  Google Scholar 

  • Wells KD (1977) The social behaviour of anuran amphibians. Anim Behav 25:666–693

    Article  Google Scholar 

  • Wells KD (2007) The ecology and behavior of amphibians. University of Chicago Press, Chicago/London

    Book  Google Scholar 

  • Wells KD, Schwartz JJ (1984) Vocal communication in a neotropical treefrog, Hyla ebraccata: advertisement calls. Anim Behav 32:128–145

    Article  Google Scholar 

  • Wells KD, Taigen TL (1986) The effect of social interactions on calling energetics in the gray treefrog (Hyla versicolor). Behav Ecol Sociobiol 19:9–18

    Article  Google Scholar 

  • Wilczynski W, Resler C, Capranica RR (1987) Tympanic and extratympanic sound transmission in the leopard frog. J Comp Physiol 161:659–669

    Article  CAS  Google Scholar 

  • Wilczynski W, Rand AS, Ryan MJ (2001) Evolution of calls and auditory tuning in the Physalaemus pustulosus species group. Brain Behav Evol 58:137–151

    Article  CAS  PubMed  Google Scholar 

  • Windischmann CJ (1831) De penitiori Auris in Amphibiis structura Dissertatio inauguralis anatomica. Leopold Voss, Leipzig

    Google Scholar 

  • Yerkes RM (1905) The sense of hearing in frogs. J Compar Neurol Psychol 15:279–304

    Article  Google Scholar 

  • Yu X-L, Lewis ER, Feld D (1991) Seismic and auditory tuning curves from bullfrog saccular and amphibian papillar axons. J Comp Physiol 169:241–248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ariadna Cobo-Cuan for help with formatting Figs. 4.11 and 4.13. We thank Iris Adam for help with Figs. 4.3b and 4.5, and Karin Dreyer Jørgensen for correcting the translation of Jacobæus’ Latin text.

Compliance with Ethics Requirements

Peter Narins declares that he has no conflict of interest. Jakob Christensen-Dalsgaard declares that he has no conflict of interest. Carl Gerhardt declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Narins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narins, P.M., Gerhardt, H.C., Christensen-Dalsgaard, J. (2024). A Nasty, Brutish, and Short History of Amphibian Bioacoustics. In: Ketten, D.R., Coffin, A.B., Fay, R.R., Popper, A.N. (eds) A History of Discoveries on Hearing. Springer Handbook of Auditory Research, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-031-41320-9_4

Download citation

Publish with us

Policies and ethics