Skip to main content

Vertebrate Vocal Production: An Introductory Overview

  • Chapter
  • First Online:
Vertebrate Sound Production and Acoustic Communication

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 53))

Abstract

Vocal production is a central topic in biological and evolutionary approaches to animal communication, linking physics, physiology, and anatomy, on the one hand, with perception, neural processing, and evolution of communication signals, on the other. Understanding of vertebrate vocal production has increased greatly in the last two decades, mainly by building on an understanding of the physics and physiology of human vocal production initially developed by speech scientists. There is an increasing feeling among specialists in bioacoustics that this discipline has entered a new scientific era where the broad theoretical and physical underpinnings of vocal production, in a wide variety of vertebrate species, are solid and well-understood. Unfortunately, the origins of this understanding in speech science pose a problem for many nonspecialists, as the founding texts are highly technical and mathematical treatments written by and for engineers. This chapter, like the volume of which it is part, aims to provide a nontechnical introduction and overview of vertebrate vocal production written by and for biologists interested in vocal communication. The chapter provides a historical overview of the origins of two critical bodies of theory, the source-filter theory of vocal production and the myo-elastic aerodynamic theory of the voice source, and details how these theories were gradually applied to nonhuman animal vocalizations. The chapter ends with a summary of the rest of the chapters in the volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alipour, F., & Jaiswal, S. (2009). Glottal airflow resistance in excised pig, sheep, and cow larynges. Journal of Voice, 23(1), 40–50.

    Article  PubMed  Google Scholar 

  • Amundin, M. (1991). Helium effects on the click frequency spectrum of the harbor porpoise, Phocoena phocoena. Journal of the Acoustical Society of America, 90, 53–59.

    Article  Google Scholar 

  • Andrew, R. J. (1976). Use of formants in the grunts of baboons and other nonhuman primates. Annals of the New York Academy of Sciences, 280, 673–693.

    Article  CAS  PubMed  Google Scholar 

  • Au, W. W. L., & Suthers, R. A. (2014). Production of biosonar signals: Structure and form. In A. Surlykke, P. E. Nachtigall, R. R. Fay, & A. N. Popper (Eds.), Biosonar (pp. 61–105). New York: Springer.

    Google Scholar 

  • Ballintijn, M., & ten Cate, C. (1998). Sound production in collared doves: A test of the “whistle” hypothesis. Journal of Experimental Biology, 201, 1637–1649.

    PubMed  Google Scholar 

  • Beil, R. G. (1962). Frequency analysis of vowels produced in a helium-rich atmosphere. Journal of the Acoustical Society of America, 34, 347–349.

    Article  Google Scholar 

  • Berry, D. A., Herzel, H., Titze, I. R., & Story, B. (1996). Bifurcations in excised larynx experiments. Journal of Voice, 10, 129–138.

    Article  CAS  PubMed  Google Scholar 

  • Blair, W. F. (1963). Acoustic behaviour of Amphibia. In R. Busnel (Ed.), Acoustic behavior of animals (pp. 694–708, 803–804). Amsterdam: Elsevier.

    Google Scholar 

  • Blumstein, D. T., Davitian, R., & Kaye, P. D. (2010). Do film soundtracks contain nonlinear analogues to influence emotion? Biology Letters, 6(6), 751–754.

    Google Scholar 

  • Bostwick, K. S., & Prum, R. O. (2003). High-speed video analysis of wing-snapping in two manakin clades (Pipridae: Aves). Journal of Experimental Biology, 206, 3693–3706.

    Google Scholar 

  • Brauer, R. W., Jennings, R. A., & Poulter, T. C. (1966). The effect of substituting helium and oxygen for air on the vocalization of the California sea lion, Zalophus californianus. Paper presented at the Third Annual Conference on Biological Sonar and Diving Mammals, Fremont, CA.

    Google Scholar 

  • Brown, C. H., Alipour, F., Berry, D. A., & Montequin, D. (2003). Laryngeal biomechanics and vocal communication in the squirrel monkey (Saimiri boliviensis). Journal of the Acoustical Society of America, 113, 2114–2126.

    Article  PubMed  Google Scholar 

  • Busnel, R.-G., & Fish, J. F. (Eds.). (1980). Animal sonar systems. New York: Plenum Press.

    Google Scholar 

  • Caldwell, M. C., & Caldwell, D. K. (1972). Vocal mimicry in the whistle mode by an Atlantic bottlenosed dolphin. Cetology, 9, 1–8.

    Google Scholar 

  • Capranica, R. R. (1968). Vocal repertoire of the bullfrog (Rana catesbeiana). Behavior, 31, 302–325.

    Google Scholar 

  • Carterette, E. C., Shipley, C., & Buchwald, J. (1979). Linear prediction theory of vocalization in cat and kitten. In B. Lindblom & S. Ohman (Eds.), Frontiers in speech communication research (pp. 245–257). New York: Academic Press.

    Google Scholar 

  • Carterette, E. C., Shipley, C., & Buchwald, J. S. (1984). On synthesizing animal speech: The case of the cat. In G. Bristow (Ed.), Electronic speech synthesis: techniques, technology, and applications (pp. 292–302). New York: McGraw-Hill.

    Google Scholar 

  • Catchpole, C. K., & Slater, P. J. B. (2008). Bird song: Themes and variations (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Charlton, B. D., Ellis, W. A. H., Brumm, J., Nilsson, K., & Fitch, W. T. (2012). Female koalas prefer bellows in which lower formants indicate larger males. Animal Behaviour, 84(6), 1565–1571.

    Article  Google Scholar 

  • Charlton, B. D., Ellis, W. A. H., McKinnon, A. J., Cowin, G. J., Brumm, J., Nilsson, K., et al. (2011). Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: Honesty in an exaggerated trait. Journal of Experimental Biology, 214, 3414–3422.

    Article  PubMed  Google Scholar 

  • Charlton, B. D., Reby, D., & McComb, K. (2007). Female perception of size-related formants in red deer, Cervus elaphus. Animal Behaviour, 74, 707–714.

    Article  Google Scholar 

  • Chiba, T., & Kajiyama, M. (1941). The vowel: Its nature and structure. Tokyo: Tokyo-Kaiseikan.

    Google Scholar 

  • Cooper, F. S., Delattre, P. C., Liberman, A. M., Borst, J. M., & Gerstman, L. J. (1952). Some experiments on the perception of synthetic speech sounds. Journal of the Acoustical Society of America, 24, 597–606.

    Article  Google Scholar 

  • Cox, K. A., Alipour, F., & Titze, I. R. (1999). Geometric structure of the human and canine cricothyroid and thyroarytenoid muscles for biomechanical applications. Annals of Otology, Rhinology and Laryngology, 108, 1151–1158.

    Article  CAS  Google Scholar 

  • Cranford, T. W., Amundin, M., & Norris, K. S. (1996). Functional morphology and homology in the odontocete nasal complex: Implications for sound generation. Journal of Morphology, 228, 223–285.

    Article  CAS  PubMed  Google Scholar 

  • Dormer, K. J. (1979). Mechanisms of sound production and air recycling in delphinids: Cineradiographic evidence. Journal of the Acoustical Society of America, 65, 229–239.

    Article  Google Scholar 

  • Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22, 567–631.

    Article  CAS  PubMed  Google Scholar 

  • Dudley, H., & Tarnoczy, T. H. (1950). The speaking machine of Wolfgang von Kempelen. Journal of the Acoustical Society of America, 22(2), 151–166.

    Article  Google Scholar 

  • Düring, D. N., Ziegler, A., Thompson, C. K., Ziegler, A., Faber, C., Müller, J. et al. (2013). The songbird syrinx morphome: A three-dimensional, high-resolution, interactive morphological map of the zebra finch vocal organ. BMC Biology, 11(1). doi:10.1186/1741-7007-11-1. Retrieved from http://www.biomedcentral.com/1741-7007/11/1.

    Google Scholar 

  • Elemans, C. P. H. (2014). The singer and the song: The neuromechanics of avian sound production. Current Opinion in Neurobiology, 28, 172–178.

    Article  CAS  PubMed  Google Scholar 

  • Elemans, C. P. H., Spierts, I. L. Y., Müller, U. K., van Leeuwen, J. L., & Goller, F. (2004). Bird song: Superfast muscles control dove’s trill. Nature, 431, 146.

    Article  CAS  PubMed  Google Scholar 

  • Evans, W. E. (1973). Echolocation by marine delphinids and one species of fresh-water dolphin. Journal of the Acoustical Society of America, 54, 191–199.

    Article  Google Scholar 

  • Ey, E., Pfefferle, D., & Fischer, J. (2007). Do age- and sex-related variations reliably reflect body size in non-human primate vocalizations? A review. Primates, 48(4), 253–267.

    Article  CAS  PubMed  Google Scholar 

  • Fant, G. (1960). Acoustic theory of speech production. The Hague, Netherlands: Mouton & Co.

    Google Scholar 

  • Fant, G. (2001). T Chiba and M Kajiyama: Pioneers in speech acoustics. Quarterly Progress and Status Report, 42(1), 59–60.

    Google Scholar 

  • Fee, M. S., Shraiman, B., Pesaran, B., & Mitra, P. P. (1998). The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature, 395, 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Feng, A. S., Riede, T., Arch, V. S., Yu, Z., Xu, Z.-M., Yu, X.-J., et al. (2009). Diversity of the vocal signals of concave-eared torrent frogs (Odorrana tormota): Evidence for individual signatures. Ethology, 115, 1015–1028.

    Article  Google Scholar 

  • Fitch, W. T. (1997). Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. Journal of the Acoustical Society of America, 102(2), 1213–1222.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, W. T. (2000). Skull dimensions in relation to body size in nonhuman mammals: The causal bases for acoustic allometry. Zoology, 103(1–2), 40–58.

    Google Scholar 

  • Fitch, W. T., & Fritz, J. B. (2006). Rhesus macaques spontaneously perceive formants in conspecific vocalizations. Journal of the Acoustical Society of America, 120(4), 2132–2141.

    Article  PubMed  Google Scholar 

  • Fitch, W. T., Neubauer, J., & Herzel, H. (2002). Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour, 63, 407–418.

    Article  Google Scholar 

  • Fitch, W. T., & Reby, D. (2001). The descended larynx is not uniquely human. Proceedings of the Royal Society of London B: Biological Sciences, 268(1477), 1669–1675.

    Article  CAS  Google Scholar 

  • Frazer Sissom, D. E., Rice, D. A., & Peters, G. (1991). How cats purr. Journal of Zoology (London), 223, 67–78.

    Article  Google Scholar 

  • Frey, R., Gebler, A., Fritsch, G., Nygrén, K., & Weissengruber, G. E. (2007). Nordic rattle: The hoarse vocalization and the inflatable laryngeal air sac of reindeer (Rangifer tarandus). Journal of Anatomy, 210, 131–159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gans, C. (1973). Sound production in the Salientia: Mechanism and evolution of the emitter. American Zoologist, 13, 1179–1194.

    Article  Google Scholar 

  • Gardner, T., Cecchi, G., Magnasco, M., Laje, R., & Mindlin, G. B. (2001). Simple motor gestures for birdsongs. Physical Review Letters, 87, 28101–28104.

    Article  Google Scholar 

  • Gaunt, A. S., & Gaunt, S. L. L. (1977). Mechanics of the syrinx in Gallus gallus: II Electromyographic studies of ad libitum vocalizations. Journal of Morphology, 152, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Gaunt, A. S., & Wells, M. K. (1973). Models of syringeal mechanisms. American Zoologist, 13, 1227–1247.

    Article  Google Scholar 

  • Ghazanfar, A. A., Turesson, H. K., Maier, J. X., van Dinther, R., Patterson, R. D., & Logothetis, N. K. (2007). Vocal-tract resonances as indexical cues in rhesus monkeys. Current Biology, 17(5), 425–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goller, F., & Larsen, O. N. (1997a). A new mechanism of sound generation in songbirds. Proceedings of the National Academy of Sciences of the U S A, 94(26), 14787.

    Article  CAS  Google Scholar 

  • Goller, F., & Larsen, O. N. (1997b). In situ biomechanics of the syrinx and sound generation in pigeons. Journal of Experimental Biology, 200(16), 2165–2176.

    CAS  PubMed  Google Scholar 

  • Goller, F., & Suthers, R. A. (1996). Role of syringeal muscles in gating airflow and sound production in singing brown thrashers. Journal of Neurophysiology, 75(2), 867–876.

    CAS  PubMed  Google Scholar 

  • Greenewalt, C. H. (1968). Bird song: Acoustics and physiology. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Gridi-Papp, M. (2008). The structure of vocal sounds produced with the mouth closed or with the mouth open in treefrogs. Journal of the Acoustical Society of America, 123, 2895–2902.

    Article  PubMed  Google Scholar 

  • Gridi-Papp, M., Rand, A. S., & Ryan, M. J. (2006). Complex call production in the túngara frog. Nature, 441, 38.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, D. R. (1958). Listening in the dark. New Haven, CT: Yale University Press.

    Google Scholar 

  • Griffin, D. R., & Galambos, R. (1941). The sensory basis of obstacle avoidance by flying bats. Journal of Experimental Zoology, 86, 481–506.

    Article  Google Scholar 

  • Harnad, S. R. (1987). Categorical perception: The groundwork of cognition. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Hartley, D. J., & Suthers, R. A. (1988). The acoustics of the vocal tract in the horseshoe bat, Rhinolophus hildebrandti. Journal of the Acoustical Society of America, 84, 1201–1213.

    Article  Google Scholar 

  • Hartley, R. S., & Suthers, R. A. (1989). Airflow and pressure during canary song: Direct evidence for mini-breaths. Journal of Comparative Physiology, A: Sensory, Neural, and Behavioral Physiology, 165, 15–26.

    Article  Google Scholar 

  • Herbst, C. T., Stoeger, A. S., Frey, R., Lohscheller, J., Titze, I. R., Gumpenberger, M., et al. (2012). How low can you go? Physical production mechanism of elephant infrasonic vocalizations. Science, 337(6094), 595–599.

    Article  CAS  PubMed  Google Scholar 

  • Hersch, G. L. (1966). Bird voices and resonant tuning in helium air mixtures. PhD dissertation, University of California, Berkeley.

    Google Scholar 

  • Herzel, H. (1993). Bifurcations and chaos in voice signals. Applied Mechanics Reviews, 46, 399–413.

    Article  Google Scholar 

  • Herzel, H., Steinecke, I., Mende, W., & Wermke, K. (1991). Chaos and bifurcations during voiced speech. In E. Mosekilde & L. Mosekilde (Eds.), Complexity, chaos and biological evolution (pp. 41–50). New York: Plenum Press.

    Chapter  Google Scholar 

  • Herzel, H., & Wendler, J. (1991). Evidence of chaos in phonatory samples. Proceedings Eurospeech Genova, 1991, 263–266.

    Google Scholar 

  • Husson, R. (1955). Données expérimentales nouvelles concernant la physiologie de la phonation. Exposés Annuelles d’Otorhinolaryngolie, 1955, 287.

    Google Scholar 

  • Kelley, D. B., & Tobias, M. L. (1999). Vocal communication in Xenopus laevis. In M. D. Hauser & M. Konishi (Eds.), The design of animal communication (pp. 9–35). Cambridge, MA: MIT Press/Bradford.

    Google Scholar 

  • Kim, M. J., Hunter, E. J., & Titze, I. R. (2004). Comparison of human, canine and ovine laryngeal dimensions. Annals of Otology, Rhinology and Laryngology, 113, 60–68.

    Article  Google Scholar 

  • Kime, N. M., Ryan, M. J., & Wilson, P. S. (2013). A bond graph approach to modeling the anuran vocal production system. Journal of the Acoustical Society of America, 133(6), 4133–4144.

    Article  PubMed  Google Scholar 

  • Koda, H., Nishimura, T., Tokuda, I. T., Oyakawa, C., Nihonmatsu, T., & Masataka, N. (2012). Soprano singing in gibbons. American Journal of Physical Anthropology, 149(3), 347–355.

    Google Scholar 

  • Labra, A., Silva, G., Norambuena, F., Velásquez, N., & Penna, M. (2013). Acoustic features of the weeping lizard’s distress call. Copeia, 2013(2), 206–212.

    Google Scholar 

  • Larsen, O. N., & Goller, F. (2002). Direct observations of syringeal muscle function in songbirds and a parrot. Journal of Experimental Biology, 203, 25–35.

    Google Scholar 

  • Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 53, 358–368.

    Article  Google Scholar 

  • Lieberman, P. (1968). Primate vocalization and human linguistic ability. Journal of the Acoustical Society of America, 44(6), 1574–1584.

    Article  CAS  PubMed  Google Scholar 

  • Lieberman, P. H., Klatt, D. H., & Wilson, W. H. (1969). Vocal tract limitations on the vowel repertoires of rhesus monkeys and other nonhuman primates. Science, 164, 1185–1187.

    Google Scholar 

  • Linggard, R. (1985). Electronic synthesis of speech. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Lockner, F. R., & Youngren, O. M. (1976). Functional syringeal anatomy in the mallard. I. In situ electromyograms during ESB elicited calling. Auk, 93, 324–342.

    Google Scholar 

  • M’Donnell, R. (1860). Observations on the habits and anatomy of the Lepidosiren annexes. Natural History Review, 7, 93–112.

    Google Scholar 

  • Madsen, P. T., Carder, D. A., Au, W. W. L., Nachtigall, P. E., Møhl, B., & Ridgway, S. H. (2003). Sound production in neonate sperm whales. Journal of the Acoustical Society of America, 113(6), 2988–2991.

    Google Scholar 

  • Madsen, P. T., Jensen, F. H., Carder, D., & Ridgway, S. H. (2012). Dolphin whistles: A functional misnomer revealed by heliox breathing. Biology Letters, 8, 211–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markel, J. D., & Gray, A. H. (1976). Linear prediction of speech. New York: Springer.

    Book  Google Scholar 

  • Marler, P., & Slabbekoorn, H. (2004). Nature’s music: The science of birdsong. New York: Academic Press.

    Google Scholar 

  • Martin, W. F. (1971). Mechanics of sound production in toads of the genus Bufo: Passive elements. Journal of Experimental Zoology, 176, 273–294.

    Google Scholar 

  • Martin, W. F. (1972). Evolution of vocalizations in the genus Bufo. In W. F. Blair (Ed.), Evolution in the genus Bufo (pp. 279–309). Austin, TX: University of Texas Press.

    Google Scholar 

  • Martin, W. F., & Gans, C. (1972). Muscular control of the vocal tract during release signaling in the toad Bufo valliceps. Journal of Morphology, 137, 1–28.

    Google Scholar 

  • Mason, M., & Narins, P. M. (2002). Vibrometric studies of the middle ear of the bullfrog (Rana catesbeiana) I: The extrastapes. Journal of Experimental Biology, 205, 3153–3165.

    Google Scholar 

  • McComb, K., Reby, D., Baker, L., Moss, C., & Sayialel, S. (2003). Long-distance communication of social identity in African elephants. Animal Behaviour, 65, 317–329.

    Google Scholar 

  • McElligott, A. G., Birrer, M., & Vannoni, E. (2006). Retraction of the mobile descended larynx during groaning enables fallow bucks (Dama dama) to lower their formant frequencies. Journal of Zoology, 270, 340–345.

    Google Scholar 

  • Mende, W., Herzel, H., & Wermke, K. (1990). Bifurcations and chaos in newborn infant cries. Physics Letters A, 145(8–9), 418–424.

    Article  Google Scholar 

  • Mergell, P., Fitch, W. T., & Herzel, H. (1999). Modeling the role of non-human vocal membranes in phonation. Journal of the Acoustical Society of America, 105, 2020–2028.

    Article  CAS  PubMed  Google Scholar 

  • Mindlin, G. B., & Laje, R. (2005). The physics of birdsong. New York: Springer.

    Google Scholar 

  • Novick, A., & Griffin, D. R. (1961). Laryngeal mechanisms in bats for the production of orientation sounds. Journal of Experimental Zoology, 148(2), 125–145.

    Google Scholar 

  • Nowicki, S. (1987). Vocal tract resonances in oscine bird sound production: Evidence from birdsongs in a helium atmosphere. Nature, 325, 53–55.

    Google Scholar 

  • Owren, M. J., & Bernacki, R. H. (1998). Applying linear predictive coding (LPC) to frequency-spectrum analysis of animal acoustic signals. In S. L. Hopp, M. J. Owren, & C. S. Evans (Eds.), Animal acoustic communication: Sound analysis and research methods (pp. 130–162). New York: Springer.

    Google Scholar 

  • Owren, M. J., & Rendall, D. (2003). Salience of caller identity in rhesus monkey (Macaca mulatta) coos and screams: Perceptual experiments with human (Homo sapiens) listeners. Journal of Comparative Psychology, 117, 380–390.

    Google Scholar 

  • Paget, R. A. S. (1930). Human speech. London: Kegan Paul, Trench, Trubner and Co.

    Google Scholar 

  • Paulsen, K. (1967). Das Prinzip der Stimmbildung in der Wirbeltierreihe und beim Menschen. Frankfurt, Germany: Akademische Verlagsgesellschaft.

    Google Scholar 

  • Pye, J. D. (1967). Synthesizing the waveforms of bat’s pulses. In R.-G. Busnel (Ed.), Animal sonar systems (pp. 69–83). Jouy-en-Josas, France: Laboratoire de Physiologie Acoustique.

    Google Scholar 

  • Rand, A. S., & Dudley, R. (1993). Frogs in helium: The anuran vocal sac is not a cavity resonator. Physiological Zoology, 66(5), 793–806.

    Google Scholar 

  • Reby, D., & McComb, K. (2003). Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags. Animal Behaviour, 65, 519–530.

    Google Scholar 

  • Remmers, J. E., & Gautier, H. (1972). Neural and mechanical mechanisms of feline purring. Respiration Physiology, 16(3), 351–361.

    Article  CAS  PubMed  Google Scholar 

  • Rendall, D. (2003). Acoustic correlates of caller identity and affect intensity in the vowel-like grunt vocalizations of baboons. Journal of the Acoustical Society of America, 113, 3390–3402.

    Article  PubMed  Google Scholar 

  • Rendall, D., Owren, M. J., & Rodman, P. S. (1998). The role of vocal tract filtering in identity cueing in rhesus monkey (Macaca mulatta) vocalizations. Journal of the Acoustical Society of America, 103(1), 602–614.

    Article  CAS  PubMed  Google Scholar 

  • Richman, B. (1976). Some vocal distinctive features used by gelada monkeys. Journal of the Acoustical Society of America, 60, 718–724.

    Article  CAS  PubMed  Google Scholar 

  • Riede, T., Beckers, G. J. L., Blevins, W., & Suthers, R. A. (2004). Inflation of the esophagus and vocal tract filtering in ring doves. Journal of Experimental Biology, 207, 4025–4036.

    Article  PubMed  Google Scholar 

  • Riede, T., Bronson, E., Hatzikirou, H., & Zuberbühler, K. (2005). Vocal production mechanisms in a non-human primate: Morphological data and a model. Journal of Human Evolution, 48, 85–96.

    Article  PubMed  Google Scholar 

  • Riede, T., Herzel, H., Mehald, D., Seider, W., Trumler, E., Böhme, G., Tembrock, G (2000). Nonlinear phenomena in the natural howling of a dog-wolf mix. Journal of the Acoustical Society of America, 108, 1435–1442.

    Google Scholar 

  • Riede, T., Suthers, R. A., Fletcher, N. H., & Blevins, W. E. (2006). Songbirds tune their vocal tract to the fundamental frequency of their song. Proceedings of the National Academy of Sciences of the U S A, 103(14), 5543–5548.

    Article  CAS  Google Scholar 

  • Roberts, L. H. (1973). Cavity resonances in the production of orientation cries. Periodicum Biologorum, 75, 27–32.

    Google Scholar 

  • Roberts, L. H. (1975). The rodent ultrasound production mechanism. Ultrasonics, 13(2), 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Rubin, H. J. (1960). The neurochronaxic theory of voice production—A refutation. Archives of Otolaryngology, 71(6), 913–920.

    Article  CAS  PubMed  Google Scholar 

  • Sanvito, S., Galimberti, F., & Miller, E. H. (2007). Vocal signaling of male southern elephant seals is honest but imprecise. Animal Behaviour, 73(2), 287–299.

    Article  Google Scholar 

  • Schenkkan, E. J. (1973). On the comparative anatomy and function of the nasal tract in odontocetes (Mammalia: Cetacea). Bijdragen tot de Dierkunde, 43(1), 127–159.

    Google Scholar 

  • Schmidt, R. S. (1972). Action of intrinsic laryngeal muscles during release calling in leopard frog. Journal of Experimental Zoology, 181, 233–244.

    Article  CAS  PubMed  Google Scholar 

  • Shipley, C., Carterette, E. C., & Buchwald, J. S. (1991). The effects of articulation on the acoustical structure of feline vocalizations. Journal of the Acoustical Society of America, 89(2), 902–909.

    Article  CAS  PubMed  Google Scholar 

  • Steinecke, I., & Herzel, H. (1995). Bifurcations in an asymmetric vocal-fold model. Journal of the Acoustical Society of America, 97(3), 1874–1884.

    Article  CAS  PubMed  Google Scholar 

  • Sundberg, J. (1975). Formant technique in a professional female singer. Acustica, 32, 89–96.

    Google Scholar 

  • Suthers, R. A. (1988). The production of echolocation signals by bats and birds. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar: Processes and performance (pp. 23–45). New York: Plenum Press.

    Chapter  Google Scholar 

  • Suthers, R. A., & Fattu, J. M. (1973). Mechanisms of sound production in echolocating bats. American Zoologist, 13, 1215–1226.

    Article  Google Scholar 

  • Suthers, R. A., Hartley, D. J., & Wenstrup, J. J. (1988). The acoustic role of tracheal chambers and nasal cavities in the production of sonar pulses by the horseshoe bat, Rhinolophus hildebrandtii. Journal of Comparative Physiology A, 162, 799–813.

    Google Scholar 

  • Suthers, R. A., & Hector, D. H. (1988). Individual variation in vocal tract resonance may assist oilbirds in recognizing echoes of their own sonar clicks. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar: Processes and performances (pp. 87–91). New York: Plenum Press.

    Chapter  Google Scholar 

  • Suthers, R. A., Narins, P. M., Lin, W.-Y., Schnitzler, H.-U., Denzinger, A., Xu, C.-H., Feng, A. S. (2006). Voices of the dead: Complex nonlinear vocal signals from the larynx of an ultrasonic frog. Journal of Experimental Biology, 209, 4984–4993.

    Google Scholar 

  • Titze, I. R. (2006). The myoelastic aerodynamic theory of phonation. Denver, CO: National Center for Voice and Speech.

    Google Scholar 

  • Titze, I. R., Fitch, W. T., Hunter, E. J., Alipour, F., Montequin, D., Armstrong, D. L., et al. (2010). Vocal power and pressure-flow relations in excised tiger larynges. Journal of Experimental Biology, 213(22), 3866–3873.

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Berg, J. (1958). Myoelastic-aerodynamic theory of voice production. Journal of Speech and Hearing Research, 1, 227–244.

    Article  Google Scholar 

  • van den Berg, J. (1968). Sound production in isolated human larynges. Annals of the New York Academy of Sciences, 155, 18–27.

    Article  PubMed  Google Scholar 

  • Vannoni, E., & McElligott, A. G. (2007). Individual acoustic variation in fallow deer (Dama dama) common and harsh groans: A source-filter theory perspective. Ethology, 113, 223–234.

    Article  Google Scholar 

  • Weber, E. (1977). Effects of extirpation of laryngeal muscles and vocal cords on vocalizations of Bufo viridis (Amphibia, Anura). Israel Journal of Zoology, 26, 230–247.

    Google Scholar 

  • Wilden, I., Herzel, H., Peters, G., & Tembrock, G. (1998). Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics, 9, 171–196.

    Google Scholar 

  • Winter, P., Handley, P., Ploog, D., & Schott, D. (1973). Ontogeny of squirrel monkey calls under normal conditions and under acoustic isolation. Behaviour, 47(3/4), 230–239.

    Google Scholar 

  • Yager, D. D. (1982). A novel mechanism for underwater sound production in Xenopus borealis. American Zoologist, 22, 887.

    Google Scholar 

  • Yager, D. D. (1996). Sound production and acoustic communication in Xenopus borealis. In R. Tinsely & H. R. Kobel (Eds.), The biology of Xenopus. Oxford, England: Oxford University Press.

    Google Scholar 

  • Zaccarelli, R., Elemans, C. P. H., Fitch, W. T., & Herzel, H. (2006). Modelling bird songs: Voice onset, overtones and registers. Acta Acustica, 92(5), 741–748.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Tecumseh Fitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fitch, W.T., Suthers, R.A. (2016). Vertebrate Vocal Production: An Introductory Overview. In: Suthers, R., Fitch, W., Fay, R., Popper, A. (eds) Vertebrate Sound Production and Acoustic Communication. Springer Handbook of Auditory Research, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-27721-9_1

Download citation

Publish with us

Policies and ethics