Skip to main content

Advertisement

Log in

Do age- and sex-related variations reliably reflect body size in non-human primate vocalizations? A review

  • Review Article
  • Published:
Primates Aims and scope Submit manuscript

Abstract

In vocal communication, the mechanisms of sound production are well understood. The length of the vocal folds determines the minimum fundamental frequency, while the size and the shape of the vocal tract affect its filtering characteristics and hence, the resonant frequencies. Both measures—vocal fold length and vocal tract length—are related to body size and therefore, acoustic features are expected to vary with body size. Because direct measures of body size are difficult to obtain from free-ranging animals, age and sex have often been used as proxies. We surveyed studies which included direct measures of size or weight, and also studies in which only age and/or sex differences were examined. The main purpose was to examine whether age- and sex-related variations in acoustic features meet the predictions generated from our knowledge about sound production. Our survey revealed that compared to smaller animals, larger animals utter longer calls, with a lower fundamental frequency, with smaller formant dispersion, and with the energy concentrated in lower frequencies. Age and sex reliably reflect the influence of body size on acoustic features when gross size differences are examined. However, within age- and sex classes, this relationship may break down. In addition to body size, other factors such as internal state or social context may also influence the structure of vocal signals and highlight the richness of information in calls that is potentially available to listeners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abitol J, Abitol P, Abitol B (1999) Sex hormones and the female voice. J Voice 13:424–446

    Article  Google Scholar 

  • Amir O, Kishon-Rabin L (2002) The effect of oral contraceptives on voice. Preliminary observations. J Voice 16:267–273

    Article  PubMed  Google Scholar 

  • Amir O, Kishon-Rabin L (2004) Association between birth control pills and voice quality. Laryngoscope 114:1021–1026

    Article  PubMed  Google Scholar 

  • Ball JM, Rahilly J (1999) Phonetics: the science of speech. Oxford University Press, New York

  • Benade AH (1990) Fundamentals of musical acoustics. Dover, New York

    Google Scholar 

  • Boulet MJ, Oddens BJ (1996) Female voice changes around and after the menopause—an initial investigation. Maturitas 23:15–21

    Article  PubMed  CAS  Google Scholar 

  • Castro NA, Snowdon CT (2000) Development of vocal responses in infant cotton-top tamarins. Behaviour 137:629–646

    Article  Google Scholar 

  • Collins SA (2000) Men’s voices and women’s choices. Anim Behav 60:773–780

    Article  PubMed  Google Scholar 

  • Elowson AM, Snowdon CT, Sweet CJ (1992) Ontogeny of trill and J-call vocalizations in the pygmy marmoset, Cebuella pygmaea. Anim Behav 43:703–715

    Article  Google Scholar 

  • Fant G (1960) Acoustic theory of speech production. Mouton, The Hague

    Google Scholar 

  • Fichtel C, Kappeler PM (2002) Anti-predator behavior of group-living Malagasy primates: mixed evidence for a referential alarm call system. Behav Ecol Sociobiol 51:262–275

    Article  Google Scholar 

  • Fischer J (2002) Developmental modifications in the vocal behaviour of nonhuman primates. In: Ghazanfar AA (ed) Primate audition: behaviour and neurobiology. CRC Press, Boca Raton, pp 109–125

    Google Scholar 

  • Fischer J, Hammerschmidt K, Cheney DL, Seyfarth RM (2001) Acoustic features of female Chacma baboon barks. Ethology 107:33–54

    Article  Google Scholar 

  • Fischer J, Hammerschmidt K, Cheney DL, Seyfarth RM (2002) Acoustic features of male baboon loud calls: influence of context, age and individuality. J Acoust Soc Am 111(3):1465–1474

    Article  PubMed  Google Scholar 

  • Fischer J, Kitchen DM, Seyfarth RM, Cheney DL (2004) Baboon loud calls advertise male quality: acoustic features and their relation to rank, age, and exhaustion. Behav Ecol Sociobiol 56:140–148

    Article  Google Scholar 

  • Fitch WT (1997) Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. J Acoust Soc Am 102(2):1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Fitch WT (2003) Primate vocal production and its implication for auditory research. In: Ghazanfar AA (ed) Primate audition ethology and neurobiology. CRC Press, Boca Raton, pp 87–103

  • Fitch WT, Hauser MD (1995) Vocal production in non-human primates—acoustics, physiology, and functional constraints on honest advertisement. Am J Primatol 37(3):191–219

    Article  Google Scholar 

  • Fitch WT, Hauser MD (2003) Unpacking “honesty”: vertebrate vocal production and the evolution of acoustic signals. In: Simmons AM, Popper AN, Fay RR (eds) Animal communication. Springer, Berlin, pp 65–137

    Google Scholar 

  • Ford SM, Davis LC (1992) Systematics and body size: implications for feeding and adaptation in New World monkeys. Am J Phys Anthropol 88:415–468

    Article  PubMed  CAS  Google Scholar 

  • Gautier J-P (1998) La communication acoustique chez les primates. Bull Soc Zool Fr 123(3):239–253

    Google Scholar 

  • González J (2004) Formant frequencies and body size of speaker: a weak relationship in adult humans. J Phon 32:277–287

    Article  Google Scholar 

  • Gouzoules H, Gouzoules S (1989) Design features and developmental modification of pigtail macaque, Macaca nemestrina, agonistic screams. Anim Behav 37:383–401

    Article  Google Scholar 

  • Hammerschmidt K, Fischer J (1998) The vocal repertoire of Barbary macaques: a quantitative analysis of a graded signal system. Ethology 104(3):203–216

    Google Scholar 

  • Hammerschmidt K, Fischer J (2006) Constraints in primate vocal production. In: Griebel U, Oller K (eds) The evolution of communicative creativity: from fixed signals to contextual flexibility. MIT Press, Cambridge (in press)

  • Hammerschmidt K, Todt D (1995) Individual-differences in vocalizations of young Barbary macaques (Macaca sylvanus)—a multi-parametric analysis to identify critical cues in acoustic signals. Behaviour 132:381–399

    Google Scholar 

  • Hammerschmidt K, Ansorge V, Fischer J (1994) Age-related variations in the vocal repertoire of Barbary macaques. In: Roeder JJ, Thierry B, Anderson JR, Herrenschmidt N (eds) Current primatology. Université Louis Pasteur, Strasbourg, pp 287–295

    Google Scholar 

  • Hammerschmidt K, Newman JD, Champoux M, Suomi SJ (2000) Changes in rhesus macaque ‘coo’ vocalizations during early development. Ethology 106(10):873–886

    Article  Google Scholar 

  • Hammerschmidt K, Freundstein T, Jürgens U (2001) Vocal development in squirrel monkeys. Behaviour 138:1179–1204

    Article  Google Scholar 

  • Harris TR, Fitch WT, Goldstein LM, Fashing PJ (2006) Black and white colobus monkey (Colobus guereza) roars as a source of both honest and exaggerated information about body mass. Ethology 112:911–920

    Article  Google Scholar 

  • Hauser MD (1989) Ontogenic changes in the comprehension and production of vervet monkey (Cercopithecus aethiops) vocalizations. J Comp Psychol 103(2):149–158

    Article  Google Scholar 

  • Hauser MD (1993) The evolution of nonhuman primate vocalizations—effects of phylogeny, body weight, and social context. Am Nat 142(3):528–542

    Article  CAS  PubMed  Google Scholar 

  • Inoue M (1988) Age gradations in vocalization and body weight in Japanese monkeys (Macaca fuscata). Folia Primatol 51:76–86

    Article  PubMed  CAS  Google Scholar 

  • Johnson SE (2003) Life history and the competitive environment: trajectories of growth, maturation, and reproductive output among Chacma baboons. Am J Phys Anthropol 120:83–98

    Article  PubMed  Google Scholar 

  • Liebermann P, Blumstein SE (1988) Speech physiology, speech perception, and acoustic phonetics. Cambridge University Press, Cambridge

  • Lieblich AK, Symmes D, Newman JD, Shapiro M (1980) Development of the isolation peep in laboratory-bred squirrel monkeys. Anim Behav 28:1–9

    Article  Google Scholar 

  • Miller CT, Scarl J, Hauser MD (2004) Sensory biases underline sex differences in tamarin long call structure. Anim Behav 68:713–720

    Article  Google Scholar 

  • Mitani JC, Groslouis J (1995) Species and sex-differences in the screams of chimpanzees and bonobos. Int J Primatol 16(3):393–411

    Article  Google Scholar 

  • Mitani JC, Stuht J (1998) The evolution of non-human primate loud calls: acoustic adaptation for long-distance transmission. Primates 39(2):171–182

    Article  Google Scholar 

  • Norcross JL, Newman JD (1993) Context and gender-specific differences in the acoustic structure of common marmoset (Callithrix jacchus) phee calls. Am J Primatol 30(1):37–54

    Article  Google Scholar 

  • Norcross JL, Newman JD, Cofrancesco LM (1999) Context and sex differences exist in the acoustic structure of phee calls by newly-paired common marmosets (Callithrix jacchus). Am J Primatol 49(2):165–181

    Article  PubMed  CAS  Google Scholar 

  • Owren MJ, Linker DC (1995) Some analysis methods that may be useful to acoustic primatologists. In: Zimmermann E, Newman DJ, Jürgens U (eds) Current topics in primate vocal communication. Plenum Press, New York, pp 1–27

    Google Scholar 

  • Pfefferle D (2003) Akustische Charakteristika als zuverlässige Anzeiger der Körpermasse—eine Untersuchung an Mantelpavianen (Papio hamadryas). Diplomthesis, Leipzig University

  • Pfefferle D, Fischer J (2006) Sound and size—identification of variables that reflect body size in Hamadryas baboons, Papio hamadryas. Anim Behav 72:43–51

    Article  Google Scholar 

  • Pistorio AL, Vintch B, Wang X (2006) Acoustic analyses of vocal development in a New World primate, the common marmoset (Callithrix jacchus). J Acoust Soc Am 120(3):1655–1670

    Article  PubMed  Google Scholar 

  • Reetz H (1999) Artikulatorische und akustische Phonetik. Wissenschaftlicher Verlag, Trier

    Google Scholar 

  • Rendall D (2003) Acoustic correlates of caller identity and affect intensity in the vowel-like grunt vocalizations of baboons. J Acoust Soc Am 113(6):3390–3402

    Article  PubMed  Google Scholar 

  • Rendall D, Owren MJ, Weerts E, Hienz RD (2004) Sex differences in the acoustic structure of vowel-like grunt vocalizations in baboons and their perceptual discrimination in baboons listeners. J Acoust Soc Am 115(1):411–421

    Article  PubMed  Google Scholar 

  • Rendall D, Kollias S, Ney C, Lloyd P (2005) Pitch (F0) and formant profiles of human vowels and vowel-like baboon grunts: the role of vocalizer body size and voice-acoustic allometry. J Acoust Soc Am 117(2):944–955

    Article  PubMed  Google Scholar 

  • Riede T, Fitch TW (1999) Vocal tract length and acoustics of vocalization in the domestic dog (Canis familiaris). J Exp Biol 202:2859–2867

    PubMed  CAS  Google Scholar 

  • Rowe N (1996) The pictorial guide to the living primates. East Hampton, Pogonias Pr, New York

    Google Scholar 

  • Seyfarth RM, Cheney LD (1986) Vocal development in vervet monkeys. Anim Behav 34:1640–1658

    Article  Google Scholar 

  • Seyfarth RM, Cheney DL, Marler P (1980) Vervet monkey alarm calls: semantic communication in a free-ranging primate. Anim Behav 28:1070–1094

    Article  Google Scholar 

  • Snowdon CT (1988) Communication as a social interaction: its importance in ontogeny and adult behaviour. In: Todt D, Goedeking P, Symmes D (eds) Primate vocal communication. Springer, Berlin, pp 108–122

    Google Scholar 

  • Snowdon CT (1989) Vocal communication in New World monkeys. J Hum Evol 18:611–633

    Article  Google Scholar 

  • Sundberg J (1987) The science of the singing voice. Northern Illinois University Press, DeKalb

    Google Scholar 

  • Sundberg J (1991) The science of musical sounds. Academic, New York

    Google Scholar 

  • Vehrencamp SL (2000) Handicap, index, and conventional signal elements of bird song. In: Espmark Y, Amundsen T, Rosenqvist G (eds) Animal signals: signalling and signal design in animal communication. Tapir Academic Press, Trondheim, pp 277–300

    Google Scholar 

  • Wich SA, van der Post DJ, Heistermann M, Mohle U, van Hooff JARAM, Sterck EHM (2003) Life-phase related changes in male loud call characteristics and testosterone levels in wild Thomas langurs. Int J Primatol 24(6):1251–1265

    Article  Google Scholar 

  • Zahavi A (2003) Indirect selection and individual selection in sociobiology: my personal views on theories of social behaviour. Anim Behav 65:859–863

    Article  Google Scholar 

  • Zuberbühler K (2000) Referential labelling in Diana monkeys. Anim Behav 59:914–927

    Google Scholar 

Download references

Acknowledgements

We would like to thank three anonymous reviewers who provided helpful comments and advice on early drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ey.

Appendix

Appendix

Table 2 Definitions of some acoustic variables used in Table 1

About this article

Cite this article

Ey, E., Pfefferle, D. & Fischer, J. Do age- and sex-related variations reliably reflect body size in non-human primate vocalizations? A review. Primates 48, 253–267 (2007). https://doi.org/10.1007/s10329-006-0033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-006-0033-y

Keywords

Navigation