Skip to main content

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 30 ))

  • 2722 Accesses

Abstract

Whereas the concentration of a drug depends on the administration protocol and on intrinsic pharmacokinetic characteristics of the process, endogenous substances are certainly regulated by appropriate internal control mechanisms. For example, the neurotransmitter norepinephrine is released from sympathetic nerve endings and its concentration is regulated by enzymes and by a mechanism for reuptake of this catecholamine into nerve endings. Deficiencies in the control of such important chemicals may result in vasospasm, spasticity, and a variety of behavioral abnormalities. Such observations strongly suggest the existence of control systems represented by negative feedback mechanisms. By means of those mechanisms, the dynamic system controls the local concentration of critical endogenous chemicals that interact with receptors according to the mass-action

The whole is more than its parts.

Aristotle (384–322 BC)

Metaphysics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Bassingthwaighte, J., Liebovitch, L., West, B.: Fractal Physiology. Methods in Physiology Series. Oxford University Press, New York (1994)

    Book  Google Scholar 

  2. Glass, L., Mackey, M.: From Clock to Chaos. The Rhythms of Life. Princeton University Press, Princeton (1988)

    MATH  Google Scholar 

  3. Tsonis, A.: Chaos: From Theory to Applications. Kluwer Academic Publishers, Amsterdam (1992)

    Book  Google Scholar 

  4. Mackey, M., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)

    Article  Google Scholar 

  5. Glass, L., Mackey, M.: Pathological conditions resulting from instabilities in physiological control systems. Ann. N. Y. Acad. Sci. 316, 214–235 (1979)

    Article  MATH  Google Scholar 

  6. Mackey, M., Milton, J.: Dynamical diseases. Ann. N. Y. Acad. Sci. 504, 16–32 (1987)

    Article  Google Scholar 

  7. VanRossum, J., DeBie, J.: Chaos and illusion. Trends Pharmacol. Sci. 12(10), 379–383 (1991)

    Article  Google Scholar 

  8. Derendorf, H., Meibohm, B.: Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm. Res. 16(2), 176–185 (1999)

    Article  Google Scholar 

  9. Holford, N., Sheiner, L.: Kinetics of pharmacologic response. Pharmacol. Ther. 16, 143–166 (1982)

    Article  Google Scholar 

  10. Karlsson, M., Molnar, V., Bergh, J., Freijs, A., Larsson, R.: A general model for time-dissociated pharmacokinetic-pharmacodynamic relationships exemplified by paclitaxel myelosuppression. Clin. Pharmacol. Ther. 63, 11–25 (1998)

    Article  Google Scholar 

  11. Dayneka, N., Garg, V., Jusko, W.: Comparison of four basic models of indirect pharmacodynamic response. J. Pharmacokinet. Biopharm. 21(4), 457–478 (1993)

    Article  Google Scholar 

  12. Chakraborty, A., Krzyzanski, W., Jusko, W.: Mathematical modeling of circadian cortisol concentrations using indirect response models: comparison of several methods. J. Pharmacokinet. Biopharm. 27(1), 23–43 (1999)

    Article  Google Scholar 

  13. Kenakin, T.: Pharmacological Analysis of Drug-Receptor Interaction. Lippincott-Raven, New York (1997)

    Google Scholar 

  14. Tallarida, R.: Further characterization of a control model for ligand-receptor interaction: phase plane geometry, stability, and oscillation. Ann. Biomed. Eng. 18, 671–684 (1990)

    Article  Google Scholar 

  15. Meille, C., Iliadis, A., Barbolosi, D., Frances, N., Freyer, G.: An interface model for dosage adjustment connects hematotoxicity to pharmacokinetics. J. Pharmacokinet. Pharmacodyn. 35(6), 619–633 (2008)

    Article  Google Scholar 

  16. Abdi, M.: Best practice in toxicological pathology. Spontaneous and induced histopathological lesions in preclinical studies. In: Faqi, A. (ed.) A Comprehensive Guide to Toxicology in Preclinical Drug Development, pp. 231–236. Academic, London (2013)

    Google Scholar 

  17. Milton, J., VanDerHeiden, U., Longtin, A., Mackey, M.: Complex dynamics and noise in simple neural networks with delayed mixed feedback. Biomed. Biochim. Acta 49(8–9), 697–707 (1990)

    Google Scholar 

  18. Tallarida, R.: Control and oscillation in ligand receptor interactions according to the law of mass action. Life Sci. 46(22), 1559–1568 (1990)

    Article  Google Scholar 

  19. Tallarida, R.: On stability and control of ligand-receptor interactions according to the mass action law: a theoretical model of chaos. Drug Dev. Res. 19, 257–274 (1990)

    Article  Google Scholar 

  20. Tallarida, R., Freeman, K.: Control and stability of ligand receptors interaction in the presence of competitive compound. Life Sci. 48(6), PL19–PL24 (1991)

    Article  Google Scholar 

  21. Tallarida, R., Freeman, K.: Chaos and control in mass-action binding of endogeneous compounds. Ann. Biomed. Eng. 22, 153–161 (1994)

    Article  Google Scholar 

  22. Freeman, K., Tallarida, R.: A quantitative study of dopamine control in the rat striatum. J. Pharmacol. Exp. Ther. 268(2), 629–638 (1994)

    Google Scholar 

  23. Sun, Y., Jusko, W.: Role of baseline parameters in determining indirect pharmacodynamic responses. J. Pharm. Sci. 88(10), 987–990 (1999)

    Article  Google Scholar 

  24. Mackey, M., AnDerHeiden, U.: The dynamics of recurrent inhibition. J. Math. Biol. 19(2), 211–225 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Klausen, T.: The feed-back regulation of erythropoietin production in healthy humans. Dan. Med. Bull. 45(4), 345–353 (1998)

    Google Scholar 

  26. Boggs, D., Athens, J., Cartwright, G., Wintrobe, M.: Leukokinetic studies. IX. Experimental evaluation of a model of granulopoiesis. J. Clin. Invest. 44, 643–656 (1965)

    Google Scholar 

  27. Rubinow, S., Lebowitz, J.: A mathematical model of neutrophil production and control in normal man. J. Math. Biol. 1, 187–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lange, R.: Cyclic hematopoiesis: human cyclic neutropenia. Exp. Hematol. 11(6), 435–451 (1983)

    Google Scholar 

  29. Cohen, T., Cooney, D.: Cyclic thrombocytopenia. Case report and review of literature. Scand. J. Haematol. 12(1), 9–17 (1974)

    Article  Google Scholar 

  30. Mackey, M.: Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood 51(5), 941–956 (1978)

    Google Scholar 

  31. Mackey, M.: Periodic auto-immune hemolytic anemia: an induced dynamical disease. Bull. Math. Biol. 41(6), 829–834 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dunn, C.: Cyclic hematopoiesis: the biomathematics. Exp. Hematol. 11(9), 779–791 (1983)

    Google Scholar 

  33. Lieschke, G., Grail, D., Hodgson, G., Metcalf, D., Stanley, E., Cheers, C., Fowler, K., Basu, S., Zhan, Y., Dunn, A.: Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84(6), 1737–1746 (1994)

    Google Scholar 

  34. Price, T., Chatta, G., Dale, D.: Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood 88(1), 335–340 (1996)

    Google Scholar 

  35. Haurie, C., Dale, D., Mackey, M.: Cyclical neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models. Blood 92(8), 2629–2640 (1998)

    Google Scholar 

  36. Degn, H., Holden, A., Olsen, L.: Chaos in Biological Systems. Plenum, New York (1987)

    Book  Google Scholar 

  37. Bai-Lin, H.: Chaos II. World Scientific, Singapore (1990)

    MATH  Google Scholar 

  38. Quesenberry, P., Levitt, L.: Hematopoietic stem cells (second of three parts). N. Engl. J. Med. 301(15), 819–823 (1979)

    Article  Google Scholar 

  39. Terashi, K., Oka, M., Ohdo, S., Furukubo, T., Ikeda, C., Fukuda, M., Soda, H., Higuchi, S., Kohno, S.: Close association between clearance of recombinant human granulocyte colony-stimulating factor (G-CSF) and G-CSF receptor on neutrophils in cancer patients. Antimicrob. Agents Chemother. 43(1), 21–24 (1999)

    Google Scholar 

  40. Wheldon, T.: Mathematical models of oscillatory blood cell production. Math. Biosci. 24(3–4), 289–305 (1975)

    Article  MATH  Google Scholar 

  41. Bernard, S., Belair, J., Mackey, M.: Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J. Theor. Biol. 223(3), 283–298 (2003)

    Article  MathSciNet  Google Scholar 

  42. Gu, K., Kharitonov, V., Chen, J.: Stability of Time-Delay Systems. Control Engineering, Birkhauser, Boston (2003)

    Book  MATH  Google Scholar 

  43. Karlsson, M., Port, R., Ratain, M., Sheiner, L.: A population model for the leukopenic effect of etoposide. Clin. Pharmacol. Ther. 57, 325–334 (1995)

    Article  Google Scholar 

  44. Minami, H., Sasaki, Y., Saijo, N., Ohtsu, T., Fujii, H., Igarashi, T., Itoh, K.: Indirect-response model for the time course of leukopenia with anticancer drugs. Clin. Pharmacol. Ther. 64(5), 511–521 (1998)

    Article  Google Scholar 

  45. Fokas, A., Keller, J., Clarkson, B.: Mathematical model of granulocytopoiesis and chronic myelogenous leukemia. Cancer Res. 51(8), 2084–2091 (1991)

    Google Scholar 

  46. Iliadis, A., Barbolosi, D.: Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model. Comput. Biomed. Res. 33(3), 211–226 (2000)

    Article  Google Scholar 

  47. Viens, P., Roche, H., Kerbrat, P., Fumoleau, P., Guastalla, J., Delozier, T.: Epirubicin-docetaxel combination in first-line chemotherapy for patients with metastatic breast cancer: final results of a dose-finding and efficacy study. Am. J. Clin. Oncol. 24(4), 328–335 (2001)

    Article  Google Scholar 

  48. Seymour, A., DeCampos, E., Thatcher, N., DeGreve, J., Cunningham, D., Howell, A., Tueni, E., Bron, D., Steward, W., Berdel, W., Knuth, A., Lorenz, J., Timothy, A., Yver, A., Richards, M.: A single-blind, randomised, vehicle-controlled dose-finding study of recombinant human granulocyte colony-stimulating factor (lenograstim) in patients undergoing chemotherapy for solid cancers and lymphoma. Eur. J. Cancer 31A(13–14), 2157–2163 (1995)

    Article  Google Scholar 

  49. Mackey, M., AnDerHeiden, U.: Dynamic diseases and bifurcations in physiological control systems. Funkt. Biol. Med. 1, 156–164 (1982)

    Google Scholar 

  50. Gatti, R., Robinson, W., Deinard, A., Nesbit, M., McCullough, J., Ballow, M., Good, R.: Cyclic leukocytosis in chronic myelogenous leukemia: new perspectives on pathogenesis and therapy. Blood 41(6), 771–782 (1973)

    Google Scholar 

  51. Chikkappa, G., Borner, G., Burlington, H., Chanana, A., Cronkite, E., Ohl, S., Pavelec, M., Robertson, J.: Periodic oscillation of blood leukocytes, platelets, and reticulocytes in a patient with chronic myelocytic leukemia. Blood 47(6), 1023–1030 (1976)

    Google Scholar 

  52. Goldman, J., Melo, J.: Chronic myeloid leukemia. Advances in biology and new approaches to treatment. N. Engl. J. Med. 349(15), 1451–1464 (2003)

    Google Scholar 

  53. Beresford, C.: Time: a biological dimension. J. R. Coll. Physicians Lond. 22(2), 94–96 (1988)

    Google Scholar 

  54. Reimann, H.: Periodic diseases in the aged. Geriatrics 24(5), 146–149 (1969)

    Google Scholar 

  55. Hellman, L., Nakada, F., Curti, J., Weitzman, E., Kream, J., Roffwarg, H., Ellman, S., Fukushima, D., Gallagher, T.: Cortisol is secreted episodically by normal man. J. Clin. Endocrinol. Metab. 30(4), 411–422 (1970)

    Article  Google Scholar 

  56. Ilias, I., Vgontzas, A., Provata, A., Mastorakos, G.: Complexity and non-linear description of diurnal cortisol and growth hormone secretory patterns before and after sleep deprivation. Endocr. Regul. 36(2), 63–72 (2002)

    Google Scholar 

  57. West, B.: Fractal Physiology and Chaos in Medicine. World Scientific, Singapore (1990)

    Book  MATH  Google Scholar 

  58. Lenbury, Y., Pacheenburawana, P.: Modelling fluctuation phenomena in the plasma cortisol secretion system in normal man. Biosystems 26(2), 117–125 (1991)

    Article  Google Scholar 

  59. Dokoumetzidis, A., Iliadis, A., Macheras, P.: Nonlinear dynamics in clinical pharmacology: the paradigm of cortisol secretion and suppression. Br. J. Clin. Pharmacol. 54(1), 21–29 (2002)

    Article  Google Scholar 

  60. Kraan, P., Dullaart, R., Pratt, J., Wolthers, B., Drayer, N., DeBruin, R.: The daily cortisol production reinvestigated in healthy men. The serum and urinary cortisol production rates are not significantly different. J. Clin. Endocrinol. Metab. 83(4), 1247–1252 (1998)

    Google Scholar 

  61. Murray, J.: Mathematical Biology. Biomathematics Texts, vol. 19, 2nd edn. Springer, Berlin (1993)

    Google Scholar 

  62. Goodwin, B.: Oscillatory behavior in enzymatic control processes. Adv. Enzym. Regul. 3, 425–438 (1965)

    Article  Google Scholar 

  63. Leloup, J., Goldbeter, A.: A model for circadian rhythms in drosophila incorporating the formation of a complex between the PER and TIM proteins. J. Biol. Rhythm. 13(1), 70–87 (1998)

    Article  Google Scholar 

  64. Rohatagi, S., Bye, A., Mackie, A., Derendorf, H.: Mathematical modeling of cortisol circadian rhythm and cortisol suppression. Eur. J. Pharm. Biopharm. 4(6), 341–350 (1996)

    Google Scholar 

  65. Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations: Nonstiff Problems, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  66. Farmer, J.: Chaotic attractors of an infinite-dimensional dynamical system. Phys. D 4(3), 366–393 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  67. Gupta, S., Ritchie, J., Ellinwood, E., Wiedemann, K., Holsboer, F.: Modeling the pharmacokinetics and pharmacodynamics of dexamethasone in depressed patients. Eur. J. Clin. Pharmacol. 43(1), 51–55 (1992)

    Article  Google Scholar 

  68. Meibohm, B., Hochhaus, G., Mollmann, H., Barth, J., Wagner, M., Krieg, M., Stockmann, R., Derendorf, H.: A pharmacokinetic/pharmacodynamic approach to predict the cumulative cortisol suppression of inhaled corticosteroids. J. Pharmacokinet. Pharmacodyn. 27(2), 127–147 (1999)

    Article  Google Scholar 

  69. Smith, W.: Hypothalamic regulation of pituitary secretion of luteinizing hormone. II. Feedback control of gonadotropin secretion. Bull. Math. Biol. 42(1), 57–78 (1980)

    MATH  Google Scholar 

  70. Cartwright, M., Husain, M.: A model for the control of testosterone secretion. J. Theor. Biol. 123(2), 239–250 (1986)

    Article  Google Scholar 

  71. Liu, B., Deng, G.: An improved mathematical model of hormone secretion in the hypothalamo-pituitary-gonadal axis in man. J. Theor. Biol. 150(1), 51–58 (1991)

    Article  Google Scholar 

  72. Das, P., Roy, A., Das, A.: Stability and oscillations of a negative feedback delay model for the control of testosterone secretion. Biosystems 32(1), 61–69 (1994)

    Article  Google Scholar 

  73. Topp, B., Promislow, K., Devries, G., Miura, R., Finegood, D.: A model of [beta] -cell mass, insulin, and glucose kinetics: pathways to diabetes. J. Theor. Biol. 206(4), 605–619 (2000)

    Article  Google Scholar 

  74. Londergan, C., Peacock-Lopez, E.: Dynamic model of hormonal systems coupled by negative feedback. Biophys. Chem. 73(1–2), 85–107 (1998)

    Article  Google Scholar 

  75. Fattinger, K., Verotta, D., Porchet, H., Munafo, A., LeCotonnec, J., Sheiner, L.: Modeling a bivariate control system: LH and testosterone response to the GnRH antagonist antide. Am. J. Physiol. 271(4/1), E775–E787 (1996)

    Google Scholar 

  76. Francheteau, P., Steimer, J., Dubray, C., Lavene, D.: Mathematical model for in vivo pharmacodynamics integrating fluctuation of the response: application to the prolactin suppressant effect of the dupaminomimetic drug DCN 230-922. J. Pharmacokinet. Biopharm. 19(3), 287–309 (1991)

    Article  Google Scholar 

  77. Lalonde, R., Gaudreault, J., Karhu, D., Marriott, T.: Mixed-effects modeling of the pharmacodynamic response to the calcimimetic agent R-568. Clin. Pharmacol. Ther. 64(1), 45–49 (1999)

    Google Scholar 

  78. Gobburu, J., Agerso, H., Jusko, W., Ynddal, L.: Pharmacokinetic-pharmacodynamic modeling of ipamorelin, a growth hormone releasing peptide, in human volunteers. Pharm. Res. 16(9), 1412–1416 (1999)

    Article  Google Scholar 

  79. Tolic, I., Mosekilde, E., Sturis, J.: Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion. J. Theor. Biol. 207(3), 361–375 (2000)

    Article  Google Scholar 

  80. Prank, K., Harms, H., Dammig, M., Brabant, G., Mitschke, F., Hesch, R.: Is there low-dimensional chaos in pulsatile secretion of parathyroid hormone in normal human subjects? Am. J. Physiol. Endocrinol. Matabolism 266(4), E653–E658 (1994)

    Google Scholar 

  81. Papavasiliou, S., Brue, T., Jaquet, P., Castanas, E.: Pattern of prolactin diurnal secretion in normal humans: evidence for nonlinear dynamics. Neuroendocrinology 62(5), 444–453 (1995)

    Article  Google Scholar 

  82. Pincus, S.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A. 88(6), 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  83. Veldhuis, J., Pincus, S.: Orderliness of hormone release patterns: a complementary measure to conventional pulsatile and circadian analyses. Eur. J. Endocrinol. 138(2), 164–169 (1998)

    Article  Google Scholar 

  84. Kroll, M.: Biological variation of glucose and insulin includes a deterministic chaotic component. Biosystems 50(3), 189–201 (1999)

    Article  Google Scholar 

  85. Zeisberger, E.: Central modulators of thermoregulation. J. Basic Clin. Physiol. Pharmacol. 1(1–4), 277–289 (1990)

    Google Scholar 

  86. Zeisberger, E.: Biogenic amines and thermoregulatory changes. Prog. Brain Res. 115, 159–176 (1998)

    Article  Google Scholar 

  87. Schwartz, P., Rosenthal, N., Wehr, T.: Serotonin 1A receptors, melatonin, and the proportional control thermostat in patients with winter depression. Arch. Gen. Psychiatry 55(10), 897–903 (1998)

    Article  Google Scholar 

  88. Yu, H., Lewander, T.: Pharmacokinetic and pharmacodynamic studies of (R)-8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur. Neuropsychopharmacol. 7(3), 165–172 (1997)

    Article  Google Scholar 

  89. Abdel-Fattah, A., Matsumoto, K., El-Hady, K., Watanabe, H.: 5-HT1A and 5-HT2 receptors mediate hypo- and hyperthermic effects of tryptophan in pargyline-pretreated rats. Pharmacol. Biochem. Behav. 52(2), 379–384 (1995)

    Article  Google Scholar 

  90. Salmi, P., Ahlenius, S.: Evidence for functional interactions between 5-HT1A and 5-HT2A receptors in rat thermoregulatory mechanisms. Pharmacol. Toxicol. 82(3), 122–127 (1998)

    Article  Google Scholar 

  91. Hjorth, S.: Hypothermia in the rat induced by the potent serotoninergic agent 8-OH-DPAT. J. Neural Transm. 61(1–2), 131–135 (1985)

    Article  Google Scholar 

  92. Goodwin, G., DeSouza, R., Green, A., Heal, D.: The pharmacology of the behavioural and hypothermic responses of rats to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Psychopharmacol. (Berl) 91(4), 506–511 (1987)

    Google Scholar 

  93. Wakelkamp, M., Alvan, G., Gabrielsson, J., Paintaud, G.: Pharmacodynamic modeling of furosemide tolerance after multiple intravenous administration. Clin. Pharmacol. Ther. 60(1), 75–88 (1996)

    Article  Google Scholar 

  94. Bauer, J., Balthasar, J., Fung, H.: Application of pharmacodynamic modeling for designing time-variant dosing regimens to overcome nitroglycerin tolerance in experimental heart failure. Pharm. Res. 14(9), 1140–1145 (1997)

    Article  Google Scholar 

  95. Werner, J.: Modeling homeostatic responses to heat and cold. In: Blatteis, C., Fregly, M. (eds.) Handbook of Physiology, vol. sect. 4: Adaptation to the Environment, pp. 613–626. Oxford University Press, Oxford (1996)

    Google Scholar 

  96. Zuideveld, K., Maas, H., Treijtel, N., Hulshof, J., VanDerGraaf, P., Peletier, L., Danhof, M.: A set-point model with oscillatory behavior predicts the time course of 8-OH-DPAT-induced hypothermia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281(6), R2059–R2071 (2001)

    Google Scholar 

  97. Gabrielsson, J., Jusko, W., Alari, L.: Modeling of dose-response-time data: four examples of estimating the turnover parameters and generating kinetic functions from response profiles. Biopharm. Drug Dispos. 21(2), 41–52 (2000)

    Article  Google Scholar 

  98. Kitney, R.: A nonlinear model for studying oscillations in the blood pressure control system. J. Biomed. Eng. 1(2), 89–99 (1979)

    Article  Google Scholar 

  99. Gordon, C., Heath, J.: Reassessment of the neural control of body temperature: importance of oscillating neural and motor components. Comp. Biochem. Physiol. A 74(3), 479–489 (1983)

    Article  Google Scholar 

  100. Zuideveld, K., Treijtel, N., Maas, H., Gubbens-Stibbe, J., Peletier, L., VanDerGraaf, P., Danhof, M.: A competitive interaction model predicts the effect of WAY-100,635 on the time course of R-(+)-8-hydroxy-2-(di-n-propylamino)tetralin-induced hypothermia. J. Pharmacol. Exp. Ther. 300(1), 330–338 (2002)

    Article  Google Scholar 

  101. Zuideveld, K., Rusic-Pavletic, J., Maas, H., Peletier, L., VanDerGraaf, P., Danhof, M.: Pharmacokinetic-pharmacodynamic modeling of buspirone and its metabolite 1-(2-pyrimidinyl)-piperazine in rats. J. Pharmacol. Exp. Ther. 303(3), 1130–1137 (2002)

    Article  Google Scholar 

  102. Zuideveld, K., VanDerGraaf, P., Newgreen, D., Thurlow, R., Petty, N., Jordan, P., Peletier, L., Danhof, M.: Mechanism-based pharmacokinetic-pharmacodynamic modeling of 5-HT1A receptor agonists: estimation of in vivo affinity and intrinsic efficacy on body temperature in rats. J. Pharmacol. Exp. Ther. 308(3), 1012–1020 (2004)

    Article  Google Scholar 

  103. Accardo, A., Affinito, M., Carrozzi, M., Bouquet, F.: Use of the fractal dimension for the analysis of electroencephalographic time series. Biol. Cybern. 77(5), 339–350 (1997)

    Article  MATH  Google Scholar 

  104. Silva, C., Pimentel, I., Andrade, A., Foreid, J., Ducla-Soares, E.: Correlation dimension maps of EEG from epileptic absences. Brain Topogr. 11(3), 201–209 (1999)

    Article  Google Scholar 

  105. Stam, K., Tavy, D., Jelles, B., Achtereekte, H., Slaets, J., Keunen, R.: Non-linear dynamical analysis of multichannel EEG: clinical applications in dementia and Parkinson’s disease. Brain Topogr. 7(2), 141–150 (1994)

    Article  Google Scholar 

  106. Jeong, J., Kim, D., Chae, J., Kim, S., Ko, H., Paik, I.: Nonlinear analysis of the EEG of schizophrenics with optimal embedding dimension. Med. Eng. Phys. 20(9), 669–676 (1998)

    Article  Google Scholar 

  107. Ehlers, C., Havstad, J., Prichard, D., Theiler, J.: Low doses of ethanol reduce evidence for nonlinear structure in brain activity. J. Neurosci. 18(18), 7474–7486 (1998)

    Google Scholar 

  108. Mandema, J., Danhof, M.: Electroencephalogram effect measures and relationships between pharmacokinetics and pharmacodynamics of centrally acting drugs. Clin. Pharmacokinet. 23(3), 191–215 (1992)

    Article  Google Scholar 

  109. Lehnertz, K.: Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy - An overview. Int. J. Psychophysiol. 34(1), 45–52 (1999)

    Article  Google Scholar 

  110. Elger, C., Widman, G., Andrzejak, R., Arnhold, J., David, P., Lehnertz, K.: Nonlinear EEG analysis and its potential role in epileptology. Epilepsia 41(S3), S34–38 (2000)

    Article  MATH  Google Scholar 

  111. Roschke, J., Aldenhoff, J.: A nonlinear approach to brain function: deterministic chaos and sleep EEG. Sleep 15(2), 95–101 (1992)

    Google Scholar 

  112. Isaacson, R., Varner, J., Baars, J., DeWied, D.: The effects of pregnenolone sulfate and ethylestrenol on retention of a passive avoidance task. Brain Res. 689(1), 79–84 (1995)

    Article  Google Scholar 

  113. DiMascio, M., DiGiovanni, G., DiMatteo, V., Esposito, E.: Decreased chaos of midbrain dopaminergic neurons after serotonin denervation. Neuroscience 92(1), 237–243 (1999)

    Article  Google Scholar 

  114. Ishizuka, S., Hayashi, H.: Spontaneous epileptiform bursts and long-term potentiation in rat CA3 hippocampal slices induced by chaotic stimulation of mossy fibers. Brain Res. 790(1–2), 108–114 (1998)

    Article  Google Scholar 

  115. Karlsson, M., Schoemaker, R., Kemp, B., Cohen, A., VanGerven, J., Tuk, B., Peck, C., Danhof, M.: A pharmacodynamic Markov mixed-effects model for the effect of temazepam on sleep. Clin. Pharmacol. Ther. 68(2), 175–188 (2000)

    Article  Google Scholar 

  116. Larter, R., Speelman, B., Worth, R.: A coupled ordinary differential equation lattice model for the simulation of epileptic seizures. Chaos 9(3), 795–804 (1999)

    Article  MATH  Google Scholar 

  117. Cleton, A., Mazee, D., Voskuyl, R., Danhof, M.: Rate of change of blood concentrations is a major determinant of the pharmacodynamics of midazolam in rats. Br. J. Pharmacol. 127(1), 227–235 (1999)

    Article  Google Scholar 

  118. Widman, G., Lehnertz, K., Jansen, P., Meyer, W., Burr, W., Elger, C.: A fast general purpose algorithm for the computation of auto- and cross-correlation integrals from single channel data. Phys. D 121(1–2), 65–74 (1998)

    Article  Google Scholar 

  119. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D 9(1–2), 189–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  120. Widman, G., Schreiber, T., Rehberg, B., Hoeft, A., Elger, C.: Quantification of depth of anesthesia by nonlinear time series analysis of brain electrical activity. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(4 Pt A), 4898–4903 (2000)

    Google Scholar 

  121. Rampil, I.: A primer for EEG signal processing in anesthesia. Anesthesiology 89(4), 980–1002 (1998)

    Article  Google Scholar 

  122. Bruhn, J., Lehmann, L., Ropcke, H., Bouillon, T., Hoeft, A.: Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane. Anesthesiology 95(1), 30–35 (2001)

    Article  Google Scholar 

  123. Wagner, C., Persson, P.: Chaos in the cardiovascular system: an update. Cardiovasc. Res. 40(2), 257–264 (1998)

    Article  Google Scholar 

  124. Sugihara, G., Allan, W., Sobel, D., Allan, K.: Nonlinear control of heart rate variability in human infants. Proc. Natl. Acad. Sci. U.S.A. 93(6), 2608–2613 (1996)

    Article  MATH  Google Scholar 

  125. Karagueuzian, H., Kogan, B., Khan, S., Denton, T., Karplus, W., Mandel, W., Diamond, G.: Induction of cellular chaos during quinidine toxicity. Predictive power of nonlinear dynamic analysis for drug-induced proarrhythmia- A hypothesis. J. Electrocardiol. 24 Suppl, 91–96 (1992)

    Google Scholar 

  126. Garfinkel, A., Spano, M., Ditto, W., and Weiss, J.: Controlling cardiac chaos. Science 257, 1230–1235 (1992)

    Article  Google Scholar 

  127. Scheinin, H., Helminen, A., Huhtala, S., Gronroos, P., Bosch, J., Kuusela, T., Kanto, J., Kaila, T.: Spectral analysis of heart rate variability as a quantitative measure of parasympatholytic effect-integrated pharmacokinetics and pharmacodynamics of three anticholinergic drugs. Ther. Drug Monit. 21(2), 141–151 (1999)

    Article  Google Scholar 

  128. DeBrouwer, S., Edwards, D., Griffith, T.: Simplification of the quasiperiodic route to chaos in agonist-induced vasomotion by iterative circle maps. Am. J. Physiol. 274(4(2)), H1315–1326 (1998)

    Google Scholar 

  129. Weiss, J., Garfinkel, A., Karagueuzian, H., Qu, Z., Chen, P.: Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. Circulation 99(21), 2819–2826 (1999)

    Article  Google Scholar 

  130. Exner, D., Reiffel, J., Epstein, A., Ledingham, R., Reiter, M., Yao, Q., Duff, H., Follmann, D., Schron, E., Greene, H., Carlson, M., Brodsky, M., Akiyama, T., Baessler, C., Anderson, J.: Beta-blocker use and survival in patients with ventricular fibrillation or symptomatic ventricular tachycardia: the Antiarrhythmics Versus Implantable Defibrillators (AVID) trial. J. Am. Coll. Cardiol. 34(2), 325–333 (1999)

    Article  Google Scholar 

  131. Echt, D., Liebson, P., Mitchell, L., Peters, R., Obias-Manno, D., Barker, A., Arensberg, D., Baker, A., Friedman, L., Greene, H., Juther, M., Richardson, D.: Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N. Engl. J. Med. 324(12), 781–788 (1991)

    Google Scholar 

  132. Starmer, C., Romashko, D., Reddy, R., Zilberter, Y., Starobin, J., Grant, A., Krinsky, V.: Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias. Circulation 92(3), 595–605 (1995)

    Google Scholar 

  133. Qu, Z., Weiss, J., Garfinkel, A.: Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. Am. J. Physiol. 276, No. 1(2), H269–283 (1999)

    Google Scholar 

  134. Garfinkel, A., Kim, Y., Voroshilovsky, O., Qu, Z., Kil, J., Lee, M., Karagueuzian, H., Weiss, J., Chen, P.: Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. U.S.A. 97(11), 6061–6066 (2000)

    Article  Google Scholar 

  135. Kowey, P.: Pharmacological effects of antiarrhythmic drugs. Review and update. Arch. Intern. Med. 158(4), 325–332 (1998)

    Article  Google Scholar 

  136. Reiffel, J., Kowey, P.: Generic antiarrhythmics are not therapeutically equivalent for the treatment of tachyarrhythmias. Am. J. Cardiol. 85(9), 1151–1153, A10 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Macheras, P., Iliadis, A. (2016). Nonclassical Pharmacodynamics. In: Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics. Interdisciplinary Applied Mathematics, vol 30 . Springer, Cham. https://doi.org/10.1007/978-3-319-27598-7_13

Download citation

Publish with us

Policies and ethics