Skip to main content

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 14))

  • 558 Accesses

Abstract

The necessity to monitor the environment is increasing everyday due to various issues related to environmental pollution. Pollution comes in various forms including gaseous, water, and even temperature pollution. Temperature pollution in the form of heat released from a nuclear plant’s exchanger, for example, makes an environment inhabitable for plankton and invariably affects the wild life that depend on the plankton to survive. This leads to a crash in the food chain that could lead to extinction of marine wild life populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.K. Hart, K. Martinez, Environmental sensor networks: A revolution in the earth system science. Elsevier 78, 177–191 (2006)

    Google Scholar 

  2. M. Ghanem, Y. Guo, J. Hassard, M. Osmond, M. Richards, Sensor grids for air pollution monitoring. J. Spec. Issue Artic. Sens. Spec. Issue Urban Environ. Monit. 8, 3601–3623 (2008)

    Google Scholar 

  3. A.G. Giudice, L.C.D. Melita, M.A. Orlando, An overview of the volcan project : An UAS for exploration of volcanic environments. J. Intell. Robot. Syst. 471–494 (2009)

    Google Scholar 

  4. M.C.L. Patterson, A. Mulligan, J.D.J. Robinson, L. Wardell, Volcano surveillance by ACR silver fox. Observatory, 1–7 (2005)

    Google Scholar 

  5. X. Zheng, S. Jain, S. Koenig, D. Kempe, Multi-robot forest coverage, in Proceedings of the IEEE International Conference on Intelligent Robots and Systems (2005)

    Google Scholar 

  6. I. Rekleitis, V. Lee-shue, A.P. New, H. Choset, Limited communication, multi-robot team based coverage, in Proceedings 2004 IEEE International Conference on Robotics and Automation (April 2004)

    Google Scholar 

  7. E.U. Acar, H. Choset, Sensor-based coverage of unknown environments: Incremental construction of morse decompositions. Int. J. Robot. Res. 21(4), 345–366 (2002)

    Article  Google Scholar 

  8. E. Şahin, Swarm robotics: From sources of inspiration to domains of application, in Swarm Robotics 2004, vol. 3342, LNCS, ed. by E. Şahin, William M. Spears (Springer, Heidelberg, 2005), pp. 10–20

    Google Scholar 

  9. M.V. Ramana, V. Ramanathan, D. Kim, G.C. Roberts, C.E. Corrigan, Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs. Society 1931, 1913–1931 (2007)

    Google Scholar 

  10. C.E. Corrigan, G.C. Roberts, M.V. Ramana, D. Kim, V. Ramanathan, Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles. Atomsph. Chem. Phys. Discuss. 7(4), 11429–14631 (2007)

    Article  Google Scholar 

  11. H. Zimmer, Voronoi and Delaunay Techniques. Lecture notes computer science VIII (2005), pp. 1–14

    Google Scholar 

  12. Q. Du, V. Faber, M. Gunzburger, Centroidal voronoi tessellations: Applications and algorithms. Soc. Ind. Appl. Math. 41(4), 637–676 (1999)

    MathSciNet  MATH  Google Scholar 

  13. J. Cortes, S. Martinez, T. Karatas, F. Bullo, Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

    Article  Google Scholar 

  14. M. Schwager, J. McLurkin, J.-J.E. Slotine, D. Rus, From theory to practice: Distributed coverage control experiments with groups of robots, in Experimental Robotics, vol. 54, STAR, ed. by O. Khatib, V. Kumar, G.J. Pappas (Springer, Heidelberg, 2009), pp. 127–136

    Google Scholar 

  15. M. Schwager, F. Bullo, D. Skelly, D. Rus, A ladybug exploration strategy for distributed adaptive coverage control, in Proceedings of International Conference on Robotics an Automation (Pasadena, May 2008)

    Google Scholar 

  16. M. Schwager, J. McLurkin, D. Rus, Distributed coverage control with sensory feedback for networked robots, in Robotics: Science and Systems (2006)

    Google Scholar 

  17. B. Lu, D. Gu, H. Hu,Tracking and modeling of spatio-temporal fields with a mobile sensor network, in 11th World Congress on Intelligent Control and Automation (WCICA 2014) (IEEE, 2014), pp. 2711–2716

    Google Scholar 

  18. B. Shucker, T. Murphey, J.K. Bennett, S. Member, Convergence preserving switching for topology dependent decentralized systems. IEEE Trans. Robot. 24, 1–11 (2008)

    Article  Google Scholar 

  19. J. Hespanha, A. Morse, Stability of switched systems with average dwell-time, in, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304) (1999), pp. 2655–2660

    Google Scholar 

  20. A.R. Mesquita, J.P. Hespanha, K. Åström, Optimotaxis: A stochastic multi-agent optimization procedure with point measurements, in HSCC 2008, vol. 4981, LNCS, ed. by M. Egerstedt, B. Mishra (Springer, Heidelberg, 2008), pp. 358–371

    Google Scholar 

  21. K. Rose, Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proc. IEEE 86(11), 2210–2239 (1998)

    Article  Google Scholar 

  22. A. Kwok, S. Martinez, A distributed deterministic annealing algorithm for limited-range sensor coverage, in Proceedings of American Control Conference, vol. 1, (St. Louis, Missouri, 2009), pp. 1448–1453

    Google Scholar 

  23. U. Nehmzow, Mobile Robotics, A Practical Introduction, 2nd ed. (Springer, 2010)

    Google Scholar 

  24. R.C. Arkin, Behaviour-Based Robotics (The MIT Press, Cambridge, 1998)

    Google Scholar 

  25. D. W. Hogg, M. Resnick, Braitenberg Creatures, vol. 13 (Massachusetts Institute of Technology Media Laboratory, 1991)

    Google Scholar 

  26. M. Saito, M. Fukaya, T. Iwasaki, Serpentine locomotion with robotic snakes, in IEEE Control Systems Magazine (2000), pp. 64–81

    Google Scholar 

  27. H. Hu, J. Liu, I. Dukes, G. Francis, W. Park, U. Kingdom, Design of 3D swim patterns for autonomous robotic fish, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (Beijing, China, 2006), pp. 2406–2411

    Google Scholar 

  28. J. Liu, H. Hu, Biological inspiration: From carangiform fish to multi-joint robotic fish. J. Bionic Eng. 7(1), 35–48 (2010)

    Article  Google Scholar 

  29. J. Liu, H. Hu, A 3D simulator for autonomous robotic fish. Int. J. 1(3), 42–50 (2004)

    Google Scholar 

  30. J.J. Faria, J.R.G. Dyer, R.O. Clément, I.D. Couzin, N. Holt, A.J.W. Ward, D. Waters, J. Krause, A novel method for investigating the collective behaviour of fish: introducing robofish, Behav. Ecol. Sociobiol. (June 2010), pp. 1211–1218

    Google Scholar 

  31. R. Arkin, Integrating behavioral, perceptual, and world knowledge in reactive navigation (June, 1990), pp. 105–122

    Google Scholar 

  32. E. Gat, Integrating reaction and planning in a heterogeneous asynchronous architecture for mobile robot navigation. ACM SIGART Bull. 2(4), 70–74 (1991)

    Article  Google Scholar 

  33. D.M. Lyons, A.J. Hendriks, Autonomous systems planning as incremental adaptation of a reactive system. Robot. Autonom. Syst. 14, 255–288 (1995)

    Article  Google Scholar 

  34. M.P. Georgeff, A.L. Lansky, M. Park, Reative reasoning and planning. Robotics, 677–682 (1987)

    Google Scholar 

  35. D. Zarzhitsky, D. Spears, W. Spears, Distributed robotics approach to chemical plume tracing, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2005), pp. 4034–4039

    Google Scholar 

  36. W.M. Spears, D.F. Spears, J.C. Hamann, R. Heil, Distributed, physics-based control of swarms of vehicles. Auton. Robot. 17, 137–162 (2004)

    Article  Google Scholar 

  37. W. Spears, D. Gordon, Using artificial physics to control agents. IEEE Int. Conf. Inf. Intell. Syst. 281–288 (1999)

    Google Scholar 

  38. J.A. Farrell, S. Pang, W. Li, Chemical plume tracing via an autonomous underwater vehicle. IEEE J. Ocean. Eng. 30(2), 428–442 (2005)

    Article  Google Scholar 

  39. A.T. Hayes, A. Martinoli, R.M. Goodman, Distributed odor source localization. IEEE Sens. J. 2(3), 260–271 (2002)

    Article  Google Scholar 

  40. A.T. Hayes, M. Alcherio, R.M. GoodMan, Swarm robotic odor localization: Off-line optimization and validation with real robots. Robotica 21, 427–441 (2003)

    Article  Google Scholar 

  41. S. Pang, J.A. Farrell, Chemical plume source localization. IEEE Trans. Syst. Man Cybern. 36(5), 1068–1080 (2006)

    Article  Google Scholar 

  42. W. Li, J.A. Farrell, R.T. Card, Strategies for tracking fluid-advected odor plumes. Adapt. Behav. 9(3–4), 143–170 (2001)

    Article  Google Scholar 

  43. W. Li, J.A. Farrell, S. Pang, R.M. Arrieta, Moth-inspired chemical plume tracing on an autonomous underwater vehicle. IEEE Trans. Robot. 22(2), 292–307 (2006)

    Article  Google Scholar 

  44. T. Lochmatter, X. Raemy, S. Indra, A. Martinoli, A Comparison of casting and spiraling algorithms for odor source localization in laminar flow, in Proceedings of the IEEE International Conference on Robotics and Automation (2008), pp. 1138–1143

    Google Scholar 

  45. R.K. Zimmer-faust, C.M. Finelli, D.N. Pentcheff, D.S. Wethey, Odor plumes and animal navigation in turbulent water flow: a field study. Biol. Bull. 118, 111–116 (1995)

    Article  Google Scholar 

  46. M.J. Weissburg, R.K. Zimmer-faust, Odor plumes and how blue crabs use them in finding prey. J. Exp. Biol. 197, 349–375 (1994)

    Google Scholar 

  47. F.W. Grasso, Invertebrate-inspired sensory-motor systems and autonomous, olfactory-guided exploration. Biol. Bull. 200, 160–168 (2001)

    Article  Google Scholar 

  48. J. Ayers, J. Witting, C. Olcott, N. Mcgruer, D. Massa, Lobster robots, in Proceedings of the International Symposium on Aqua Biomechanisms (2000), pp. 1–10

    Google Scholar 

  49. A. Lilienthal, T. Duckett, Experimental analysis of smelling Braitenberg vehicles, in Proceedings of the IEEE International Conference on Advanced Robotics (2003), pp. 375–380

    Google Scholar 

  50. E.A. Codling, M.J. Plank, S. Benhamou, Random walk models in biology. J. R. Soc. Interface, 5, 813–834 (2008)

    Google Scholar 

  51. E.F. Keller, L.A. Segel, Model for chemotaxis. J Theor. Biol. 30(2), 225–234 (1971)

    Google Scholar 

  52. H. Hamann, A framework of space time continuous models for algorithm design in Swarm robotics. Swarm Intell. 2(2–4), 209–239 (2008)

    Article  Google Scholar 

  53. A. Dhariwal, G.S. Sukhatme, A.A.G. Requicha, Bacterium-inspired robots for environmental monitoring. Proc. IEEE Int. Conf. Robot. Autom. New Orleans, LA 2, 1436–1443 (2004)

    Google Scholar 

  54. M. J. Tindall, P. K. Maini, S. L. Porter, J. P. Armitage, Overview of mathematical approaches used to model Bacterial chemotaxis II: Bacterial populations, in Bulletin of Mathematical Biology (2008), pp. 1570–1607

    Google Scholar 

  55. J. Adler, Chemotaxis in Bacteria. Science 153, 708–716 (1966)

    Article  Google Scholar 

  56. T. Scribner, L. Segel, E. Rogers, A numerical study of the formation and propagation of travelling bands of chemotactic Bacteria. J. Theor. Biol. 46, 189–219 (1974)

    Article  Google Scholar 

  57. W. Alt, Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177 (1980)

    Google Scholar 

  58. P.-H. Chavanis, Generalized keller-segel models of chemotaxis, in Analogy with Nonlinear Mean Field Fokker-planck Equations (World Scientific Publishing, 2008), pp. 265–285

    Google Scholar 

  59. M. Ribot, C. Rosier, C.L. Ement, On the analogy between self-gravitating brownian particles and Bacterial populations. Inst. Math. 66, 103–126 (2004)

    MathSciNet  MATH  Google Scholar 

  60. D. Koshland, A. Goldbeter, J. Stock, Amplification and adaptation in regulatory and sensory system. Science 217(4556), 220–225 (1982)

    Google Scholar 

  61. G.H. Wadhams, J.P. Armitage, Making sense of it all: Bacterial chemotaxis. Group 5(December), 1024–1037 (2004)

    Google Scholar 

  62. J.E. Segall, S.M. Block, H.C. Berg, Temporal comparisons in Bacterial chemotaxis. Proc. Natl. Acad. Sci. U. S. A. 83(23), 8987–8991 (1986)

    Article  Google Scholar 

  63. D. Bray, Bacterial chemotaxis and the question of gain. Proc. Natl Acad. Sci. U. S. A. 99(1), 7–9 (2002)

    Article  Google Scholar 

  64. D.A. Brown, H.C. Berg, Temporal stimulation of chemotaxis in Escherichia Coli. Proc. Natl Acad. Sci. U. S. A. 71, 1388–1392 (1974)

    Article  Google Scholar 

  65. G.A. Jackson, Simulating chemosensory responses of marine microorganisms. Limnol. Oceanogr. 32(6), 1253–1266 (1987)

    Article  Google Scholar 

  66. F.W. Dahlquist, R.A. Elwell, P.S. Lovely, Studies of Bacterial chemotaxis in defined concentration gradients—A model for chemotaxis toward l-serine. J. Supramol. Struct. 4(3), 329–342 (1976)

    Article  Google Scholar 

  67. S.D. Muller, J. Marchetto, S. Airaghi, P. Koumoutsakos, Optimization based on Bacterial chemotaxis. IEEE Trans. Evolut. Comput. 6, 16–29 (2002)

    Article  Google Scholar 

  68. G.A. Jackson, Simulation of Bacterial attraction and adhesion to falling particles in an aquatic environment. Limnol. Oceanogr. 34, 514–530 (1989)

    Article  Google Scholar 

  69. L. Marques, U. Nunes, A.T. de Almeida, Olfaction-based mobile robot navigation. Thin Solid Films 418, 51–58 (2002)

    Article  Google Scholar 

  70. O. Holland, C. Melhuish, Some adaptive movements of animats with single symmetrical sensors. From Animals to Animats, 4(6), 55–64 (MIT Press, 1996)

    Google Scholar 

  71. R.H. Luchsinger, B. Bergersen, J.G. Mitchell, Bacterial swimming strategies and turbulence. Biophys. J. 77, 2377–2386 (1999)

    Article  Google Scholar 

  72. G.M. Barbara, J.G. Mitchell, Bacterial tracking of motile algae. FEMS Microbiol. Ecol. 44, 79–87 (2003)

    Article  Google Scholar 

  73. K.M. Passino, Biomimicry of Bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 52–67 (2002)

    Google Scholar 

  74. J. Pugh, A. Martinoli, Distributed adaptation in multi-robot search using particle Swarm optimization, in SAB 2008, vol. 5040, LNCS (LNAI), ed. by M. Asada, J.C.T. Hallam, J.-A. Meyer, J. Tani (Springer, Heidelberg, 2008), pp. 393–402

    Google Scholar 

  75. D. Baronov, J. Baillieul, Autonomous vehicle control for ascending/descending along a potential field with two applications, in Proceedings of the American Control Conference (2008), pp. 678–683

    Google Scholar 

  76. C.G. Mayhew, R.G. Sanfelice, A.R. Teel, Robust source-seeking hybrid controllers for nonholonomic vehicles, in American Control Conference (2008), pp. 2722–2727

    Google Scholar 

  77. E. Petterson, Tidewater Beekeepers Association (2011). Online Available: http://www.tidewaterbeekeepers.net/

  78. H. Scales, Wild Ocean Blue Extinction (2010) Online Available: http://wildoceanblue.co.uk/tag/extinction/

  79. A. Fleming, Home to Roost (March 2007). Online Available: http://www.ncbi.nlm.nih.gov/pubmed/21807342

  80. M. Bernardine Dias, M. Zinck, R. Zlot, A. Stentz, Robust multirobot coordination in dynamic environments, in IEEE International Conference on Robotics and Automation, vol. 4. (IEEE, 2004), pp. 3435–3442

    Google Scholar 

  81. J. Kennedy, E. Eberhart, Particle Swarm optimization. Proc. IEEE Int. Conf. Neural Netw. (1995), pp. 1942–1948

    Google Scholar 

  82. G.G. Rigatos, Multi-robot motion planning using Swarm intelligence. Adv. Robot. 5(2), 139–144 (2008)

    Google Scholar 

  83. A.C. Chapman, R.A. Micillo, R. Kota, N. R. Jennings, Decentralised dynamic task allocation: A practical game theoretic approach, in Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems (2009), pp. 915–922

    Google Scholar 

  84. K. Skrzypczyk, Game theory based task planning in multi robot systems, in Proceedings of 16th European Simulation, vol. 6(6) (2004), pp. 50–60

    Google Scholar 

  85. J.M. Reimann, Using multiplayer differential game theory to derive efficient pursuit—evasion strategies for unmanned aerial vehicles, Ph.D. dissertation (Gerogia Institute of Technology, 2007)

    Google Scholar 

  86. D. Gu, A differential game approach to formation control. IEEE Trans. Control Syst. Technol. 16(1), 85–93 (2008)

    Article  Google Scholar 

  87. G. Vachtsevanos, J. Reimann, An intelligent approach to coordinated control of multiple unmanned aerial vehicles, in Proceedings of the American Helicopter Society 60th Annual Forum (2004)

    Google Scholar 

  88. J. Kok, M. Spaan, N. Vlassis, Non-communicative multi-robot coordination in dynamic environments. Robot. Auton. Syst. 50(2–3), 99–114 (2005)

    Article  Google Scholar 

  89. M. Kelager, Lagrangian fluid dynamics using smoothed particle hydrodynamics, Ph.D. dissertation, Department of Computer Science, University of Copenhagen (Denmark, 2006)

    Google Scholar 

  90. M.R. Pac, A.M. Erkmen, Control of robotic swarm behaviors based on smoothed particle hydrodynamics, in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, October, 2007), pp. 4194–4200

    Google Scholar 

  91. C.W. Reynolds, Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  92. Z. Wang, D. Gu, S. Member, Behaviour Based Fuzzy Flocking Systems, in IEEE International Fuzzy Systems Conference (FUZZ-IEEE, 2007), pp. 1–6

    Google Scholar 

  93. D. Gu, H. Hu, Using fuzzy logic to design separation function in flocking algorithms. IEEE Trans. Fuzzy Syst. 16(4), 826–838 (2008)

    Article  Google Scholar 

  94. H.G. Tanner, A. Jadbabaie, G.J. Pappas, Flocking in fixed and switching networks. IEEE Trans. Autom. Control 52(5), 863–868 (2007)

    Article  MathSciNet  Google Scholar 

  95. M. DOrsogna, Y. Chuang, A. Bertozzi, L. Chayes, Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96(10) (March 2006)

    Google Scholar 

  96. N. Moshtagh, A. Jadbabaie, K. Daniilidis, Vision-based distributed coordination and flocking of multi-agent systems, in Robotics: Science and Systems (2005), pp. 1–8

    Google Scholar 

  97. V. Gazi, K.M. Passino, Stability analysis of social foraging Swarms. IEEE Trans. Syst. Man Cybern. Part B 34, 539–557 (2004)

    Article  Google Scholar 

  98. G. Maria, Termite Hill Mounds in Northern Territory Australia (2009). Online Available: http://www.ourterritory.com/katherine_region/termite_hill.htm

  99. B.R. Johnson, Pattern formation on the combs of honeybees: Increasing fitness by coupling self-organization with templates. Proc. Biol. Sci. R. Soc. 276(1655), 255–261 (2009)

    Article  Google Scholar 

  100. J-L, Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, L. Chretien, The dynamics of collective sorting robot-like ants and ant-like robots, in Proceedings First Conference on Simulation of Adaptive Behaviour: From Animals to Animats (1991), pp. 356–365

    Google Scholar 

  101. N. Franks, A. Sendova-Franks, Brood sorting by ants: distributing the workload over the work-surface. Behav. Ecol. Sociobiol. 30(2), 109–123 (1992)

    Article  Google Scholar 

  102. C. Jost, J. Verret, E. Casellas, J. Gautrais, M. Challet, J. Lluc, S. Blanco, M.J. Clifton, G. Theraulaz, The interplay between a self-organized process and an environmental template: Corpse clustering under the influence of air currents in ants. J. R. Soc. Interface R. Soc. 4(12), 107–116 (2007)

    Article  Google Scholar 

  103. J. Halloy, G. Sempo, G. Caprari, C. Rivault, M. Asadpour, F. Tâche, I. Saïd, V. Durier, S. Canonge, J.M. Amé, C. Detrain, N. Correll, A. Martinoli, F. Mondada, R. Siegwart, J.L. Deneubourg, Social integration of robots into groups of cockroaches to control self-organized choices. Science (New York) 318(5853), 1155–1158 (2007)

    Article  Google Scholar 

  104. W. Liu, A.F.T. Winfield, J. Sa, J. Chen, Lihua Dou, Strategies for energy optimisation in a Swarm of foraging robots, in SAB 2006 Ws 2007, vol. 4433, LNCS, ed. by E. Şahin, W.M. Spears, A.F.T. Winfield (Springer, Heidelberg, 2007), pp. 14–26

    Google Scholar 

  105. W. Liu, A.F.T. Winfield, J. Sa, J. Chen, L. Dou, Towards energy optimization: Emergent task allocation in a Swarm of foraging robots. Adapt. Behav. 15(3), 289–305 (2007)

    Article  Google Scholar 

  106. W. Liu, A.F.T. Winfield, J. Sa, J. Chen, L. Dou, Towards energy optimization: Emergent Task allocation in a Swarm of foraging robots, in Adaptive Behavior (2007)

    Google Scholar 

  107. W. Liu, A.F.T. Winfield, J. Sa, Modelling Swarm robotic systems : A case study in collective foraging, in Towards Autonomous Robotic Systems (2007), pp. 1–9

    Google Scholar 

  108. T. Schmickl, K. Crailsheim, A navigation algorithm for Swarm robotics inspired by slime mold aggregation, in SAB 2006 Ws 2007, vol. 4433, LNCS, ed. by E. Şahin, W.M. Spears, A.F.T. Winfield (Springer, Heidelberg, 2007), pp. 1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Oluwagbemiga Oyekan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oyekan, J.O. (2016). Literature Review. In: Tracking and Mapping of Spatiotemporal Quantities Using Unicellular Swarm Intelligence. Biosystems & Biorobotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-27425-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27425-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27423-2

  • Online ISBN: 978-3-319-27425-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics