Skip to main content

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 2027 Accesses

Abstract

Biological systems constantly adjust their inner condition according to the external environment in order to achieve a steady state that allows their adaptation to the environment. Healthy biological systems are able to quickly adapt to changing environmental conditions and exhibit intrinsic fluctuations in function within each subsystem, for example the cardiovascular [1] and respiratory [2] systems, during steady-state conditions. In diseased biological systems, however, such intrinsic functional fluctuation (variability) is usually reduced. In fact, reduced variability of the heart rate in patients with coronary heart disease [3], of blood pressure during pre-eclampsia [4], of heart rate and blood pressure during pathological sleep [5], and of respiratory rate and tidal volume in patients with chronic obstructive pulmonary disease (COPD) [6] and prolonged weaning [7] have been documented.

Different from most biological systems, the variability of the respiratory system can be easily influenced in an attempt to improve its function. In controlled, as well as in assisted mechanical ventilation, the variability of tidal volume and/or respiratory rate may be modulated externally by the mechanical ventilator to reproduce certain characteristics of spontaneous breathing in healthy subjects. Because mechanical ventilation represents a common intervention in intensive care and emergency medicine, interest in modes that can enhance the variability of the respiratory pattern has increased in recent years.

In this article, we will review the rationale and mechanisms of variable ventilation, and provide a comprehensive review of the literature for both controlled and assisted variable mechanical ventilation. We will focus mainly on the translational aspects that may be relevant for the clinical practice of mechanical ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ivanov PC, Amaral LA, Goldberger AL et al (1999) Multifractality in human heartbeat dynamics. Nature 399:461–465

    Article  CAS  PubMed  Google Scholar 

  2. Frey U, Silverman M, Barabási AL, Suki B (1998) Irregularities and power law distributions in the breathing pattern in preterm and term infants. J Appl Physiol Bethesda Md 1985(85):789–797

    Google Scholar 

  3. Huikuri HV, Mäkikallio TH (2001) Heart rate variability in ischemic heart disease. Auton Neurosci Basic Clin 90:95–101

    Article  CAS  Google Scholar 

  4. Malberg H, Bauernschmitt R, Voss A et al (2007) Analysis of cardiovascular oscillations: a new approach to the early prediction of pre-eclampsia. Chaos 17:015113

    Article  CAS  PubMed  Google Scholar 

  5. Penzel T, Wessel N, Riedl M et al (2007) Cardiovascular and respiratory dynamics during normal and pathological sleep. Chaos 17:015116

    Article  PubMed  Google Scholar 

  6. Brack T, Jubran A, Tobin MJ (2002) Dyspnea and decreased variability of breathing in patients with restrictive lung disease. Am J Respir Crit Care Med 165:1260–1264

    Article  PubMed  Google Scholar 

  7. Wysocki M, Cracco C, Teixeira A et al (2006) Reduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilation. Crit Care Med 34:2076–2083

    Article  PubMed  Google Scholar 

  8. Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA (1988) Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol 1985(65):309–317

    Google Scholar 

  9. Boxt LM, Katz J, Liebovitch LS, Jones R, Esser PD, Reid L (1994) Fractal analysis of pulmonary arteries: the fractal dimension is lower in pulmonary hypertension. J Thorac Imaging 9:8–13

    Article  CAS  PubMed  Google Scholar 

  10. Tsuda A, Rogers RA, Hydon PE, Butler JP (2002) Chaotic mixing deep in the lung. Proc Natl Acad Sci USA 99:10173–10178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suki B, Alencar AM, Sujeer MK et al (1998) Life-support system benefits from noise. Nature 393:127–128

    Article  CAS  PubMed  Google Scholar 

  12. Loveridge B, West P, Anthonisen NR, Kryger MH (1984) Breathing patterns in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 130:730–733

    CAS  PubMed  Google Scholar 

  13. Lefevre GR, Kowalski SE, Girling LG, Thiessen DB, Mutch WA (1996) Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med 154:1567–1572

    Article  CAS  PubMed  Google Scholar 

  14. Boker A, Graham MR, Walley KR et al (2002) Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am J Respir Crit Care Med 165:456–462

    Article  PubMed  Google Scholar 

  15. Spieth PM, Carvalho AR, Pelosi P et al (2009) Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med 179:684–693

    Article  PubMed  Google Scholar 

  16. de Gama AM, Spieth PM, Pelosi P et al (2008) Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med 36:818–827

    Article  Google Scholar 

  17. Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369:2126–2136

    Article  CAS  PubMed  Google Scholar 

  18. Venegas JG, Harris RS, Simon BA (1998) A comprehensive equation for the pulmonary pressure-volume curve. J Appl Physiol Bethesda Md 1985(84):389–395

    Google Scholar 

  19. Runck H, Schumann S, Tacke S, Haberstroh J, Guttmann J (2012) Time-dependent recruitment effects in ventilated healthy and lung-injured rats: “recruitment-memory”. Respir Physiol Neurobiol 184:65–72

    Article  PubMed  Google Scholar 

  20. Suki B, Barabási AL, Hantos Z, Peták F, Stanley HE (1994) Avalanches and power-law behaviour in lung inflation. Nature 368:615–618

    Article  CAS  PubMed  Google Scholar 

  21. Lutz D, Gazdhar A, Lopez-Rodriguez E et al (2015) Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis. Am J Respir Cell Mol Biol 52:232–243

    Article  PubMed  Google Scholar 

  22. Wirtz HR, Dobbs LG (1990) Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250:1266–1269

    Article  CAS  PubMed  Google Scholar 

  23. Spieth PM, Carvalho AR, Güldner A et al (2011) Pressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure support. Crit Care Med 39:746–755

    Article  PubMed  Google Scholar 

  24. Mutch WA, Eschun GM, Kowalski SE, Graham MR, Girling LG, Lefevre GR (2000) Biologically variable ventilation prevents deterioration of gas exchange during prolonged anaesthesia. Br J Anaesth 84:197–203

    Article  CAS  PubMed  Google Scholar 

  25. Pillow JJ, Musk GC, McLean CM et al (2011) Variable ventilation improves ventilation and lung compliance in preterm lambs. Intensive Care Med 37:1352–1359

    Article  PubMed  Google Scholar 

  26. Camilo LM, Ávila MB, Cruz LFS et al (2014) Positive end-expiratory pressure and variable ventilation in lung-healthy rats under general anesthesia. PLoS ONE 9:e110817

    Article  PubMed  PubMed Central  Google Scholar 

  27. Spieth PM, Bluth T, Hegeman MA et al (2013) Mechanical ventilation with variable tidal volumes in a rodent model of acute acid aspiration. Am J Respir Crit care Med Meeting Abstracts 187:A1118 (abst)

    Article  Google Scholar 

  28. Bellardine CL, Hoffman AM, Tsai L et al (2006) Comparison of variable and conventional ventilation in a sheep saline lavage lung injury model. Crit Care Med 34:439–445

    Article  PubMed  Google Scholar 

  29. Mutch WA, Harms S, Lefevre GR, Graham MR, Girling LG, Kowalski SE (2000) Biologically variable ventilation increases arterial oxygenation over that seen with positive end-expiratory pressure alone in a porcine model of acute respiratory distress syndrome. Crit Care Med 28:2457–2464

    Article  CAS  PubMed  Google Scholar 

  30. Funk DJ, Graham MR, Girling LG et al (2004) A comparison of biologically variable ventilation to recruitment manoeuvres in a porcine model of acute lung injury. Respir Res 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  31. Güldner A, Beda A, Kiss T et al (2012) Effects of random and pseudo-random variable ventilation on lung function in experimental lung injury. Am J Respir Crit Care Med 185:A5442 (abst)

    Google Scholar 

  32. Spieth PM, Güldner A, Beda A et al (2012) Comparative effects of proportional assist and variable pressure support ventilation on lung function and damage in experimental lung injury. Crit Care Med 40:2654–2661

    Article  PubMed  Google Scholar 

  33. Graham MR, Goertzen AL, Girling LG et al (2011) Quantitative computed tomography in porcine lung injury with variable versus conventional ventilation: recruitment and surfactant replacement. Crit Care Med 39:1721–1730

    Article  Google Scholar 

  34. Nam AJ, Brower RG, Fessler HE, Simon BA (2000) Biologic variability in mechanical ventilation rate and tidal volume does not improve oxygenation or lung mechanics in canine oleic acid lung injury. Am J Respir Crit Care Med 161:1797–1804

    CAS  PubMed  Google Scholar 

  35. Graham MR, Gulati H, Kha L, Girling LG, Goertzen A, Mutch WAC (2011) Resolution of pulmonary edema with variable mechanical ventilation in a porcine model of acute lung injury. Can J Anaesth 58:740–750

    Article  PubMed  Google Scholar 

  36. Arold SP, Mora R, Lutchen KR, Ingenito EP, Suki B (2002) Variable tidal volume ventilation improves lung mechanics and gas exchange in a rodent model of acute lung injury. Am J Respir Crit Care Med 165:366–371

    Article  PubMed  Google Scholar 

  37. Arold SP, Suki B, Alencar AM, Lutchen KR, Ingenito EP (2003) Variable ventilation induces endogenous surfactant release in normal guinea pigs. Am J Physiol Lung Cell Mol Physiol 285:L370–L375

    Article  CAS  PubMed  Google Scholar 

  38. Thammanomai A, Hamakawa H, Bartolák-Suki E, Suki B (2013) Combined effects of ventilation mode and positive end-expiratory pressure on mechanics, gas exchange and the epithelium in mice with acute lung injury. PloS One 8:e53934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carvalho AR, Spieth PM, Güldner A et al (2011) Distribution of regional lung aeration and perfusion during conventional and noisy pressure support ventilation in experimental lung injury. J Appl Physiol 110(1985):1083–1092

    Article  PubMed  Google Scholar 

  40. Rentzsch I, Santos CL, Huhle R et al (2015) Variable cell stretch reduces the release of CXCL-2 by LPS-stimulated L2 cells via the ERK1/2-pathway. Am J Respir Crit Care Med 191:A2042 (abst)

    Google Scholar 

  41. Mutch WAC, Buchman TG, Girling LG, Walker EK-Y, McManus BM, Graham MR (2007) Biologically variable ventilation improves gas exchange and respiratory mechanics in a model of severe bronchospasm. Crit Care Med 35:1749–1755

    Article  PubMed  Google Scholar 

  42. Spieth PM, Carvalho AR, Güldner A et al (2009) Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology 110:342–350

    PubMed  Google Scholar 

  43. Mutch WAC, Harms S, Graham RM, Kowalski SE, Girling LG, Lefevre GR (2000) Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Am J Respir Crit Care Med 162:319–323

    Article  CAS  PubMed  Google Scholar 

  44. Beda A, Güldner A, Simpson DM et al (2012) Effects of assisted and variable mechanical ventilation on cardiorespiratory interactions in anesthetized pigs. Physiol Meas 33:503–519

    Article  PubMed  Google Scholar 

  45. McMullen MC, Girling LG, Graham MR, Mutch WAC (2006) Biologically variable ventilation improves oxygenation and respiratory mechanics during one-lung ventilation. Anesthesiology 105:91–97

    Article  PubMed  Google Scholar 

  46. Boker A, Haberman CJ, Girling L et al (2004) Variable ventilation improves perioperative lung function in patients undergoing abdominal aortic aneurysmectomy. Anesthesiology 100:608–616

    Article  PubMed  Google Scholar 

  47. Kowalski S, McMullen MC, Girling LG, McCarthy BG (2013) Biologically variable ventilation in patients with acute lung injury: a pilot study. Can J Anaesth 60:502–503

    Article  PubMed  PubMed Central  Google Scholar 

  48. Spieth PM, Güldner A, Uhlig C et al (2014) Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial. Trials 15:155–155

    Article  PubMed  PubMed Central  Google Scholar 

  49. Spieth PM, Güldner A, Huhle R et al (2013) Short-term effects of noisy pressure support ventilation in patients with acute hypoxemic respiratory failure. Crit Care 17:R261

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kiss T, Güldner A, Bluth T et al (2013) Rationale and study design of ViPS – variable pressure support for weaning from mechanical ventilation: study protocol for an international multicenter randomized controlled open trial. Trials 14:363–363

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pelosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huhle, R., Pelosi, P., de Abreu, M.G. (2016). Variable Ventilation from Bench to Bedside. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2016. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-27349-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27349-5_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27348-8

  • Online ISBN: 978-3-319-27349-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics