Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 896))

Abstract

Expression of proteins in mammalian cells is a key technology important for many functional studies on human and higher eukaryotic genes. Studies include the mapping of protein interactions, solving protein structure by crystallization and X-ray diffraction or solution phase NMR and the generation of antibodies to enable a range of studies to be performed including protein detection in vivo. In addition the production of therapeutic proteins and antibodies, now a multi billion dollar industry, has driven major advances in cell line engineering for the production of grams per liter of active proteins and antibodies. Here the key factors that need to be considered for successful expression in HEK293 and CHO cells are reviewed including host cells, expression vector design, transient transfection methods, stable cell line generation and cultivation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dyson MR, Shadbolt SP, Vincent KJ, Perera RL, McCafferty J (2004) Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnol 4:32

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marchal I, Jarvis DL, Cacan R, Verbert A (2001) Glycoproteins from insect cells: sialylated or not? Biol Chem 382(2):151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Byrne B, Donohoe GG, O’Kennedy R (2007) Sialic acids: carbohydrate moieties that influence the biological and physical properties of biopharmaceutical proteins and living cells. Drug Discov Today 12(7–8):319–326

    Article  CAS  PubMed  Google Scholar 

  4. Nallet S, Fornelli L, Schmitt S, Parra J, Baldi L, Tsybin YO, Wurm FM (2012) Glycan variability on a recombinant IgG antibody transiently produced in HEK-293E cells. New Biotechnol 29(4):471–476

    Article  CAS  Google Scholar 

  5. Jefferis R (2009) Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci 30(7):356–362

    Article  CAS  PubMed  Google Scholar 

  6. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949

    Article  CAS  PubMed  Google Scholar 

  7. Geisse S, Voedisch B (2012) Transient expression technologies: past, present, and future. In: Voynov V, Caravella JA (eds) Therapeutic proteins, vol 899. Humana Press, New York, pp 203–219

    Chapter  Google Scholar 

  8. Hacker DL, Kiseljak D, Rajendra Y, Thurnheer S, Baldi L, Wurm FM (2013) Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells. Protein Expr Purif 92(1):67–76

    Article  CAS  PubMed  Google Scholar 

  9. Schofield DJ, Pope AR, Clementel V, Buckell J, Chapple S, Clarke KF, Conquer JS, Crofts AM, Crowther SR, Dyson MR et al (2007) Application of phage display to high throughput antibody generation and characterization. Genome Biol 8(11):R254

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chapple SD, Dyson MR (2014) Expression screening in mammalian suspension cells. Methods Mol Biol 1091:143–149

    Article  CAS  PubMed  Google Scholar 

  11. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36(1):59–74

    Google Scholar 

  12. Yates JL, Warren N, Sugden B (1985) Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313(6005):812–815

    Article  CAS  PubMed  Google Scholar 

  13. Rio DC, Clark SG, Tjian R (1985) A mammalian host-vector system that regulates expression and amplification of transfected genes by temperature induction. Science 227(4682):23–28

    Article  CAS  PubMed  Google Scholar 

  14. Van Craenenbroeck K, Vanhoenacker P, Haegeman G (2000) Episomal vectors for gene expression in mammalian cells. Eur J Biochem/FEBS 267(18):5665–5678

    Article  Google Scholar 

  15. Cachianes G, Ho C, Weber RF, Williams SR, Goeddel DV, Leung DW (1993) Epstein-Barr virus-derived vectors for transient and stable expression of recombinant proteins. Biotechniques 15(2):255–259

    CAS  PubMed  Google Scholar 

  16. Parham JH, Kost T, Hutchins JT (2001) Effects of pCIneo and pCEP4 expression vectors on transient and stable protein production in human and simian cell lines. Cytotechnology 35(3):181–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30(2), e9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De Jesus M, Wurm FM (2008) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1g/l by transient transfection under serum-free conditions. Nucleic Acids Res 36(15), e96

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dean DA (1997) Import of plasmid DNA into the nucleus is sequence specific. Exp Cell Res 230(2):293–302

    Article  CAS  PubMed  Google Scholar 

  20. Liu C, Dalby B, Chen W, Kilzer JM, Chiou HC (2008) Transient transfection factors for high-level recombinant protein production in suspension cultured mammalian cells. Mol Biotechnol 39(2):141–153

    Article  CAS  PubMed  Google Scholar 

  21. Raymond C, Tom R, Perret S, Moussouami P, L’Abbé D, St-Laurent G, Durocher Y (2011) A simplified polyethylenimine-mediated transfection process for large-scale and high-throughput applications. Methods 55(1):44–51

    Article  CAS  PubMed  Google Scholar 

  22. Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A 99(21):13419–13424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsao YS, Condon R, Schaefer E, Lio P, Liu Z (2001) Development and improvement of a serum-free suspension process for the production of recombinant adenoviral vectors using HEK293 cells. Cytotechnology 37(3):189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li L, Qin J, Feng Q, Tang H, Liu R, Xu L, Chen Z (2011) Heparin promotes suspension adaptation process of CHO-TS28 cells by eliminating cell aggregation. Mol Biotechnol 47(1):9–17

    Article  CAS  PubMed  Google Scholar 

  25. Puck TT, Cieciura SJ, Robinson A (1958) Genetics of somatic mammalian cells: III. Long term cultivation of euploid cells from human and animal subjects. J Exp Med 108(6):945–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kao FT, Puck TT (1968) Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells. Proc Natl Acad Sci U S A 60(4):1275–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gottesman MM (1987) Chinese hamster ovary cells. In: Gottesman M (ed) Methods in enzymology, vol 151. Academic Press Inc, San Diego, pp 3–8

    Google Scholar 

  28. Daramola O, Stevenson J, Dean G, Hatton D, Pettman G, Holmes W, Field R (2014) A high-yielding CHO transient system: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression. Biotechnol Prog 30(1):132–141

    Article  CAS  PubMed  Google Scholar 

  29. Urlaub G, Käs E, Carothers AM, Chasin LA (1983) Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells. Cell 33(2):405–412

    Article  CAS  PubMed  Google Scholar 

  30. Almo SC, Love JD (2014) Better and faster: improvements and optimization for mammalian recombinant protein production. Curr Opin Struct Biol 26(1):39–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Melidoni AN, Dyson MR, Wormald S, McCafferty J (2013) Selecting antagonistic antibodies that control differentiation through inducible expression in embryonic stem cells. Proc Natl Acad Sci U S A 110(44):17802–17807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Falk R, Falk A, Dyson MR, Melidoni AN, Parthiban K, Young JL, Roake W, McCafferty J (2012) Generation of anti-Notch antibodies and their application in blocking Notch signalling in neural stem cells. Methods 58(1):69–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Massie B, Mosser DD, Koutroumanis M, Vitte-Mony I, Lamoureux L, Couture F, Paquet L, Guilbault C, Dionne J, Chahla D et al (1998) New adenovirus vectors for protein production and gene transfer. Cytotechnology 28(1–3):53–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Underhill MF, Smales CM, Naylor LH, Birch JR, James DC (2007) Transient gene expression levels from multigene expression vectors. Biotechnol Prog 23(2):435–443

    Article  CAS  PubMed  Google Scholar 

  35. Fang J, Qian JJ, Yi S, Harding TC, Tu GH, VanRoey M, Jooss K (2005) Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 23(5):584–590

    Article  CAS  PubMed  Google Scholar 

  36. Dyson MR (2010) Selection of soluble protein expression constructs: the experimental determination of protein domain boundaries. Biochem Soc Trans 38(4):908–913

    Article  CAS  PubMed  Google Scholar 

  37. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89(12):5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jordan M, Schallhorn A, Wurm FM (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 24(4):596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rajendra Y, Kiseljak D, Baldi L, Hacker DL, Wurm FM (2011) A simple high-yielding process for transient gene expression in CHO cells. J Biotechnol 153(1–2):22–26

    Article  CAS  PubMed  Google Scholar 

  40. Tom R, Bisson L, Durocher Y (2007) Transient expression in HEK293-EBNA1 cells. In: Dyson MR, Durocher Y (eds) Expression systems. Scion, Bloxham, pp 203–223

    Google Scholar 

  41. Ye J, Kober V, Tellers M, Naji Z, Salmon P, Markusen JF (2009) High-level protein expression in scalable CHO transient transfection. Biotechnol Bioeng 103(3):542–551

    Article  CAS  PubMed  Google Scholar 

  42. Eberhardy SR, Radzniak L, Liu Z (2009) Iron (III) citrate inhibits polyethylenimine-mediated transient transfection of Chinese hamster ovary cells in serum-free medium. Cytotechnology 60(1–3):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kadlecova Z, Rajendra Y, Matasci M, Hacker D, Baldi L, Wurm FM, Klok HA (2012) Hyperbranched polylysine: a versatile, biodegradable transfection agent for the production of recombinant proteins by transient gene expression and the transfection of primary cells. Macromol Biosci 12(6):794–804

    Article  CAS  PubMed  Google Scholar 

  44. Steger K, Brady J, Wang W, Duskin M, Donato K, Peshwa M (2015) CHO-S antibody titers >1 gram/liter using flow electroporation-mediated transient gene expression followed by rapid migration to high-yield stable cell lines. J Biomol Screen 20(4):545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Büssow K (2015) Stable mammalian producer cell lines for structural biology. Curr Opin Struct Biol 32:81–90

    Article  PubMed  Google Scholar 

  46. McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet: TIG 24(11):529–538

    Article  CAS  PubMed  Google Scholar 

  47. Matasci M, Baldi L, Hacker DL, Wurm FM (2011) The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Biotechnol Bioeng 108(9):2141–2150

    Article  CAS  PubMed  Google Scholar 

  48. Balasubramanian S, Matasci M, Kadlecova Z, Baldi L, Hacker DL, Wurm FM (2015) Rapid recombinant protein production from piggyBac transposon-mediated stable CHO cell pools. J Biotechnol 200:61–69

    Article  CAS  PubMed  Google Scholar 

  49. Maresca M, Lin VG, Guo N, Yang Y (2013) Obligate Ligation-Gated Recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res 23(3):539–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S et al (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44–53

    Article  CAS  PubMed  Google Scholar 

  51. Chapple SD, Crofts AM, Shadbolt SP, McCafferty J, Dyson MR (2006) Multiplexed expression and screening for recombinant protein production in mammalian cells. BMC Biotechnol 6:49

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vink T, Oudshoorn-Dickmann M, Roza M, Reitsma J-J, de Jong RN (2014) A simple, robust and highly efficient transient expression system for producing antibodies. Methods 65(1):5–10

    Article  CAS  PubMed  Google Scholar 

  53. Dyson MR, Zheng Y, Zhang C, Colwill K, Pershad K, Kay BK, Pawson T, McCafferty J (2011) Mapping protein interactions by combining antibody affinity maturation and mass spectrometry. Anal Biochem 417(1):25–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Dyson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dyson, M.R. (2016). Fundamentals of Expression in Mammalian Cells. In: Vega, M. (eds) Advanced Technologies for Protein Complex Production and Characterization. Advances in Experimental Medicine and Biology, vol 896. Springer, Cham. https://doi.org/10.1007/978-3-319-27216-0_14

Download citation

Publish with us

Policies and ethics