Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 415))

Abstract

Eleven coupled model intercomparison project 3 based global climate models are evaluated for the case study of Upper Malaprabha catchment, India for precipitation rate. Correlation coefficient, normalised root mean square deviation, and skill score are considered as performance indicators for evaluation in fuzzy environment and assumed to have equal impact on the global climate models. Fuzzy technique for order preference by similarity to an ideal solution is used to rank global climate models. Top three positions are occupied by MIROC3, GFDL2.1 and GISS with relative closeness of 0.7867, 0.7070, and 0.7068. IPSL-CM4, NCAR-PCMI occupied the tenth and eleventh positions with relative closeness of 0.4959 and 0.4562.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raju, K.S., Nagesh Kumar, D.: Multicriterion Analysis in Engineering and Management. Prentice Hall of India, New Delhi (2014)

    Google Scholar 

  2. Walsh, J.E., Chapman, W.L., Romanovsky, V., Christensen, J.H., Stendel, M.: Global climate model performance over Alaska and Greenland. J. Clim. 21, 6156–6174 (2008)

    Article  Google Scholar 

  3. Kundzewicz, Z.W., Stakhiv, E.Z.: Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrol. Sci. J. 55, 1085–1089 (2010)

    Article  Google Scholar 

  4. Weigel, A.P., Knutti, R., Liniger, M.A., Appenzeller, C.: Risks of model weighting in multimodel climate projections. J. Clim. 23, 4175–4191 (2010)

    Article  Google Scholar 

  5. Radić, V., Clarke, G.K.C.: Evaluation of IPCC models’ performance in simulating late-twentieth-century climatologies and weather patterns over North America. J. Clim. 24, 5257–5274 (2011)

    Article  Google Scholar 

  6. Johnson, F., Westra, S., Sharma, A., Pitman, A.J.: An assessment of GCM skill in simulating persistence across multiple time scales. J. Clim. 24, 3609–3623 (2011)

    Article  Google Scholar 

  7. Su, F., Duan, X., Chen, D., Hao, Z., Cuo, L.: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Clim. 26, 3187–3208 (2013)

    Article  Google Scholar 

  8. Perez, J., Menendez, M., Mendez, F.J., Losada, I.J.: Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region. Clim. Dyn. 43, 2663–2680 (2014)

    Article  Google Scholar 

  9. Northrop, P.J., Chandler, R.E.: Quantifying sources of uncertainty in projections of future climate. J. Clim. 27, 8793–8808 (2014)

    Article  Google Scholar 

  10. Sun, Q., Miao, C., Duan, Q.: Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China. J. Geophys. Res. Atmos. 120, 4806–4824 (2015)

    Google Scholar 

  11. McMahon, T.A., Peel, M.C., Karoly, D.J.: Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation. Hydrol. Earth Syst. Sci. 19, 361–377 (2015)

    Article  Google Scholar 

  12. Gulizia, C., Camilloni, I.: Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int. J. Climatol. 35, 583–595 (2015)

    Article  Google Scholar 

  13. Raju, K.S.: Nagesh Kumar D.: Ranking of global climatic models for India using multicriterion analysis. Clim. Res. 60, 103–117 (2014)

    Article  Google Scholar 

  14. Raju, K.S., Nagesh Kumar, D.: Ranking general circulation models for India using TOPSIS. J. Wat. Clim. Chan. 6:288–299 (2015)

    Google Scholar 

  15. Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J., Zhao, Z.C.: Global climate projections. Climate change: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.) Cambridge University Press, Cambridge, 747–846 (2007)

    Google Scholar 

  16. Perkins, S.E., Pitman, A.J., Holbrook, N.J., McAveney, J.: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature and precipitation over Australia using probability density functions. J. Clim. 20, 4356–4376 (2007)

    Article  Google Scholar 

  17. Opricovic, S., Tzeng, G.H.: Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156, 445–455 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Present research work is supported by Council of Scientific and Industrial Research, New Delhi vide project number 23(0023)/12/EMR-II dated 15.10.2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Srinivasa Raju .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Sample Calculation for Computation Of D + i , D i , C i

Chosen global climate model: GISS

Values of indicators in triangular membership environment:

Correlation coefficient (CC) = (0.670, 0.828, 0.985)

Normalised root mean square deviation (NRMSD) = (0.436, 0.534, 0.687)

Skill Score (SS) = (0.704, 0.778, 0.853)

Ideal values of indicators = (1, 1, 1)

Anti-ideal values of indicators = (0, 0, 0)

  1. (i)

    Separation measure of GISS from ideal solution (Eq. 1):

      \(D_{GISS}^{+} = \sqrt {\frac{{\left[(p_{ij} - p_{j}^{*} )^{2} + (q_{ij} - q_{j}^{*} )^{2} + (r_{ij} - r_{j}^{*} )^{2} \right]}}{3}} \) = \( \sqrt {\frac{{[(0.670 - 1)^{2} + (0.828 - 1)^{2} + (0.985 - 1)^{2} ]}}{3}} \) for correlation coefficient + \( \sqrt {\frac{{[(0.436 - 1)^{2} + (0.534 - 1)^{2} + (0.687 - 1)^{2} ]}}{3}} \) for normalised root mean square deviation + \( \sqrt {\frac{{[(0.704 - 1)^{2} + (0.778 - 1)^{2} + (0.853 - 1)^{2} ]}}{3}} \) for skill score

    = 0.2150 + 0.4594 + 0.2299 = 0.9043

  2. (ii)

    Separation measure of GISS from anti-ideal solution (Eq. 2):

      \(D_{Giss}^{-} = \sqrt {\frac{{\left[(p_{ij} - p_{j}^{**} )^{2} + (q_{ij} - q_{j}^{**} )^{2} + (r_{ij} - r_{j}^{**} )^{2} \right]}}{3}} \) = \( \sqrt {\frac{{[(0.670 - 0)^{2} + (0.828 - 0)^{2} + (0.985 - 0)^{2} ]}}{3}} \) for correlation coefficient + \( \sqrt {\frac{{[(0.436 - 0)^{2} + (0.534 - 0)^{2} + (0.687 - 0)^{2} ]}}{3}} \) for normalised root mean square deviation + \( \sqrt {\frac{{[(0.704 - 0)^{2} + (0.778 - 0)^{2} + (0.853 - 0)^{2} ]}}{3}} \) for skill score

    = 0.8376 + 0.5619 + 0.7807 = 2.1802

  3. (iii)

    Relative closeness of GISS with reference to anti-ideal measure (Eq. 3):

    \( C_{GISS} = \frac{{D_{GISS}^{ - } }}{{(D_{GISS}^{ - } + D_{GISS}^{ + } )}} \) = \( \frac{2.1802}{(2.1802 + 0.9043)} \) = 0.7068

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Srinivasa Raju, K., Nagesh Kumar, D. (2015). Fuzzy Approach to Rank Global Climate Models. In: Ravi, V., Panigrahi, B., Das, S., Suganthan, P. (eds) Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing (FANCCO - 2015). Advances in Intelligent Systems and Computing, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-27212-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27212-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27211-5

  • Online ISBN: 978-3-319-27212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics