Skip to main content

Phase Formation Rules

  • Chapter
  • First Online:
High-Entropy Alloys

Abstract

This chapter gives an overview of existing active phase formation rules for high-entropy alloys (HEAs). A parametric approach using physiochemical parameters including enthalpy of mixing, entropy of mixing, melting points, atomic size difference, and valence electron concentration is used to delineate phase formation rules for HEAs, with a reference to other multicomponent alloys like bulk metallic glasses (BMGs). Specifically, rules on forming solid solutions, intermetallic compounds, and the amorphous phase are described in detail; formation rules of solid solutions with the face-centered cubic (fcc) or body-centered cubic (bcc) structure are also discussed. Some remaining issues and future prospects on phase formation rules for HEAs are also addressed at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303. doi:10.1002/adem.200300567

    Article  Google Scholar 

  2. Otto F, Yang Y, Bei H, George EP (2013) Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater 61(7):2628–2638. doi:10.1016/j.actamat.2013.01.042

    Article  Google Scholar 

  3. Tong CJ, Chen YL, Chen SK, Yeh JW, Shun TT, Tsau CH, Lin SJ, Chang SY (2005) Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A 36(4):881–893. doi:10.1007/s11661-005-0283-0

    Article  Google Scholar 

  4. Wang WH (2014) High-entropy metallic glasses. JOM 10(66):2067–2077. doi:10.1007/s11837-014-1002-3

    Article  Google Scholar 

  5. Miracle DB, Miller JD, Senkov ON, Woodward C, Uchic MD, Tiley J (2014) Exploration and development of high entropy alloys for structural applications. Entropy 16(1):494–525. doi:10.3390/e16010494

    Article  Google Scholar 

  6. Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J (2011) Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59(1):182–190. doi:10.1016/j.actamat.2010.09.023

    Article  Google Scholar 

  7. Guo S, Hu Q, Ng C, Liu CT (2013) More than entropy in high-entropy alloys: forming solid solutions or amorphous phase. Intermetallics 41:96–103. doi:10.1016/j.intermet.2013.05.002

    Article  Google Scholar 

  8. Guo S, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci:Mater Int 21(6):433–446. doi:10.1016/S1002-0071(12)60080-X

    Article  Google Scholar 

  9. Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK (2008) Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 10(6):534–538. doi:10.1002/adem.200700240

    Article  Google Scholar 

  10. Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 132(2–3):233–238. doi:10.1016/j.matchemphys.2011.11.021

    Article  Google Scholar 

  11. Cahn RW, Hassen P (1996) Physical metallurgy, vol 1, 4th edn. North Holland, Amsterdam

    Google Scholar 

  12. Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mate 48(1):279–306, http://dx.doi.org/10.1016/S1359-6454(99)00300-6

    Article  Google Scholar 

  13. Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12(3):191–201. doi:10.1038/nmat3568

    Article  Google Scholar 

  14. Zhang Y, Yang X, Liaw PK (2012) Alloy design and properties optimization of high-entropy alloys. JOM 64(7):830–838. doi:10.1007/s11837-012-0366-5

    Article  Google Scholar 

  15. Yang X, Chen SY, Cotton JD, Zhang Y (2014) Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM 10(66):2009–2020. doi:10.1007/s11837-014-1059-z

    Article  Google Scholar 

  16. Zhang Y, Lu ZP, Ma SG, Liaw PK, Tang Z, Cheng YQ, Gao MC (2014) Guidelines in predicting phase formation of high-entropy alloys. MRS Commun 4(2):57–62. doi:10.1557/mrc.2014.11

    Article  Google Scholar 

  17. Ma SG, Zhang Y (2012) Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng A 532:480–486. doi:10.1016/j.msea.2011.10.110

    Article  Google Scholar 

  18. Zhang KB, Fu ZY (2012) Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics 22:24–32. doi:10.1016/j.intermet.2011.10.010

    Article  Google Scholar 

  19. Chuang MH, Tsai MH, Wang WR, Lin SJ, Yeh JW (2011) Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater 59(16):6308–6317. doi:10.1016/j.actamat.2011.06.041

    Article  Google Scholar 

  20. Lucas MS, Mauger L, Munoz JA, Xiao YM, Sheets AO, Semiatin SL, Horwath J, Turgut Z (2011) Magnetic and vibrational properties of high-entropy alloys. J Appl Phys 109(7):07E307. doi:10.1063/1.3538936

    Article  Google Scholar 

  21. Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF (2011) Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd 509(20):6043–6048. doi:10.1016/j.jallcom.2011.02.171

    Article  Google Scholar 

  22. Zhu JM, Fu HM, Zhang HF, Wang AM, Li H, Hu ZQ (2010) Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys. Mater Sci Eng A 527(27–28):7210–7214. doi:10.1016/j.msea.2010.07.049

    Article  Google Scholar 

  23. Zhu JM, Fu HM, Zhang HF, Wang AM, Li H, Hu ZQ (2010) Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys. Mater Sci Eng A 527(26):6975–6979. doi:10.1016/j.msea.2010.07.028

    Article  Google Scholar 

  24. Hsu CY, Juan CC, Wang WR, Sheu TS, Yeh JW, Chen SK (2011) On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Mater Sci Eng A 528(10–11):3581–3588. doi:10.1016/j.msea.2011.01.072

    Article  Google Scholar 

  25. Gao XQ, Zhao K, Ke HB, Ding DW, Wang WH, Bai HY (2011) High mixing entropy bulk metallic glasses. J Non Cryst Solids 357(21):3557–3560. doi:10.1016/j.jnoncrysol.2011.07.016

    Article  Google Scholar 

  26. Zhang B, Wang RJ, Zhao DQ, Pan MX, Wang WH (2004) Properties of Ce-based bulk metallic glass-forming alloys. Phys Rev B 70(22):224208. doi:10.1103/PhysRevB.70.224208

    Article  Google Scholar 

  27. Xu DH, Duan G, Johnson WL, Garland C (2004) Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater 52(12):3493–3497. doi:10.1016/j.actamat.2004.04.001

    Article  Google Scholar 

  28. Jiang QK, Zhang GQ, Chen LY, Wu JZ, Zhang HG, Jiang JZ (2006) Glass formability, thermal stability and mechanical properties of La-based bulk metallic glasses. J Alloys Compd 424(1–2):183–186. doi:10.1016/j.jallcom.2006.07.109

    Article  Google Scholar 

  29. Jiang QK, Zhang GQ, Yang L, Wang XD, Saksl K, Franz H, Wunderlich R, Fecht H, Jiang JZ (2007) La-based bulk metallic glasses with critical diameter up to 30 mm. Acta Mater 55(13):4409–4418. doi:10.1016/j.actamat.2007.04.021

    Article  Google Scholar 

  30. Chang CT, Shen BL, Inoue A (2006) Co-Fe-B-Si-Nb bulk glassy alloys with superhigh strength and extremely low magnetostriction. Appl Phys Lett 88(1):011901. doi:10.1063/1.2159107

    Article  Google Scholar 

  31. Zhang T, Yang Q, Ji YF, Li R, Pang SJ, Wang JF, Xu T (2011) Centimeter-scale-diameter Co-based bulk metallic glasses with fracture strength exceeding 5000 MPa. Chin Sci Bull 56(36):3972–3977. doi:10.1007/s11434-011-4765-8

    Article  Google Scholar 

  32. Li S, Xi XK, Wei YX, Luo Q, Wang YT, Tang MB, Zhang B, Zhao ZF, Wang RJ, Pan MX, Zhao DQ, Wang WH (2005) Formation and properties of new heavy rare-earth-based bulk metallic glasses. Sci Techno Adv Mater 6(7):823–827. doi:10.1016/j.stam.2005.06.019

    Article  Google Scholar 

  33. Jiang QK, Zhang GQ, Chen LY, Zeng QS, Jiang JZ (2006) Centimeter-sized (La0.5Ce0.5)-based bulk metallic glasses. J Alloys Compd 424(1–2):179–182. doi:10.1016/j.jallcom.2006.07.007

    Article  Google Scholar 

  34. Li R, Pang SJ, Men H, Ma CL, Zhang T (2006) Formation and mechanical properties of (Ce-La-Pr-Nd)-Co-Al bulk glassy alloys with superior glass-forming ability. Scr Mater 54(6):1123–1126. doi:10.1016/j.scriptamat.2005.11.074

    Article  Google Scholar 

  35. Tsai KY, Tsai MH, Yeh JW (2013) Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater 61(13):4887–4897. doi:10.1016/j.actamat.2013.04.058

    Article  Google Scholar 

  36. Wu WH, Yang CC, Yeh JW (2006) Industrial development of high-entropy alloys. Ann Chimie Sci Materiaux 31(6):737–747. doi:10.3166/acsm.31.737-747

    Article  Google Scholar 

  37. Guo S, Ng C, Lu J, Liu CT (2011) Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys 109(10):103505. doi:10.1063/1.3587228

    Article  Google Scholar 

  38. Wang FJ, Zhang Y, Chen GL, Davies HA (2009) Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy. Int J Mod Phys B 23(6–7):1254–1259. doi:10.1142/S0217979209060774

    Article  Google Scholar 

  39. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Refractory high-entropy alloys. Intermetallics 18(9):1758–1765. doi:10.1016/j.intermet.2010.05.014

    Article  Google Scholar 

  40. Tung CC, Yeh JW, Shun TT, Chen SK, Huang YS, Chen HC (2007) On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater Lett 61(1):1–5. doi:10.1016/j.matlet.2006.03.140

    Article  Google Scholar 

  41. Ke GY, Chen SK, Hsu T, Yeh JW (2006) FCC and BCC equivalents in as-cast solid solutions of AlxCoyCrzCu0.5FevNiw high-entropy alloys. Ann Chimie Sci Materiaux 31(6):669–683. doi:10.3166/acsm.31.669-684

    Article  Google Scholar 

  42. Mizutani U (2011) Hume-Rothery rules for structurally complex alloy phases. CRC Press, Boca Raton

    Google Scholar 

  43. Liu CT, Stiegler JO (1984) Ductile ordered intermetallic alloys. Science 226(4675):636–642. doi:10.1126/science.226.4675.636

    Article  Google Scholar 

  44. Zhu JH, Liaw PK, Liu CT (1997) Effect of electron concentration on the phase stability of NbCr2-based Laves phase alloys. Mater Sci Eng A 239–240:260–264. doi:10.1016/S0921-5093(97)00590-X

    Article  Google Scholar 

  45. Tsai AP, Inoue A, Yokoyama Y, Masumoto T (1990) Stable icosahedral Al-Pd-Mn and Al-Pd-Re alloys. Mater Trans JIM 31(2):98–103. doi:10.2320/matertrans1989.31.98

    Article  Google Scholar 

  46. Yokoyama Y, Tsai AP, Inoue A, Masumoto T, Chen HS (1991) Formation criteria and growth-morphology of quasi-crystals in Al-Pd-TM (TM = transition metal) alloys. Mater Trans JIM 32(5):421–428. doi:10.2320/matertrans1989.32.421

    Article  Google Scholar 

  47. Chen W, Wang Y, Qiang J, Dong C (2003) Bulk metallic glasses in the Zr-Al-Ni-Cu system. Acta Mater 51(7):1899–1907. doi:10.1016/s1359-6454(02)00596-7

    Article  Google Scholar 

  48. Dong C, Wang Q, Qiang JB, Wang YM, Jiang N, Han G, Li YH, Wu J, Xia JH (2007) From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses. J Phys D Appl Phys 40(15):R273–R291. doi:10.1088/0022-3727/40/15/r01

    Article  Google Scholar 

  49. Wang Z, Guo S, Liu CT (2014) Phase selection in high-entropy alloys: From nonequilibrium to equilibrium. JOM 10(66):1966–1972. doi:10.1007/s11837-014-0953-8

    Article  Google Scholar 

  50. Ng C, Guo S, Luan JH, Shi SQ, Liu CT (2012) Entropy-driven phase stability and slow diffusion kinetics in Al0.5CoCrCuFeNi high entropy alloy. Intermetallics 31:165–172. doi:10.1016/j.intermet.2012.07.001

    Article  Google Scholar 

  51. Tsai MH, Tsai KY, Tsai CW, Lee C, Juan CC, Yeh JW (2013) Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys. Mater Res Lett 1(4):207–212. doi:10.1080/21663831.2013.831382

    Article  Google Scholar 

  52. Fang SS, Xiao X, Lei X, Li WH, Dong YD (2003) Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J Non Cryst Solids 321(1–2):120–125. doi:10.1016/s0022-3093(03)00155-8

    Article  Google Scholar 

  53. Widom M, Huhn WP, Maiti S, Steurer W (2014) Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall Mater Trans A 45(1):196–200. doi:10.1007/s11661-013-2000-8

    Article  Google Scholar 

  54. Huhn WP, Widom M (2013) Prediction of A2 to B2 phase transition in the high-entropy alloy Mo-Nb-Ta-W. JOM 65(12):1772–1779. doi:10.1007/s11837-013-0772-3

    Article  Google Scholar 

  55. Tian FY, Delczeg L, Chen NX, Varga LK, Shen J, Vitos L (2013) Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys Rev B 88(8):085128. doi:10.1103/PhysRevB.88.085128

    Article  Google Scholar 

  56. Lilensten L, Couzinié JP, Perrière L, Bourgon J, Emery N, Guillot I (2014) New structure in refractory high-entropy alloys. Mater Lett 132:123–125. doi:10.1016/j.matlet.2014.06.064

    Article  Google Scholar 

  57. Kao YF, Chen SK, Sheu JH, Lin JT, Lin WE, Yeh JW, Lin SJ, Liou TH, Wang CW (2010) Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. Int J Hydrogen Energy 35(17):9046–9059. doi:10.1016/j.ijhydene.2010.06.012

    Article  Google Scholar 

  58. Kunce I, Polanski M, Bystrzycki J (2013) Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS). Int J Hydrogen Energy 38(27):12180–12189. doi:10.1016/j.ijhydene.2013.05.071

    Article  Google Scholar 

  59. Tsau C-H (2009) Phase transformation and mechanical behavior of TiFeCoNi alloy during annealing. Mater Sci Eng A 501(1–2):81–86. doi:10.1016/j.msea.2008.09.046

    Article  Google Scholar 

  60. Gao MC, Alman DE (2013) Searching for Next Single-Phase high-entropy alloy compositions. Entropy 15(10):4504–4519. doi:10.3390/e15104504

    Article  Google Scholar 

  61. Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W (2014) High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 10(66):1984–1992. doi:10.1007/s11837-014-1085-x

    Article  Google Scholar 

  62. Feuerbacher M, Heidelmann M, Thomas C (2014) Hexagonal high-entropy alloys. Mater Res Lett 3:1–6. doi:10.1080/21663831.2014.951493

    Article  Google Scholar 

  63. Poletti MG, Battezzati L (2014) Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater 75:297–306. doi:10.1016/j.actamat.2014.04.033

    Article  Google Scholar 

Download references

Acknowledgments

Y.Z. and X.Y. would like acknowledge the financial supports from the National Natural Science Foundation of China (NSFC) with grant nos. of 51210105006, 50971019, 50571018, and 51471025 and National High-Tech R&D (863) Program with grant no. of 2009AA03Z113. S.G. thanks the Area of Advance Materials Science from Chalmers University of Technology, for the start-up funding. C.T.L. acknowledges the financial support from the Research Grants Council (RGC) of the Hong Kong government, through the General Research Fund (GRF) with the account number CityU 521411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, Y., Guo, S., Liu, C.T., Yang, X. (2016). Phase Formation Rules. In: Gao, M., Yeh, JW., Liaw, P., Zhang, Y. (eds) High-Entropy Alloys. Springer, Cham. https://doi.org/10.1007/978-3-319-27013-5_2

Download citation

Publish with us

Policies and ethics