Skip to main content

Heat Transfer in Arc Welding

  • Reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

Arc welding uses an arc plasma between two metal electrodes to transfer concentrated energy to one of the electrodes, the workpiece, which consists of the metal components to be joined. This leads to partial melting of the workpiece, forming a weld pool. Heat transfer in arc welding is complex, involving four phases of matter (plasma, gas, liquid, and solid) and their interactions. After a brief introduction to the different types of arc welding, the chapter focuses on two of the most important: metal inert-gas/metal active-gas (MIG/MAG) welding and tungsten inert-gas (TIG) welding. Heat transfer in the arc column, between the arc and the electrodes, by droplets of molten metal from the upper electrode, in the molten metal weld pool, and in the solid metal are all considered in detail. The efficiency of the arc welding process is also analyzed. Throughout the chapter, the equations describing the heat transfer processes are presented, and their physical significance is discussed. Detailed consideration is given to the influence of different welding gases and the presence of metal vapor on the heat transfer in the arc column.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amakawa T, Jenista J, Heberlein J, Pfender E (1998) Anode-boundary-layer behaviour in a transferred, high-intensity arc. J Phys D Appl Phys 31(10):2826–2834

    Article  Google Scholar 

  • Baeva M (2017) Non-equilibrium modeling of tungsten-inert gas arcs. Plasma Chem Plasma Process 37(2):341–370

    Article  Google Scholar 

  • Baeva M, Uhrlandt D, Benilov MS, Cunha MD (2013) Comparing two non-equilibrium approaches to modelling of a free-burning arc. Plasma Sources Sci Technol 22(6):065017

    Article  Google Scholar 

  • Barrett J, Clement C (1992) Kinetic evaporation and condensation rates and their coefficients. J Colloid Interface Sci 150(2):352–364

    Article  Google Scholar 

  • Benilov MS, Almeida NA, Baeva M, Cunha MD, Benilova LG, Uhrlandt D (2016) Account of near-cathode sheath in numerical models of high-pressure arc discharges. J Phys D Appl Phys 49(21):215201

    Article  Google Scholar 

  • Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and applications, vol 1. Plenum, New York

    Book  Google Scholar 

  • Coulombe S, Meunier J-L (1997a) Importance of high local cathode spot pressure on the attachment of thermal arcs on cold cathodes. IEEE Trans Plasma Sci 25(5):913–918

    Article  Google Scholar 

  • Coulombe S, Meunier J-L (1997b) Thermo-field emission: a comparative study. J Phys D Appl Phys 30(5):776–780

    Article  Google Scholar 

  • Cram LE (1985) Statistical evaluation of radiative power losses from thermal plasmas due to spectral lines. J Phys D Appl Phys 18(3):401–411

    Article  Google Scholar 

  • Cressault Y, Rouffet ME, Gleizes A, Meillot E (2010) Net emission of Ar-H2-he thermal plasmas at atmospheric pressure. J Phys D Appl Phys 43(33):335204.

    Article  Google Scholar 

  • Crowe CT, Sharma MP, Stock DE (1977) The particle-source-in cell (PSI-CELL) model for gas-droplet flows. J Fluids Eng 99(2):325–332

    Article  Google Scholar 

  • Devoto RS (1967) Simplified expressions for transport properties of ionized monatomic gases. Phys Fluids 10(10):2105–2112

    Article  Google Scholar 

  • Dinulescu HA, Pfender E (1980) Analysis of the anode boundary layer of high intensity arcs. J Appl Phys 51(6):3149–3157

    Article  Google Scholar 

  • Goecke SF, Metzke E, Spille-Kohoff A, Langula M (2005) ChopArc. MSG-Lichtbogenschweißen für den Ultraleichtbau. Fraunhofer IRB Verlag, Stuttgart

    Google Scholar 

  • Guile AE (1971) Arc-electrode phenomena. Proc IEE 118(9R):1107–1130

    Google Scholar 

  • Haelsig A, Mayr P (2013) Energy balance study of gas-shielded arc welding processes. Weld World 57(5):727–734

    Article  Google Scholar 

  • Haelsig A, Kusch M, Mayr P (2015) Calorimetric analyses of the comprehensive heat flow for gas metal arc welding. Weld World 59(2):191–199

    Article  Google Scholar 

  • Haidar J, Farmer AJD (1995) Surface temperature measurements for tungsten-based cathodes of high-current free-burning arcs. J Phys D Appl Phys 28(10):2089–2094

    Article  Google Scholar 

  • Heberlein J, Mentel J, Pfender E (2010) The anode region of electric arcs: a survey. J Phys D Appl Phys 43(2):023001

    Article  Google Scholar 

  • Hertel M, Rose S, Füssel U (2016) Numerical simulation of arc and droplet transfer in pulsed GMAW of mild steel in argon. Weld World 60(5):1055–1061

    Article  Google Scholar 

  • Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    MATH  Google Scholar 

  • Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225

    Article  Google Scholar 

  • Hu J, Tsai HL (2007) Heat and mass transfer in gas metal arc welding. Part II: the metal. Int J Heat Mass Transf 50(5–6):808–820

    Article  Google Scholar 

  • Jenista J, Heberlein JVR, Pfender E (1997) Numerical model of the anode region of high-current electric arcs. IEEE Trans Plasma Sci 25(5):883–890

    Article  Google Scholar 

  • Kim J-W, Na S-J (1995) A study on the effect of contact tube-to-workpiece distance on weld pool shape in gas metal arc welding. Weld J 74(5):141s–152s

    Google Scholar 

  • Kumar A, DebRoy T (2007) Heat transfer and fluid flow during gas-metal-arc fillet welding for various joint configurations and welding positions. Metall Mater Trans A Phys Metall Mater Sci 38(3):506–519

    Article  Google Scholar 

  • Lancaster JF (ed) (1986) The physics of welding, 2nd edn. Pergamon, Oxford

    Google Scholar 

  • Lin Q, Li X, Simpson SW (2001) Metal transfer measurements in gas metal arc welding. J Phys D Appl Phys 34(3):347–353

    Article  Google Scholar 

  • Liu JW, Rao ZH, Liao SM, Tsai HL (2015) Numerical investigation of weld pool behaviors and ripple formation for a moving GTA welding under pulsed currents. Int J Heat Mass Transf 91(1):990–1000

    Article  Google Scholar 

  • Lowke JJ, Morrow R, Haidar J (1997) A simplified unified theory of arcs and their electrodes. J Phys D Appl Phys 30(14)2033–2042.

    Article  Google Scholar 

  • Lowke JJ (2009) Physical basis for the transition from globular to spray modes in gas metal arc welding. J Phys D Appl Phys 42(13):135204

    Article  Google Scholar 

  • Lowke JJ, Murphy AB (2016) Plasma flows. In: Johnson RW (ed) The handbook of fluid dynamics, 2nd edn. CRC, Boca Raton, pp 18.11–18.26

    Google Scholar 

  • Lowke JJ, Tanaka M (2006) 'LTE-diffusion approximation' for arc calculations. J Phys D Appl Phys 39(16):3634–3643

    Article  Google Scholar 

  • McIntosh C, Mendez PF (2017) Experimental measurements of fall voltages in gas metal arc welding. Weld J 96(4):121s–132s

    Google Scholar 

  • Menart J, Malik S (2002) Net emission coefficients for argon–iron thermal plasmas. J Phys D Appl Phys 35(9):867–874

    Article  Google Scholar 

  • Menart J, Heberlein J, Pfender E (1996) Theoretical radiative emission results for argon/copper thermal plasmas. Plasma Chem Plasma Process 16(1 Suppl):245s–265s

    Google Scholar 

  • Mundra K, DebRoy T, Kelkar KM (1996) Numerical prediction of fluid flow and heat transfer in welding with a moving heat source. Numer Heat Transfer A 29(2):115–129

    Article  Google Scholar 

  • Murphy AB (1995) Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chem Plasma Process 15(2):279–307

    Article  Google Scholar 

  • Murphy AB (1996) A comparison of treatments of diffusion in thermal plasmas. J Phys D Appl Phys 29(7):1922–1932

    Article  Google Scholar 

  • Murphy AB (1997a) Demixing in free-burning arcs. Phys Rev E 55(6):7473–7494

    Article  Google Scholar 

  • Murphy AB (1997b) Transport coefficients of helium and argon-helium plasmas. IEEE Trans Plasma Sci 25(5):809–814

    Article  Google Scholar 

  • Murphy AB (2000) Transport coefficients of hydrogen and argon-hydrogen plasmas. Plasma Chem Plasma Process 20(3):279–297

    Article  Google Scholar 

  • Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D Appl Phys 43(43):434001

    Article  Google Scholar 

  • Murphy AB (2013a) Influence of droplets in gas–metal arc welding – a new modelling approach, and application to welding of aluminium. Sci Technol Weld Join 18(1):32–37

    Article  Google Scholar 

  • Murphy AB (2013b) Influence of metal vapour on arc temperatures in gas–metal arc welding: convection versus radiation. J Phys D Appl Phys 46(22):224004

    Article  Google Scholar 

  • Murphy AB (2014) Calculation and application of combined diffusion coefficients in thermal plasmas. Sci Rep 4:4304

    Article  Google Scholar 

  • Murphy AB (2015) A perspective on arc welding research: the importance of the arc, unresolved questions and future directions. Plasma Chem Plasma Process 35(3):471–489

    Article  Google Scholar 

  • Murphy AB, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen and argon-oxygen plasmas. Plasma Chem Plasma Process 14(4):451–490

    Article  Google Scholar 

  • Murphy EL, Good RH (1956) Thermionic emission, field emission, and the transition region. Phys Rev 102(6):1464–1473

    Article  Google Scholar 

  • Murphy AB, Thomas DG (2017) Prediction of arc, weld pool and weld properties with a desktop computer model of metal–inert-gas welding. Weld World 61(3):623–633

    Article  Google Scholar 

  • Murphy AB, Tanaka M, Tashiro S, Sato T, Lowke JJ (2009a) A computational investigation of the effectiveness of different shielding gas mixtures for arc welding. J Phys D Appl Phys 42(11):115205

    Article  Google Scholar 

  • Murphy AB, Tanaka M, Yamamoto K, Tashiro S, Satoh T, Lowke JJ (2009b) Modelling of thermal plasmas for arc welding: the role of shielding gas properties and of metal vapour. J Phys D Appl Phys 42(19):194006

    Article  Google Scholar 

  • Norrish J (ed) (1992) Advanced welding processes. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Pfender E, Heberlein J (2007) Heat transfer processes and modeling of arc discharges. In: Fridman A, Cho YI, Greene GA, Bar-Cohen A (eds) Transport phenomena in plasma. Advances in heat transfer, vol 40. Academic, New York, pp 345–450

    Google Scholar 

  • Rao ZH, Zhou J, Liao SM, Tsai HL (2010) Three-dimensional modeling of transport phenomena and their effect on the formation of ripples in gas metal arc welding. J Appl Phys 107(5):054905

    Article  Google Scholar 

  • Sansonnens L, Haidar J, Lowke JJ (2000) Prediction of properties of free burning arcs including effects of ambipolar diffusion. J Phys D Appl Phys 33(2):148–157

    Article  Google Scholar 

  • Schnick M, Fussel U, Hertel M, Spille-Kohoff A, Murphy AB (2010) Metal vapour causes a central minimum in arc temperature in gas-metal arc welding through increased radiative emission. J Phys D Appl Phys 43(2):022001

    Article  Google Scholar 

  • Schnick M, Hertel M, Fuessel U, Uhrlandt D (2013) Energy balance in MIG arcs. J Phys D Appl Phys 46(22):224002

    Article  Google Scholar 

  • Shirvan AJ, Choquet I (2016) A review of cathode-arc coupling modeling in GTAW. Weld World 60(4):821–835

    Article  Google Scholar 

  • Siewert E, Schein J, Forster G (2014) Determination of enthalpy, temperature, surface tension and geometry of the material transfer in PGMAW for the system argon–iron. J Phys D Appl Phys 46(22):224008

    Article  Google Scholar 

  • Tanaka M, Lowke JJ (2007) Predictions of weld pool profiles using plasma physics. J Phys D Appl Phys 40(1):R1–R23

    Article  Google Scholar 

  • Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamasaki K, Suzuki K, Murphy AB, Lowke JJ (2010) Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding. J Phys D Appl Phys 43(43):043009

    Article  Google Scholar 

  • Tashiro S, Tanaka M, Ushio M, Murphy AB, Lowke JJ (2006) Prediction of energy source properties of free-burning arcs. Vacuum 80(11–12):1190–1194

    Article  Google Scholar 

  • Uhrlandt D (2016) Diagnostics of metal inert gas and metal active gas welding processes. J Phys D Appl Phys 49(31):313001

    Article  Google Scholar 

  • Voller VR, Prakash C (1987) A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Transf 30(8):1709–1719

    Article  Google Scholar 

  • Wu CS, Dorn L (1994) Computer simulation of fluid dynamics and heat transfer in full-penetrated TIG weld pools with surface depression. Comput Mater Sci 2(2):341–349

    Article  Google Scholar 

  • Wu CS, Chen J, Zhang YM (2007) Numerical analysis of both front- and back-side deformation of fully-penetrated GTAW weld pool surfaces. Comput Mater Sci 39(3):635–642

    Article  Google Scholar 

  • Yamamoto K, Tanaka M, Tashiro S, Nakata K, Yamazaki K, Yamamoto E, Suzuki K, Murphy AB (2008) Metal vapour behaviour in thermal plasma of gas tungsten arcs during welding. Sci Technol Weld Join 13(6):566–572

    Article  Google Scholar 

  • Yokomizu Y, Matsumura T, Henmi R, Kito Y (1996) Total voltage drops in electrode fall regions of SF6, argon and air arcs in current range from 10 to 20000 A. J Phys D Appl Phys 29(5):1260–1267

    Article  Google Scholar 

  • Zhang W, Kim C-H, DebRoy T (2004) Heat and fluid flow in complex joints during gas metal arc welding - part I: numerical model of fillet welding. J Appl Phys 95(9):5210–5219

    Article  Google Scholar 

  • Zhou X, Heberlein J (1994) Analysis of the arc–cathode interaction of free-burning arcs. Plasma Sources Sci Technol 3(4):564–574

    Article  Google Scholar 

  • Zhu P, Morrow R, Lowke JJ (1992) A unified theory of free burning arcs, cathode sheaths and cathodes. J Phys D Appl Phys 25(8):1221–1230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony B. Murphy .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Murphy, A.B., Lowke, J.J. (2018). Heat Transfer in Arc Welding. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_29

Download citation

Publish with us

Policies and ethics